Supplementary Material for
Continual Reinforcement Learning with Complex
Synapses

1 Experimental details

Tables of parameters for both the tabular and deep Q-learning experiments are
shown below.

Table 1: Parameter values for Tabular Q-learning experiments

PARAMETER VALUE
# EpPOCHS 24
# EprisopEs/EpocH 10000
MaAX # STEPS PER EPISODE 20000
0% 0.9
A 0.9
€ 0.05
LEARNING RATE 0.1
GRID SIZE 10x10
# BENNA-FUSI VARIABLES 3
BENNA-FUSI g1 2 1075
ELIG. TRACE SCALE FACTOR* 10

*Multiple of eligibility trace that flow between beakers
1s scaled by in modified Benna-Fusi model



Table 2: Parameter values for Deep RL experiments

PARAMETER

MULTI-TASK

SINGLE TASK

# EpocHs

# EPISODES/EPOCH
MAX # TIME STEPS / EPISODE

CART-POLE v
CATCHER 7y

INITIAL € (EPOCH START)
€-DECAY / EPISODE

MINIMUM €
NEURON TYPE

WIDTH HIDDEN LAYER 1
WIDTH HIDDEN LAYER 2

OPTIMISER

LEARNING RATE

ADAM (1
ADAM fs

EXPERIENCE REPLAY SIZE
REPLAY BATCH SIZE *

SOFT TARGET UPDATE T
SOFT Q-LEARNING «

# BENNA-FUSI VARIABLES
BENNA-FUSI g1 2

TEST FREQUENCY (EPISODES)

40
20000
500
0.95
0.99
1
0.9995
0
RELU
400
200
ApAM
1073 To 107¢
0.9
0.999
2000
64
0.01
0.01
30
0.001625
10

1
100000
500
0.95
0.99
1
0.9995
0
RELU
100
50
ADAM
103 To 1076
0.9
0.999
1
1
0.01
0.01
30
0.01
10

*Updates were made sequentially as in stochastic
gradient descent, not all in one go as a minibatch.



2 Additional Experiments

2.1 Varying Epoch Lengths
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Figure 1: Comparison of time to (re)learn each task in the control agent (blue)
and the Benna-Fusi agent (orange) for different epoch lengths. Both agents
had a learning rate of 0.001 and the runs with longer epochs were run for
fewer epochs. In all cases the Benna-Fusi agent becomes quicker (or in a cou-
ple of instances equally quick) at relearning each task than the control agent,
demonstrating the Benna-Fusi model’s ability to improve memory at a range of
timescales.

2.2 Three-task experiments

In order to ensure that the benefits of the Benna-Fusi model were not limited
to the two-task setting, we introduced a new task and ran experiments where
training was rotated over the three tasks. The new task was a modified version
of Cart-Pole where the length of the pole is doubled (dubbed Cart-PoleLong);
our criterion for judging that this task was different enough to Cart-Pole to be
considered a new task was that when trained sequentially after Cart-Pole in a
control agent, it subsequently led to catastrophic forgetting of its policy for the
Cart-Pole task.

Figure[2]shows the remembering times for each task for a control agent and a
Benna-Fusi agent when training was rotated over the three tasks (Cart-PoleLong
— > Catcher — > Cart-Pole) over a total of 24 epochs. The results indicate
that the Benna-Fusi model exhibits the same benefits as in the two-task setting.
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Figure 2: Comparison of time to (re)learn each task in the control agent (blue)
and the Benna-Fusi agent (orange) for the three different tasks. Each epoch was
run for 20000 episodes and both agents had a learning rate of 0.001. While the
Benna-Fusi agent took a little longer to learn Catcher than the control agent,
by the end of the simulation the Benna-Fusi agent could learn to recall each
task much faster than the control.



2.3 Varying size of replay database
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Figure 3: 100 test-episode moving average of reward in Cart-Pole for control
agents (all with n = 0.001) with different sized experience replay databases
and the Benna-Fusi agent in just the online setting. For these experiments, 1
experience was sampled for training from the database after every time step.
In the control cases, when the database is too small, the agent can not attain a
stable performance on the task while the Benna-Fusi agent can.



2.4 Catcher single task
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Figure 4: The 100 test-episode moving average of reward per episode in Catcher
for the Benna-Fusi agent and the best control agent. The control agent learns
faster but both end up learning a good policy.



2.5 Varying final exploration value
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Figure 5: The 100 test-episode moving average of reward per episode in Cart-
Pole for control agents where epsilon was not allowed to decay below different
minimum values. None of the runs yielded a good stable performance.
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