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1. Differences of variances
In the following equations we quantify the variance reduc-
tion achieved with importance sampling using the gradi-
ent norm. Let gi ∝ ‖∇θtL(Ψ(xi; θt), yi)‖2 = ‖Gi‖2 and
u = 1

B the uniform probability.

We want to compute
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Completing the squares at equation 6 and using the fact that
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∑B
i=1 u = 1 we complete the derivation.
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2. An upper bound to the gradient norm
In this section, we reiterate the analysis from the main paper
(§ 3.2) with more details.

Let θ(l) ∈ RMl×Ml−1 be the weight matrix for layer l and
σ(l)(·) be a Lipschitz continuous activation function. Then,
let

x(0) = x (10)

z(l) = θ(l) x(l−1) (11)

x(l) = σ(l)(z(l)) (12)

Ψ(x; Θ) = x(L). (13)

Equations 10-13 define a simple fully connected neural
network without bias to simplify the closed form definition
of the gradient with respect to the parameters Θ.

In addition we define the gradient of the loss with respect to
the output of the network as
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and the gradient of the loss with respect to the output of
layer l as
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propagates the gradient from the last layer (pre-activation)
to layer l and

Σ′l(z) = diag
(
σ′(l)(z1), . . . , σ′(l)(zMl

)
)

(17)
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defines the gradient of the activation function of layer l.

Finally, the gradient with respect to the parameters of the
l-th layer can be written
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=

∥∥∥∥(∆
(l)
i Σ′L(z

(L)
i )∇

x
(L)
i
L
)(

x
(l−1)
i

)T∥∥∥∥
2

(19)

≤
∥∥∥x(l−1)

i

∥∥∥
2

∥∥∥∆
(l)
i

∥∥∥
2

∥∥∥Σ′L(z
(L)
i )∇

x
(L)
i
L
∥∥∥

2
. (20)

We observe that x(l)
i and ∆

(l)
i depend only on zi and Θ.

However, we theorize that due to various weight initializa-
tion and activation normalization techniques those quantities
do not capture the important per sample variations of the
gradient norm. Using the above, which is also shown exper-
imentally to be true in § 4.1, we deduce the following upper
bound per layer
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which can then be used to derive our final upper bound
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Intuitively, equation 24 means that the variations of the
gradient norm are mostly captured by the final classification
layer. Consequently, we can use the gradient of the loss with
respect to the pre-activation outputs of our neural network
as an upper bound to the per-sample gradient norm.

3. Comparison with SVRG methods
For completeness, we also compare our proposed method
with Stochastic Variance Reduced Gradient methods and
present the results in this section. We follow the experimen-
tal setup of § 4.2 and evaluate on the augmented CIFAR10
and CIFAR100 datasets. The algorithms we considered
were SVRG (Johnson & Zhang, 2013), accelerated SVRG
with Katyusha momentum (Allen-Zhu, 2017) and, the most
suitable for Deep Learning, SCSG (Lei et al., 2017) which
in practice is a mini-batch version of SVRG. SAGA (De-
fazio et al., 2014) was not considered due to the prohibitive
memory requirements for storing the per sample gradients.

For all methods, we tune the learning rate and the epochs
per batch gradient computation (m in SVRG literature). For
SCSG, we also tune the large batch (denoted as Bj in Lei
et al. (2017)) and its growth rate. The results are depicted in

figure 1. We observe that SGD with momentum performs
significantly better than all SVRG methods. Full batch
SVRG and Katyusha perform a small number of parameter
updates thus failing to optimize the networks. In all cases,
the best variance reduced method achieves more than an
order of magnitude higher training loss than our proposed
importance sampling scheme.

4. Ablation study on B

The only hyperparameter that is somewhat hard to define in
our algorithm is the pre-sampling size B. As mentioned in
the main paper, it controls the maximum possible variance
reduction and also how much wall-clock time one iteration
with importance sampling will require.

In figure 2 we depict the results of training with importance
sampling and different pre-sampling sizes on CIFAR10. We
follow the same experimental setup as in the paper.

We observe that larger presampling size results in lower
training loss, which follows from our theory since the max-
imum variance reduction is smaller with small B. In this
experiment we use the same τth for all the methods and we
observe that B = 384 reaches first to 0.6 training loss. This
is justified because computing the importance for 1, 024
samples in the beginning of training is wasteful according
to our analysis.

According to this preliminary ablation study for B, we con-
clude that choosing B = kb with 2 < k < 6 is a good
strategy for achieving a speedup. However, regardless of
the choice of B, pairing it with a threshold τth designated
by the analysis in the paper guarantees that the algorithm
will be spending time on importance sampling only when
the variance can be greatly reduced.

5. Importance Sampling with the Loss
In this section we will present a small analysis that provides
intuition regarding using the loss as an approximation or an
upper bound to the per sample gradient norm.

Let L(ψ, y) : D → R be either the negative log likelihood
through a sigmoid or the squared error loss function defined
respectively as

L1(ψ, y) = − log

(
exp(yψ)

1 + exp(yψ)

)
y ∈ {−1, 1} ψ ∈ R

L2(ψ, y) = ‖y − ψ‖22 y ∈ Rd ψ ∈ Rd
(25)

Given our upper bound to the gradient norm, we can write

‖∇θtL(Ψ(xi; θt), yi)‖2 ≤ Lρ ‖∇ψL(Ψ(xi; θt), yi)‖2 .
(26)
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(a) CIFAR10 Training Loss
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(c) CIFAR100 Training Loss
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(d) CIFAR100 Test Error

Figure 1: Comparison of our proposed importance sampling scheme (upper-bound) to SGD with uniform sampling and
variance reduced methods. Only SCSG can actually perform enough iterations to optimize the network. However, SGD with
uniform sampling and our upper-bound greatly outperform SCSG.
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Figure 2: Results on training with different B on CIFAR10. See the paper for the experimental setup.
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Moreover, for the losses that we are considering, when
L(ψ, y)→ 0 then ‖∇ψL(Ψ(xi; θt), yi)‖2 → 0. Using this
fact in combination to equation 26, we claim that so does the
per sample gradient norm thus small loss values imply small
gradients. However, large loss values are not well correlated
with the gradient norm which can also be observed in § 4.1
in the paper.

To summarize, we conjecture that due to the above facts,
sampling proportionally to the loss reduces the variance
only when the majority of the samples have losses close to
0. Our assumption is validated from our experiments, where
the loss struggles to achieve a speedup in the early stages of
training where most samples still have relatively large loss
values.
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