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In this supplementary material, we present overviews of the manifolds of interest, a complete proof of the conver-
gence analysis, and details of additional numerical experiments. Hereafter, we use E[·] to indicate the expectation
with respect to the joint distribution of all random variables. For example, wt is determined by the realizations of
the independent random variables {i1, i2, . . . , it−1}, and the total expectation of f(wt) for any t ∈ N can be taken as
E[f(wt)] = Ei1Ei2 . . .Eit−1

[f(wt)]. We also use E[·|Ft] to denote an expected value taken with respect to the distribution
of the random variable it.

A SPD manifold and Grassmann manifold
A.1 SPD manifold Sd

++

We designate the space of d × d SPD matrices as the SPD manifold, Sd
++. If we endow Sd

++ with the affine-invariant
Riemannian metric (AIRM) (Pennec et al., 2006) defined by ⟨ξX, ηX⟩X = trace(ξXX−1ηXX−1) for ξX, ηX ∈ TXSd

++ at X ∈
Sd
++, the SPD manifold Sd

++ forms a Riemannian manifold. An efficient retraction is proposed as follows (Jeuris et al.,
2012): RX(ξX) = X + ξX + 1

2ξXX−1ξX. This maps ξX onto Sd
++ for all ξX ∈ TXSd

++. Previously, Huang et al. proposed
an efficient isometric vector transport (Huang et al., 2015b; Yuan et al., 2016) defined as TSη

ξX = BYB
♭
XξX, where Y =

RX(ξX) and a♭ denotes the flat of a ∈ TwM; i.e., a♭ : TwM → R : v 7→ ⟨a, v⟩w. BX and BY are the orthonormal bases
of TXSd

++ and TYSd
++, respectively, where the basis is calculated based on the Cholesky decomposition.

A.2 Grassmann manifold Gr(r, d)

A point on the Grassmann manifold is an equivalence class represented by a d× r orthogonal matrix U with orthonormal
columns: UT U = I. Two orthogonal matrices represent the same element on the Grassmann manifold if they can be
transformed into each other by right multiplication of an r × r orthogonal matrix O ∈ O(r). We state that these two
matrices are equivalent. In other words, an element of Gr(r, d) is identified with a set of equivalent d × r orthogonal
matrices [U] := {UO : O ∈ O(r)}. That is, Gr(r, d) := St(r, d)/O(r), where St(r, d) is the Stiefel manifold, which is
the set of matrices of size d × r with orthonormal columns. The Grassmann manifold has the structure of a Riemannian
quotient manifold (Absil et al., 2008). The retraction RU(0)(ξ) = qf(U(0)+ tξ)(=: U(t)), which extracts the orthonormal
factor based on QR decomposition, is widely used. Further, a commonly used vector transport employs an orthogonal
projection of tξ to the horizontal space at U(t), i.e., (I − U(t)U(t)T )tξ (Absil et al., 2008).
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B Proofs
B.1 Essential lemmas

B.1.1 Proof of Lemmas 3.5 and 3.6

Taylor’s theorem is generalized to Riemannian manifolds (Absil et al., 2008) and addresses the exponential mapping in-
stead of the retraction. Lemma 3.2 in (Huang et al., 2015b) applies Taylor’s theorem on the retraction by newly introducing
a function along a curve on the manifold.

Proof. For self-completeness, we show a proof similar to that of Lemma 3.2 in (Huang et al., 2015b). We define ξ = αη
with η = ξ/∥ξ∥w, i.e., α = ∥ξ∥w. From Taylor’s theorem, we have

f(z)− f(w) = f(Rw(αη))− f(Rw(0))

=
d

dτ
f(Rw(τη))

∣∣∣
τ=0

· α+
1

2

d2

dτ2
f(Rw(τη))

∣∣∣
τ=p

· α2

= ⟨gradf(w), αη⟩w +
1

2

d2

dτ2
f(Rw(τη))

∣∣∣
τ=p

· α2

≤ ⟨gradf(w), ξ⟩w +
1

2
L∥ξ∥2w,

where 0 ≤ p ≤ α. This completes the proof of Lemma 3.5. Lemma 3.6 can be proved in a similar manner.

B.1.2 Proof of Lemma 3.8

Proof. From Lemma 8 in (Huang et al., 2015a), we have∥∥∥∥P (γ)wz gradf(z)− gradf(w)−
∫ 1

0

P (γ)wγ(t)Hessf(γ(t))P (γ)γ(t)w ηdt

∥∥∥∥
w

≤ b0∥η∥2w,

where b0 is identical to Chθ by applying Assumption (1.4) and Lemma 3.7 for Lemma 8 in (Huang et al., 2015a). Hence,
from the triangle inequality, we have

∥P (γ)wz gradf(z)− gradf(w)∥w ≤
∥∥∥∥∫ 1

0

P (γ)wγ(t)Hessf(γ(t))P (γ)γ(t)w ηdt

∥∥∥∥
w

+ Chθ∥η∥2w

≤
∫ 1

0

∥P (γ)wγ(t)Hessf(γ(t))P (γ)γ(t)w η∥wdt+ Chθ∥η∥2w

≤ Ch(1 + Cηθ)∥η∥w.

As Ll := Ch(1 + Cηθ), this completes the proof.

Note that Cη is uniformly determined in each algorithm. As for Algorithm 1, the constant Ll is derived as Ll = Ch(1 +
3θCg) for any t > 1, because the triangle inequality yields the following, from (2):

∥vt∥wt
= ∥gradfit(wt)− T wt

wt−1
gradfit(wt−1) + T wt

wt−1
vt−1∥wt

≤ Cg + Cg + Cg = 3Cg.

That is, Cη can be chosen as 3Cg . Here, we used the property that T is an isometry in Assumption 1.

B.1.3 Lemma B.1

Lemma B.1. Suppose that Assumption 1 holds and f is upper-Hessian bounded. Let w∗ be an optimal solution to problem
(1). Consider Algorithm 1 with a constant step size α. Then, we have

m∑
t=0

E[∥gradf(wt)∥2wt
] ≤ 2

α
E[f(w0)− f(w∗)] +

m∑
t=0

E[∥gradf(wt)− vt∥2wt
]− (1− Lα)

m∑
t=0

E[∥vt∥2wt
]. (A.1)
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Proof. This proof is the straightforward extension to the Riemannian setting from that of Lemma 1 in (Nguyen et al.,
2017a). From Lemma 3.5, we have

E[f(wt+1)] ≤ E[f(wt)]− E[⟨gradf(wt), αvt⟩wt
] +

1

2
Lα2E[∥vt∥2wt

]

= E[f(wt)]−
α

2
E
[
∥gradf(wt)∥2wt

+ ∥vt∥2wt
− ∥gradf(wt)− vt∥2wt

]
+

1

2
Lα2E[∥vt∥2wt

]

= E[f(wt)]−
α

2
E[∥gradf(wt)∥2wt

] +
α

2
E[∥gradf(wt)− vt∥2wt

]−
(
α

2
− 1

2
Lα2

)
E[∥vt∥2wt

].

Let wm+1 be a point obtained by performing Steps 8–10 in Algorithm 1 for t = m. Summing over t = 0, 1, . . . ,m yields

E[f(wm+1)] ≤ E[f(w0)]−
α

2

m∑
t=0

E[∥gradf(wt)∥2wt
]

+
α

2

m∑
t=0

E[∥gradf(wt)− vt∥2wt
]−
(
α

2
− 1

2
Lα2

) m∑
t=0

E[∥vt∥2wt
].

Then, we obtain

m∑
t=0

E[∥gradf(wt)∥2wt
] ≤ 2

α
E[f(w0)− f(wm+1)] +

m∑
t=0

E[∥gradf(wt)− vt∥2wt
]− (1− Lα)

m∑
t=0

E[∥vt∥2wt
]

≤ 2

α
E[f(w0)− f(w∗)] +

m∑
t=0

E[∥gradf(wt)− vt∥2wt
]− (1− Lα)

m∑
t=0

E[∥vt∥2wt
],

where the last inequality holds because w∗ is a solution of f . This completes the proof.

B.1.4 Lemma B.2

Lemma B.2. Suppose that Assumption 1 holds. Consider vt in Algorithm 1. Then, for any t ≥ 1,

E[∥gradf(wt)− vt∥2wt
] =

t∑
j=1

E[∥vj − T wj
wj−1

vj−1∥2wj
]−

t∑
j=1

E[∥gradf(wj)− T wj
wj−1

gradf(wj−1)∥2wj
].

Proof. This proof is the straightforward extension to the Riemannian setting from that of Lemma 2 in (Nguyen et al.,
2017a). First, we obtain the expectation of vj − T wj

wj−1vj−1 as

E[vj − T wj
wj−1

vj−1|Fj ] = E[gradfij (wj)− T wj
wj−1

gradfij (wj−1)|Fj ]

= gradf(wj)− T wj
wj−1

gradf(wj−1). (A.2)

Then, we have

E[∥gradf(wj)− vj∥2wj
|Fj ] = E[∥[T wj

wj−1
gradf(wj−1)− T wj

wj−1
vj−1] + gradf(wj)− T wj

wj−1
gradf(wj−1)

−[vj − T wj
wj−1

vj−1]∥2wj
|Fj ]

= ∥T wj
wj−1

gradf(wj−1)− T wj
wj−1

vj−1∥2wj
+ ∥gradf(wj)− T wj

wj−1
gradf(wj−1)∥2wj

+E[∥vj − T wj
wj−1

vj−1∥2wj
|Fj ]

+2⟨T wj
wj−1

gradf(wj−1)− T wj
wj−1

vj−1, gradf(wj)− T wj
wj−1

gradf(wj−1)⟩wj

−2⟨T wj
wj−1

gradf(wj−1)− T wj
wj−1

vj−1,E[vj − T wj
wj−1

vj−1|Fj ]⟩wj

−2⟨gradf(wj)− T wj
wj−1

gradf(wj−1),E[vj − T wj
wj−1

vj−1|Fj ]⟩wj

(A.2)
= ∥T wj

wj−1
gradf(wj−1)− T wj

wj−1
vj−1∥2wj

− ∥gradf(wj)− T wj
wj−1

gradf(wj−1)∥2wj

+E[∥vj − T wj
wj−1

vj−1∥2wj
|Fj ].
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Taking the total expectation for the above, we obtain

E[∥gradf(wj)− vj∥2wj
] = E[∥T wj

wj−1
gradf(wj−1)− T wj

wj−1
vj−1∥2wj

]− E[∥gradf(wj)− T wj
wj−1

gradf(wj−1)∥2wj
]

+E[∥vj − T wj
wj−1

vj−1∥2wj
].

As ∥gradf(w0) − v0∥2wj
= 0 and ∥T wj

wj−1gradf(wj−1) − T wj
wj−1vj−1∥wj

= ∥gradf(wj−1) − vj−1∥wj
, summing over

j = 1, 2, . . . , t yields

E[∥gradf(wt)− vt∥2wt
] =

t∑
j=1

E[∥vj − T wj
wj−1

vj−1∥2wj
]−

t∑
j=1

E[∥gradf(wj)− T wj
wj−1

gradf(wj−1)∥2wj
]. (A.3)

This completes the proof.

B.2 Proofs of retraction-convex functions

B.2.1 Assumptions B.3 and B.4 and Lemma B.5

In this subsubsection, we first state an assumption.
Assumption B.3. For all w, z ∈ U , we have

1

L
∥P z

wgradfi(w)− gradfi(z)∥2z ≤ ⟨P z
wgradfi(w)− gradfi(z),Exp

−1
z (w)⟩z, i = 1, 2, . . . , n, (A.4)

where L is in Definition 3.1 and P z
w(·) is a parallel translation operator along the retraction curve from w to z.

Note that (A.4) is equivalent to the condition that f is L-smooth and convex in the Euclidean setting. Note also that if the
two L in the above equation and in Lemma 3.5 are different, we can newly define the maximum of the two values as L.
Assumption B.4. There exists a constant a1 > 0 such that, for any w, z ∈ U ⊂ M, ξ = R−1

w (z), η = Exp−1
w (z), it holds

∥P (γR)zwχ− P (γg)
z
wχ∥z ≤ a1∥ξ∥w∥χ∥w, χ ∈ TwM,

where γR(t) := Rw(tξ) and γg(t) := Expw(tη). Furthermore, this a1 is sufficiently small.

Lemma B.5. LetR be a retraction on M. Suppose that f is lower-Hessian bounded and that Assumptions 1 and B.4 hold.
Then, there exists a constant a0 > 0 such that, for all w, z ∈ U , we have

(a0µ− a1Cg)∥R−1
w (z)∥w ≤ ∥gradf(w)− Pw

z gradf(z)∥w, (A.5)

where µ is in Definition 3.2 and Pw
z (·) is a parallel translation operator along the curve defined by R from z to w.

Proof. Considering the exponential mapping case in Lemma 3.6, we obtain the two inequalities as

f(z) ≥ f(w) + ⟨gradf(w),Exp−1
w (z)⟩w +

µ

2
∥Exp−1

w (z)∥2w,

f(w) ≥ f(z) + ⟨gradf(z),Exp−1
z (w)⟩z +

µ

2
∥Exp−1

z (w)∥2z.

Hence, adding and rearranging the two inequalities yields

µ∥Exp−1
w (z)∥2w ≤ −⟨gradf(w),Exp−1

w (z)⟩w − ⟨gradf(z),Exp−1
z (w)⟩z

= −⟨gradf(w),Exp−1
w (z)⟩w − ⟨P (γ)wz gradf(z), P (γ)wz Exp

−1
z (w)⟩w

= −⟨gradf(w),Exp−1
w (z)⟩w − ⟨P (γ)wz gradf(z),−Exp−1

w (z)⟩w
= −⟨gradf(w)− P (γ)wz gradf(z),Exp

−1
w (z)⟩w

≤ ∥gradf(w)− P (γ)wz gradf(z)∥w∥Exp
−1
w (z)∥w,

where P (γ) is the parallel translation along the geodesic γ and P (γ)wz Exp
−1
z (w) = −Exp−1

w (z) is incorporated in the sec-
ond equality. The last inequality incorporates the Cauchy-Schwarz inequality. Here, according to Lemma 3 in (Huang et al.,
2015a) for a constant a0 > 0, we have

a0∥R−1
w (z)∥w ≤ ∥Exp−1

w (z)∥w.
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Furthermore, we can evaluate ∥gradf(w)− P (γ)wz gradf(z)∥w by using Assumption B.4 as

∥gradf(w)− P (γ)wz gradf(z)∥w = ∥gradf(w)− Pw
z gradf(z) + Pw

z gradf(z)− P (γ)wz gradf(z)∥w
≤ ∥gradf(w)− Pw

z gradf(z)∥w + ∥(Pw
z − P (γ)wz )gradf(z)∥w

≤ ∥gradf(w)− Pw
z gradf(z)∥w + a1Cg∥R−1

w (z)∥w.

Considering these three inequalities, we obtain the desired result. This completes the proof.

B.2.2 Proof of Lemma 3.9

This subsection provides the proof of Lemma 3.9.

Proof. We have

⟨Exp−1
w (z), ξ⟩w − ⟨R−1

w (z), ξ⟩w = ⟨Exp−1
w (z)−R−1

w (z), ξ⟩w
≤ ∥Exp−1

w (z)−R−1
w (z)∥w∥ξ∥w

≤ 2cRCg∥R−1
w (z)∥2w, (A.6)

where the last inequality incorporates Assumption (1.6). Defining 2cRCg as ν gives the desired result. This ends the proof.

Note that, when the retraction is close to the exponential mapping Expw(z), ν becomes close to zero.

B.2.3 Lemma B.6

Lemma B.6. Suppose that Assumptions 1 and B.3 hold and f is upper-Hessian bounded. Consider vt in Algorithm 1 with
a constant step size α > 0. Then, for any t ≥ 1,

m∑
t=0

E[∥gradf(wt)− vt∥2wt
] ≤ mαL

2− αL
E[∥v0∥2w0

] + ψ(α)

m∑
t=0

t∑
j=1

E[∥vj−1∥2wj−1
],

where ψ(α) =
2(2Ll + 2θCg + L)θCgα

2

2− αL
.

Proof. The expectation of the bound of the norm of vt is first derived.

E[∥vt∥2wt
|Ft] = E[∥T wt

wt−1
vt−1 − (T wt

wt−1
gradfit(wt−1)− gradfit(wt))∥2wt

|Ft]

= ∥T wt
wt−1

vt−1∥2wt
+ E[∥T wt

wt−1
gradfit(wt−1)− gradfit(wt))∥2wt

|Ft]

−2E[⟨T wt
wt−1

gradfit(wt−1)− gradfit(wt), T wt
wt−1

vt−1⟩wt |Ft]. (A.7)
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The third term in (A.7) is evaluated as

−2E[⟨T wt
wt−1

gradfit(wt−1)− gradfit(wt), T wt
wt−1

vt−1⟩wt
|Ft]

= −2E[⟨gradfit(wt−1)− (T wt
wt−1

)−1gradfit(wt), vt−1⟩wt−1
|Ft]

= −2E[⟨gradfit(wt−1)− Pwt−1
wt

gradfit(wt) + Pwt−1
wt

gradfit(wt)− (T wt
wt−1

)−1gradfit(wt), vt−1⟩wt−1 |Ft]

= − 2

α
E[⟨gradfit(wt−1)− Pwt−1

wt
gradfit(wt), αvt−1⟩wt−1

|Ft]

−2E[⟨Pwt−1
wt

gradfit(wt)− (T wt
wt−1

)−1gradfit(wt), vt−1⟩wt−1
|Ft]

= − 2

α
E[⟨−gradfit(wt−1) + Pwt−1

wt
gradfit(wt),−αvt−1⟩wt−1 |Ft]

−2E[⟨Pwt−1
wt

gradfit(wt)− (T wt
wt−1

)−1gradfit(wt), vt−1⟩wt−1 |Ft]

(A.4)

≤ − 2

α
E
[
1

L
∥gradfit(wt−1)− Pwt−1

wt
gradfit(wt)∥2wt−1

− ν∥αvt−1∥2wt−1
|Ft

]
−2E[⟨Pwt−1

wt
gradfit(wt)− (T wt

wt−1
)−1gradfit(wt), vt−1⟩wt−1

|Ft]

= − 2

αL
E[∥gradfit(wt−1)− Pwt−1

wt
gradfit(wt)∥2wt−1

|Ft] + 2να∥vt−1∥2wt−1

−2E[⟨Pwt−1
wt

gradfit(wt)− (T wt
wt−1

)−1gradfit(wt), vt−1⟩wt−1 |Ft], (A.8)

where the inequality incorporates Lemma 3.9. We now proceed to evaluate the first and third terms in (A.8) separately.
The first term in (A.8) is further calculated as

− 2

αL
E[∥gradfit(wt−1)− Pwt−1

wt
gradfit(wt)∥2wt−1

|Ft]

= − 2

αL
E[∥gradfit(wt−1)− T wt−1

wt
gradfit(wt)− Pwt−1

wt
gradfit(wt) + T wt−1

wt
gradfit(wt)∥2wt−1

|Ft]

= − 2

αL
E[∥gradfit(wt−1)− T wt−1

wt
gradfit(wt)∥2wt−1

|Ft]

− 2

αL
E[∥Pwt−1

wt
gradfit(wt)− T wt−1

wt
gradfit(wt)∥2wt−1

|Ft]

+
4

αL
E[⟨gradfit(wt−1)− T wt−1

wt
gradfit(wt), P

wt−1
wt

gradfit(wt)− T wt−1
wt

gradfit(wt)⟩wt−1
|Ft]

≤ − 2

αL
E[∥gradfit(wt−1)− T wt−1

wt
gradfit(wt)∥2wt−1

|Ft]

+
4

αL
E[∥gradfit(wt−1)− T wt−1

wt
gradfit(wt)∥wt−1

· ∥Pwt−1
wt

gradfit(wt)− T wt−1
wt

gradfit(wt)∥wt−1
|Ft].

(A.9)

Here, we note that

∥gradfit(wt−1)− T wt−1
wt

gradfit(wt)∥wt−1

= ∥gradfit(wt−1)− Pwt−1
wt

gradfit(wt) + Pwt−1
wt

gradfit(wt)− T wt−1
wt

gradfit(wt)∥wt−1

≤ ∥gradfit(wt−1)− Pwt−1
wt

gradfit(wt)∥wt−1 + ∥Pwt−1
wt

gradfit(wt)− T wt−1
wt

gradfit(wt)∥wt−1

≤ Ll∥R−1
wt−1

(wt)∥wt−1 + θα∥vt−1∥wt−1∥gradfit(wt)∥wt

≤ (Ll + θCg)α∥vt−1∥wt−1 ,

where the first inequality incorporates the triangle inequality and the second inequality incorporates Lemmas 3.7 and 3.8.
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Substituting this result into (A.9) yields the first term in (A.8) as

− 2

αL
E[∥gradfit(wt−1)− Pwt−1

wt
gradfit(wt)∥2wt−1

|Ft]

≤ − 2

αL
E[∥gradfit(wt−1)− T wt−1

wt
gradfit(wt)∥2wt−1

|Ft] +
4

αL
(Ll + θCg)α∥vt−1∥wt−1

· θCgα∥vt−1∥wt−1

= − 2

αL
E[∥gradfit(wt−1)− T wt−1

wt
gradfit(wt)∥2wt−1

|Ft] +
4(Ll + θCg)θCgα

L
∥vt−1∥2wt−1

. (A.10)

On the other hand, the third term in (A.8) is calculated as

−2E[⟨Pwt−1
wt

gradfit(wt)− (T wt
wt−1

)−1gradfit(wt), vt−1⟩wt−1
|Ft]

≤ 2E[∥Pwt−1
wt

gradfit(wt)− (T wt
wt−1

)−1gradfit(wt)∥wt−1
|Ft] · ∥vt−1∥wt−1

≤ 2θCgα∥vt−1∥2wt−1
. (A.11)

Substituting (A.10) and (A.11) into (A.7) yields

E[∥vt∥2wt
|Ft] = ∥vt−1∥2wt−1

+ E[∥T wt
wt−1

gradfit(wt−1)− gradfit(wt)∥2wt

−2⟨T wt
wt−1

gradfit(wt−1)− gradfit(wt), T wt
wt−1

vt−1⟩wt
|Ft]

≤ ∥vt−1∥2wt−1
+ E[∥T wt

wt−1
gradfit(wt−1)− gradfit(wt)∥2wt

|Ft]

− 2

αL
E[∥gradfit(wt−1)− T wt−1

wt
gradfit(wt)∥2wt−1

|Ft]

+
2((2Ll + 2θCg + L)θCg + νL)α

L
∥vt−1∥2wt−1

= ∥vt−1∥2wt−1
+

(
1− 2

αL

)
E[∥T wt

wt−1
gradfit(wt−1)− gradfit(wt)∥2wt

|Ft]

+
2((2Ll + 2θCg + L)θCg + νL)α

L
∥vt−1∥2wt−1

(A.12)

(2)
= ∥vt−1∥2wt−1

+

(
1− 2

αL

)
E[∥vt − T wt

wt−1
vt−1∥2wt

|Ft]

+
2((2Ll + 2θCg + L)θCg + νL)α

L
∥vt−1∥2wt−1

.

After taking the expectation, the equations are rearranged to yield

E[∥vt − T wt
wt−1

vt−1∥2wt
]

≤ αL

2− αL

[
E[∥vt−1∥2wt−1

]− E[∥vt∥2wt
] +

2((2Ll + 2θCg + L)θCg + νL)α

L
E[∥vt−1∥2wt−1

]

]
.

Consider the above inequality in which t is replaced with j ∈ {1, 2, . . . , t}. Summing this inequality over j =
1, 2, . . . , t (t ≥ 1) yields

t∑
j=1

E[∥vj − T wj
wj−1

vj−1∥2wj
]

≤ αL

2− αL
[E[∥v0∥2w0

]− E[∥vt∥2wt
]] +

t∑
j=1

2((2Ll + 2θCg + L)θCg + νL)α2

2− αL
E[∥vt−1∥2wt−1

].
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Defining ψ(α) =
2((2Ll + 2θCg + L)θCg + νL)α2

2− αL
, we obtain the following from Lemma B.2:

E[∥gradf(wt)− vt∥2wt
] ≤

t∑
j=1

E[∥vj − T wj
wj−1

vj−1∥2wj
]

≤ αL

2− αL
[E[∥v0∥2w0

]− E[∥vt∥2wt
]] +

t∑
j=1

ψ(α)E[∥vj−1∥2wj−1
].

Finally, summing over t = 1, 2, . . . ,m yields

m∑
t=1

E[∥gradf(wt)− vt∥2wt
] ≤ αL

2− αL

m∑
t=1

E[∥v0∥2w0
] + ψ(α)

m∑
t=1

t∑
j=1

E[∥vj−1∥2wj−1
]

=
mαL

2− αL
E[∥v0∥2w0

] + ψ(α)

m∑
t=1

t∑
j=1

E[∥vj−1∥2wj−1
].

This completes the proof.

B.2.4 Proof of Theorem 4.1

Proof. Let us define ψ(α) =
2((2Ll + 2θCg + L)θCg + νL)α2

2− αL
as in the previous proof. From Lemmas B.1 and B.6, we

have
m∑
t=0

E[∥gradf(wt)∥2wt
]

≤ 2

α
E[f(w0)− f(w∗)] +

m∑
t=0

E[∥gradf(wt)− vt∥2wt
]− (1− Lα)

m∑
t=0

E[∥vt∥2wt
]

≤ 2

α
E[f(w0)− f(w∗)] +

mαL

2− αL
E[∥v0∥2w0

] + ψ(α)

m∑
t=1

t∑
j=1

E[∥vj−1∥2wj−1
]− (1− Lα)

m∑
t=0

E[∥vt∥2wt
]

≤ 2

α
E[f(w0)− f(w∗)] +

mαL

2− αL
E[∥v0∥2w0

]

+ψ(α)
[
mE∥v0∥2w0

+ (m− 1)E∥v1∥2w1
+ · · ·+ E∥vm−1∥2wm−1

]
− (1− Lα)

m∑
t=0

E[∥vt∥2wt
]

≤ 2

α
E[f(w0)− f(w∗)] +

mαL

2− αL
E[∥v0∥2w0

] + [mψ(α)− (1− Lα)]

m∑
t=0

E[∥vt∥2wt
].

From the assumption, i.e., (2((2Ll + 2θCg + L)θCg + νL)m− L2)α2 + 3Lα− 2 ≤ 0, the third term is not greater than
zero. Consequently, we obtain

m∑
t=0

E[∥gradf(wt)∥2wt
] ≤ 2

α
E[f(w0)− f(w∗)] +

mαL

2− αL
E[∥v0∥2w0

].

The discussion above is for a single outer iteration. Then, for s ≥ 1, we have v0 = gradf(w0) = gradf(w̃s−1), because
w0 = w̃s−1. We set w̃s = wt where t is randomly selected from {0, 1, . . . ,m}. Consequently, we obtain

E[∥gradf(w̃s)∥2w̃s ] ≤ 1

m+ 1

m∑
t=0

E[∥gradf(wt)∥2wt
]

≤ 2

α(m+ 1)
E[f(w̃s−1)− f(w∗)] +

αL

2− αL
E[∥gradf(w̃s−1)∥2w̃s−1 ].

This completes the proof.
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B.2.5 Proof of Theorem 4.2

Proof. As the proof of Theorem 4.2 is similar to that for Theorem 3 of (Nguyen et al., 2017a), it is omitted.

Suppose that we select the step size as constant α = α∗ :=
2

3

3L−
√
L2 + 8β

2(L2 − β)
. Then, φ in Theorem 4.2 is obtained as

φ =
α∗L

2− α∗L
=

(3L−
√
L2 + 8β)L

6(L2 − β)− (3L−
√
L2 + 8β)L

≤ (3L−
√
L2)L

6(L2 − β)− 3L2 +
√
β
√
β + 8β

=
2L2

3(L2−β)
,

which requires (0 ≤) β ≤ L2

3
to satisfy φ < 1.

B.2.6 Proof of Theorem 4.3

Proof. The proof of Theorem 4.3 is similar to that for Theorem 4 of (Nguyen et al., 2017a), as

E[∥gradf(w̃s)∥2w̃s ] ≤ 2

α(m+ 1)
E[f(w̃s−1)− f(w∗)] +

αL

2− αL
E[∥gradf(w̃s−1)∥2w̃s−1 ]

≤
(

1

µα(m+ 1)
+

αL

2− αL

)
E[∥gradf(w̃s−1)∥2w̃s−1 ],

where the last inequality incorporates the relation of retraction µ-strongly convex function.

To obtain the total complexity, we suppose that β ≤ L2

5
, and select α = α∗ :=

1

2
αl =

1

2

3L−
√
L2 + 8β

2(L2 − β)
and m = 6.5κ.

Then, σm is obtained as

σm =
1

µα∗(m+ 1)
+

α∗L

2− α∗L

=
4(L2 − β)

µ(3L−
√
L2 + 8β)(m+ 1)

+
(3L−

√
L2 + 8β)L

8(L2 − β)− (3L−
√
L2 + 8β)L

≤ 4Lκ(1− β/L2)

(3L−
√
L2 + 8β)(m+ 1)

+
(3L−

√
L2)L

8(L2 − β)− 3L2 +
√
β
√
β + 8β

≤ 8L(1− β/L2)

13(3L−
√
L2 + 8β)

+
2L2

5(L2 − β)
≤

L2(1− β/L2)(3 +
√
1 + 8β/L2)

13(L2 − β)
+

2L2

5(L2 − β)

≤
L2(3 +

√
1 + 8β/L2)

13(L2 − β)
+

2L2

5(L2 − β)
≤

L2(3 +
√
13/5)

13(L2 − β)
+

2L2

5(L2 − β)

<
2L2

5(L2 − β)
+

2L2

5(L2 − β)
=

4L2

5(L2 − β)
≤ 1.

B.2.7 Proof of Proposition 4.4

Proof. The norm of the difference between the two gradients of the successive iterates is bounded as

∥gradf(wt)− T wt
wt−1

gradf(wt−1)∥2wt
=

∥∥∥∥∥ 1n
n∑

i=1

[gradfi(wt)− T wt
wt−1

gradfi(wt−1)]

∥∥∥∥∥
2

wt

≤ 1

n

n∑
i=1

∥∥∥gradfi(wt)− T wt
wt−1

gradfi(wt−1)
∥∥∥2
wt

= E[∥gradfit(wt)− T wt
wt−1

gradfit(wt−1)∥2wt
|Ft].
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Hence, noting that 1− 2

αL
≤ 0, we obtain the following from (A.12):

E[∥vt∥2wt
|Ft] ≤ ∥vt−1∥2wt−1

+

(
1− 2

αL

)
E[∥T wt

wt−1
gradfit(wt−1)− gradfit(wt)∥2wt

|Ft]

+
2((2Ll + 2θCg + L)θCg + νL)α

L
∥vt−1∥wt−1

≤ ∥vt−1∥2wt−1
+

(
1− 2

αL

)
∥gradf(wt)− T wt

wt−1
gradf(wt−1)∥2wt

+
2((2Ll + 2θCg + L)θCg + νL)α

L
∥vt−1∥wt−1

.

Noting that the coefficient of the second term is not greater than zero, the term is bounded as

−∥gradf(wt)− T wt
wt−1

gradf(wt−1)∥2wt

= −∥gradf(wt)− Pwt
wt−1

gradf(wt−1) + Pwt
wt−1

gradf(wt−1)− T wt
wt−1

gradf(wt−1)∥2wt

= −∥gradf(wt)− Pwt
wt−1

gradf(wt−1)∥2wt
− ∥Pwt

wt−1
gradf(wt−1)− T wt

wt−1
gradf(wt−1)∥2wt

−2⟨gradf(wt)− Pwt
wt−1

gradf(wt−1), P
wt
wt−1

gradf(wt−1)− T wt
wt−1

gradf(wt−1)⟩wt

(A.5)

≤ −(a0µ− a1Cg)
2∥R−1

wt−1
(wt)∥2wt−1

+2∥gradf(wt)− Pwt
wt−1

gradf(wt−1)∥wt
· ∥Pwt

wt−1
gradf(wt−1)− T wt

wt−1
gradf(wt−1)∥wt

≤ −(a0µ− a1Cg)
2α2∥vt−1∥2wt−1

+ 2Ll∥R−1
wt−1

(wt)∥wt−1 · θCgα∥vt−1∥wt−1

= −((a0µ− a1Cg)
2 − 2LlθCg)α

2∥vt−1∥2wt−1
,

where the first inequality incorporates the Cauchy-Schwarz inequality, and Lemma B.5. The second and third inequalities
employ Lemmas 3.7 and 3.8. Consequently, we obtain

E[∥vt∥2wt
|Ft]

≤ ∥T wt
wt−1

vt−1∥2wt
+

(
1− 2

αL

)
E[∥T wt

wt−1
gradfit(wt−1)− gradfit(wt)∥2wt

|Ft]

+
2((2Ll + 2θCg + L)θCg + νL)α

L
∥vt−1∥2wt−1

≤ ∥vt−1∥2wt−1
+

(
1− 2

αL

)
((a0µ− a1Cg)

2 − 2LlθCg)α
2∥vt−1∥2wt−1

+
2((2Ll + 2θCg + L)θCg + νL)α

L
∥vt−1∥2wt−1

≤
(
1 +

(
1− 2

αL

)
((a0µ− a1Cg)

2 − 2LlθCg)α
2 +

2((2Ll + 2θCg + L)θCg + νL)α

L

)
∥vt−1∥2wt−1

=

(
1−

(
2

αL
− 1

)
(a0µ− a1Cg)

2α2 +
(2(2Ll + 2θCg + L− (αL− 2)Ll)θCg + 2νL)α

L

)
∥vt−1∥2wt−1

=

(
1−

(
2

αL
− 1

)
(a0µ− a1Cg)

2α2 +
2((4Ll + 2θCg + L− αLLl)θCg + νL)α

L

)
∥vt−1∥2wt−1

.

Defining ϕ(α) =
2((4Ll + 2θCg + L− αLLl)θCg + νL)α

L
, we obtain

E[∥vt∥2wt
|Ft] ≤

(
1−

(
2

αL
− 1

)
(a0µ− a1Cg)

2α2 + ϕ(α)

)
∥vt−1∥2wt−1

.

Finally, denoting the coefficient of ∥vt−1∥2wt−1
as λ, recursive calculation while taking the total expectation yields

E[∥vt∥2wt
] ≤ λE[∥vt−1∥2wt−1

] ≤ λtE[∥v0∥2w0
] = λtE[∥gradf(w0)∥2w0

].

When θ and ν are close to zero, ϕ(α) becomes closely zero. Then, we obtain λ < 1. This completes the proof.
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B.3 Proofs of non-convex functions
This subsection presents the convergence analysis for non-convex functions. The proof strategy follows and extends that
of Theorem 4.1 and (Nguyen et al., 2017b).

B.3.1 Lemma B.7

Lemma B.7. Suppose that the conditions of Lemma 3.8 hold. Consider vt in Algorithm 1 with a constant step size α.
Then, for any t ≥ 1,

∥vj − T wj
wj−1

vj−1∥2wj
≤ 2(L2

l + θ2C2
g )α

2∥vj−1∥2wj−1
.

Proof. We have

∥vj − T wj
wj−1

vj−1∥2wj

= ∥gradfij (wj)− T wj
wj−1

gradfij (wj−1)∥2wj

= ∥gradfij (wj)− Pwj
wj−1

gradfij (wj−1) + Pwj
wj−1

gradfij (wj−1)− T wj
wj−1

gradfij (wj−1)∥2wj

≤ 2∥gradfij (wj)− Pwj
wj−1

gradfij (wj−1)∥2wj
+ 2∥Pwj

wj−1
gradfij (wj−1)− T wj

wj−1
gradfij (wj−1)∥2wj

≤ 2L2
l ∥R−1

wj−1
(wj)∥2wj−1

+ 2θ2∥gradfij (wj−1)∥2wj−1
∥αvj−1∥2wj−1

= 2(L2
l + θ2C2

g )α
2∥vj−1∥2wj−1

, (A.13)

where the first inequality incorporates ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2 for any vectors a and b in a norm space. The second
inequality employs Lemmas 3.7 and 3.8. This completes the proof.

B.3.2 Proof of Theorem 4.5

Proof. From Lemmas B.2 and B.7, we obtain

E[∥gradf(wt)− vt∥2wt
]

(A.3)

≤
t∑

j=1

E[∥vj − T wj
wj−1

vj−1∥2wj
]

(A.13)

≤
t∑

j=1

2(L2
l + θ2C2

g )α
2E[∥vj−1∥2wj−1

].

Because ∥gradf(w0)− v0∥2wj
= 0, summing over t = 1, 2, . . . ,m yields

m∑
t=0

E[∥vt − gradf(wt)∥2wt
] ≤

1∑
j=1

2(L2
l + θ2C2

g )α
2E[∥vj−1∥2wj−1

] + . . .+

m∑
j=1

2(L2
l + θ2C2

g )α
2E[∥vj−1∥2wj−1

]

= 2(L2
l + θ2C2

g )α
2[mE[∥v0∥2w0

] + (m− 1)E[∥v1∥2w1
] + · · ·+ E[∥vm−1∥2wm−1

]].

Hence, it follows that

m∑
t=0

E[∥vt − gradf(wt)∥2wt
]− (1− Lα)

m∑
t=0

E[∥vt∥2wt
]

≤ 2(L2
l + θ2C2

g )α
2[mE[∥v0∥2w0

] + (m− 1)E[∥v1∥2w1
] + · · ·+ E[∥vm−1∥2wm−1

]]− (1− Lα)

m∑
t=0

E[∥vt∥2wt
]

≤ 2(L2
l + θ2C2

g )α
2[mE[∥v0∥2w0

] +mE[∥v1∥2w1
] + · · ·+mE[∥vm−1∥2wm−1

]]− (1− Lα)

m∑
t=0

E[∥vt∥2wt
]

≤
[
2(L2

l + θ2C2
g )α

2m− (1− Lα)
] m∑
t=1

E[∥vt−1∥2wt−1
],
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where the last inequality holds due to α ≤ 1

L
, which clearly holds according to the condition of α in the statement.

Addressing the first terms inside the square brackets, the following α is a larger root of 2(L2
l +θ

2C2
g )α

2m− (1−Lα) = 0,
i.e.,

α =
2

L+
√
L2 + 8m(L2

l + C2
gθ

2)
,

and the smaller root is less than zero. Therefore, from the assumption, the right-hand side of the equation above is not
greater than zero. Consequently, we obtain

m∑
t=0

E[∥vt − gradf(wt)∥2wt
]− (1− Lα)

m∑
t=0

E[∥vt∥2wt
] ≤ 0.

Finally, according to Lemma B.1, we have

m∑
t=0

E[∥gradf(wt)∥2wt
] ≤ 2

α
E[f(w0)− f(w∗)] +

m∑
t=0

E[∥gradf(wt)− vt∥2wt
]− (1− Lα)

m∑
t=0

E[∥vt∥2wt
]

≤ 2

α
E[f(w0)− f(w∗)].

If we select w̃ = wt, where t is selected randomly from {0, 1, . . . ,m}, we obtain

E[∥gradf(w̃s)∥2w̃s ] =
1

m+ 1

m∑
t=0

E[∥gradf(wt)∥2wt
] ≤ 2

α(m+ 1)
[f(w0)− f(w∗)].

This completes the proof.

B.3.3 Proof of Theorem 4.6

Proof. As this proof is identical to that of Theorem 2 in (Nguyen et al., 2017b), it is omitted.

When α =
2

L+
√
L2 + 8m(L2

l + C2
gθ

2)
, we obtain the value of

α(m+ 1)

2
as

α(m+ 1)

2
=

m+ 1

L+
√
L2 + 8m

(
L2
l + C2

gθ
2
) >

m

2
√
L2 + 8m

(
L2
l + C2

gθ
2
) =

m

2L

√
1 + 8m

(
L2

l

L2 +
C2

gθ
2

L2

)
>

m

2L

√
16m

(
ρ2l +

C2
gθ

2

L2

) =

√
m

8L

√
ρ2l +

C2
gθ

2

L2

.

Therefore, we conclude that it is necessary to choose m such that m > 64L2

(
ρ2l +

C2
gθ

2

L2

)
τ2 = 64τ2

(
L2ρ2l + C2

gθ
2
)

to satisfy
α(m+ 1)

2
> τ .
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C Additional evaluations
C.1 Riemannian centroid problem on SPD manifold
We present additional evaluation results for the Riemannian centroid problem on the SPD manifold. The sample size n
and dimension d are varied. Figures A.1 (a) and (b) show the results obtained for n = 5000 and d = 10, and n = 10000
and d = 10, respectively. The results indicate that the proposed R-SRG is competitive with R-SVRG, while R-SRG+
outperforms the others (especially when n and d are larger), in terms of the number of gradient evaluations and processing
time.
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(a-3) Norm of gradient vs. # of gradient evaluations.

(a) n = 5000, d = 10.

0 10 20 30 40 50

#grad/n

10
-10

10
-5

10
0

T
ra

n
in

g
 l
o

s
s

 -
 o

p
ti

m
u

m

R-SD

R-CG

R-SGD

R-SVRG

R-SRG

R-SRG+
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(b-2) Optimality gap vs. processing time.
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(b-3) Norm of gradient vs. # of gradient evaluations.

(b) n = 10000, d = 10.

Figure A.1. Riemannian centroid problem on SPD manifold.

C.2 PCA problem on Grassmann manifold
We present additional evaluation results for the PCA problem on the Grassmann manifold. Again, n and d are varied.
Figures A.2(a)–(c) show the optimality gap results of three trials, for (n, d, r) = (10000, 100, 10), (10000, 200, 10), and
(50000, 200, 10), respectively. Overall, the proposed R-SRG is competitive with R-SVRG, and R-SRG+ outperforms the
others, especially when n is larger.
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(a) n = 10000, d = 100, r = 10.
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Figure A.2. PCA problem on Grassmann manifold.
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