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Abstract
We analyze two novel randomized variants of the
Frank-Wolfe (FW) or conditional gradient algo-
rithm. While classical FW algorithms require
solving a linear minimization problem over the
domain at each iteration, the proposed method
only requires to solve a linear minimization prob-
lem over a small subset of the original domain.
The first algorithm that we propose is a random-
ized variant of the original FW algorithm and
achieves a O(1/t) sublinear convergence rate as
in the deterministic counterpart. The second al-
gorithm is a randomized variant of the Away-
step FW algorithm, and again as its determinis-
tic counterpart, reaches linear (i.e., exponential)
convergence rate making it the first provably con-
vergent randomized variant of Away-step FW. In
both cases, while subsampling reduces the con-
vergence rate by a constant factor, the cost of the
linear minimization step can be a fraction of the
deterministic versions, especially when the data
is streamed. We illustrate computational gains on
regression problems, involving both �1 and latent
group lasso penalties.

1. Introduction
The Frank-Wolfe (FW) or conditional gradient algo-
rithm (Frank & Wolfe, 1956; Jaggi, 2013) is designed to
solve optimization problems of the form

minimize
x∈M

f(x) , with M = conv(A) , (OPT)

where A is a (possibly infinite) set of vectors which we
call atoms, and conv(A) is its convex hull. The FW al-
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gorithm and variants have seen an impressive revival in
recent years, due to their low memory requirements and
projection-free iterations, which make them particularly
appropriate to solve large scale convex problems, for in-
stance convex relaxations of problems written over com-
binatorial polytopes (Zaslavskiy et al., 2009; Joulin et al.,
2014; Vogelstein et al., 2015).

The Frank-Wolfe algorithm is projection-free, i.e. unlike
most methods to solve (OPT), it does not require to com-
pute a projection onto the feasible set M. Instead, it re-
lies on a linear minimization oracle over a set A, denoted
LMO(·,A), which solves the following linear problem

LMO(r,A) ∈ argmin
v∈A

�v, r� . (1)

For some feasible sets such as the nuclear or latent group
norm ball (Jaggi et al., 2010; Vinyes & Obozinski, 2017),
computing the LMO can be orders of magnitude faster than
projecting. Another feature of FW that has greatly con-
tributed to its practical success is its low memory require-
ments. The algorithm maintains its iterates as a convex
combination of a few atoms, enabling the resulting sparse
and low rank iterates to be stored efficiently. This feature
allows the FW algorithm to be used in situations with a
huge or even infinite number of features, such as architec-
ture optimization in neural networks (Ping et al., 2016) or
estimation of an infinite-dimensional sparse matrix arising
in multi-output polynomial networks (Blondel et al., 2017).

Despite these attractive properties, for problems with a
large number of variables or with a very large atomic set
(or both), computing the full gradient and LMO at each it-
eration can become prohibitive. Designing variants of the
FW algorithm which alleviate this computational burden
would have a significant practical impact on performance.

One recent direction to achieve this is to replace the LMO
with a randomized linear oracle in which the linear min-
imization is performed only over a random sample of the
original atomic domain. This approach has proven to be
highly successful on specific problems such as structured
SVMs (Lacoste-Julien et al., 2013) and �1-constrained re-
gression (Frandi et al., 2016), however little is known in
the general case. Is it possible to design a FW variant with
a randomized oracle that achieves the same convergence
rate (up to a constant factor) as the non-randomized vari-
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ant? Can this be extended to linearly-convergent FW al-
gorithms (Lacoste-Julien & Jaggi, 2013; 2015; Garber &
Hazan, 2015; Pena & Rodriguez, 2015)? In this paper we
give a positive answer to both questions and explore the
trade-offs between subsampling and convergence rate.

Outline and main contribution. The main contribution
of this paper is to develop and analyze two algorithms that
share the low memory requirements and projection-free it-
erations of FW, but in which the LMO is computed only
over a random subset of the original domain. In many
cases, this results in large gains in computing the LMO
which can also speed up the overall FW algorithm. In prac-
tice, the algorithm will run a larger number of cheaper iter-
ations, which is typically more efficient for very large data
sets (e.g. in a streaming model where the data does not fit
in core memory and can only be accessed by chunks). The
paper is structured as follows

• §2 describes the “Randomized FW” algorithm, proving
a sublinear convergence rate.

• §3 describes “Randomized Away FW” algorithm, a vari-
ant which enjoys a linear convergence rate on polytopes.
To the best of our knowledge this is the first provably
convergent randomized version of the Away-steps FW
algorithm.

• Finally, in §4 we discuss implementation aspects of the
proposed algorithms and study their performance on
lasso and latent group lasso problems.

Note that with the proven sub-linear rate of convergence
for Randomized FW, the cost of the LMO is reduced by
the subsampling rate, but this is compensated by the fact
that the number of iterations required by RFW to reach
same convergence guarantee as FW is itself multiplied by
the sampling rate. Similarly, the linear convergence rate in
Randomized AFW does not theoretically show a compu-
tational advantage since the number of iterations is multi-
plied by the squared sampling rate, in our highly conser-
vative bounds at least. Nevertheless, our numerical experi-
ments show that randomized versions are often numerically
superior to their deterministic counterparts.

1.1. Related work

Several references have focused on reducing the cost of
computing the linear minimization oracle. The analysis of
(Jaggi, 2013) allows for an error term in the LMO, and so a
randomized linear oracle could in principle be analyzed un-
der this framework. However, this is not fully satisfactory
as it requires the approximation error to decrease towards
zero as the algorithm progresses. In our algorithm, the sub-
sampling approximation error doesn’t need to decrease.

Lacoste-Julien et al. (2013) studied a randomized FW vari-
ant named block-coordinate FW in which at each step the
LMO is computed only over a subset (block) of variables.
In this case, the approximation error need not decrease to
zero, but the method can only be applied to a restricted
class of problems: those with block-separable domain,
leaving out important cases such as �1–constrained mini-
mization. Because of the block separability, a more aggres-
sive step-size strategy can be used in this case, resulting
overall in a different algorithm.

Finally, Frandi et al. (2014) proposed a FW variant which
can be seen as a special case of our Algorithm 1 for the
Lasso problem, analyzed in (Frandi et al., 2016). Our anal-
ysis here brings three key improvements on this last re-
sult. First, it is provably convergent for arbitrary atomic do-
mains, not just the �1 ball (furthermore the proof in (Frandi
et al., 2016) has technical issues discussed in Appendix C).
Second, it allows a choice of step size that does not require
exact line-search (Variant 2), which is typically only feasi-
ble for quadratic loss functions. Third, we extend our anal-
ysis to linearly-convergent FW variants such as the Away-
step FW.

A different technique to alleviate the cost of the linear or-
acle was recently proposed by Braun et al. (2017). In that
work, the authors propose a FW variant that replaces the
LMO by a “weak” separation oracle and showed signifi-
cant speedups in wall-clock performance on problems such
as the video co-localization. This approach was combined
with gradient sliding in (Lan et al., 2017), a technique (Lan
& Zhou, 2016) that allows skipping the computation of gra-
dients from time to time. However, for problems such as
Lasso or latent group lasso, a randomized LMO avoids all
full gradient computations, while the lazy weak separation
oracle still requires it. Combining these various techniques
is an interesting open question.

Proximal coordinate-descent methods (Richtárik & Takáč,
2014) (not based on FW) have also been used to solve prob-
lems with a huge number of variables. They are particularly
effective when combined with variable screening rules such
as (Tibshirani et al., 2012; Fercoq et al., 2015). However,
for constrained problems they require evaluating a projec-
tion operator, which on some sets such as the latent group
lasso ball can be much more expensive than the LMO. Fur-
thermore, these methods require that the projection opera-
tor is block-separable, while our method does not.

Notation. We denote vectors with boldface lower case
letters (i.e., x), and sets in calligraphic letter (i.e., A). We
denote clip[0,1](s) = max{0,min{1, s}}. Probability is
denoted P . The cardinality of a set A is denoted |A|. For
x∗ a solution of (OPT), we denote h(x) = f(x)− f(x∗).

Randomized vs stochastic. We denote FW variants with
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randomness in the LMO randomized and reserve the name
stochastic for FW variants that replace the gradient with a
stochastic approximation, as in (Hazan & Luo, 2016).

2. Randomized Frank-Wolfe
In this section we present our first contribution, the Ran-
domized Frank-Wolfe (RFW) algorithm. The method is
detailed in Algorithm 1. Compared to the standard FW al-
gorithm, it has the following two distinct features.

First, the LMO is computed over a random subset At ⊆ A
of the original atomic set in which each atom is equally
likely to appear, i.e., in which P(v ∈ At) = η for all
v ∈ A (Line 3). For discrete sets this can be implemented
simply by drawing uniformly at random a fixed number of
elements at each iteration. The sampling parameter η con-
trols the fraction of the domain that is considered by the
LMO at each iteration. If η = 1, the LMO considers the
full domain at each iteration and the algorithm defaults to
the classical FW algorithm. However, for η < 1, the LMO
only needs to consider a fraction of the atoms in the original
dataset and can be faster than the FW LMO.

Second, unlike in the FW algorithm, the atom chosen by
the LMO is not necessarily a descent direction and so it
is no longer possible to use the “oblivious” (i.e., indepen-
dent on the result of the LMO) 2/(2 + t) step-size com-
monly used in the FW algorithm. We provide two possible
choices for this step-size: the first variant (Line 6) chooses
the step-size by exact line search and requires to solve a 1-
dimensional convex optimization problem. This approach
is efficient when this sub-problem has a closed form solu-
tion, as it happens for example in the case of quadratic loss
functions. The second variant does not need to solve this
sub-problem, but in exchange requires to have an estimate
of the curvature constant Cf (defined in next subsection).
Note that in absence of an estimate of this quantity, one can
use the bound Cf ≤ diam(M)2L, where L is the Lipschitz
constant of ∇f and diam(M) is the diameter of the domain
in euclidean norm.

Gradient coordinate subsampling. We note that the
gradient of f only enters Algorithm 1 through the compu-
tation of the randomized LMO, and so only the dot prod-
uct between the gradient and the subsampled atomic set are
truly necessary. In some cases the elements of the atomic
set have a specific structure that makes computing dot prod-
ucts particularly effective. For example, when the atomic
elements are sparse, only the coordinates of the gradient
that are in the support of the atomic set need to be evalu-
ated. As a result, for sparse atomic sets such as the �1 ball,
the group lasso ball (also known as �1/�2 ball), or even the
latent group lasso (Obozinski et al., 2011) ball, only a few
coordinates of the gradient need to be evaluated at each

Algorithm 1: Randomized Frank-Wolfe algorithm

1 Input: x0 ∈ M, sampling ratio 0 < η ≤ 1.
2 for t = 0, 1 . . . , T do
3 Choose At such that P(v∈At)=η for all v ∈ A
4 st = LMO(∇f(xt),At)
5 Variant 1 � set γt by line-search
6 γt = argmaxγ∈[0,1] f((1− γ)xt + γst)

7 Variant 2
8 γt = clip[0,1](�−∇f(xt), st − xt�/Cf )

9 xt+1 = (1− γt)xt + γtst

iteration. The number of exact gradients that need to be
evaluated will depend on both the sparsity of this atomic
set and the subsampling rate. For example, in the case of
the �1 ball, the extreme atoms have a single nonzero coef-
ficient, and so RFW only needs to compute on average dη
gradient coefficients at each iteration, where d denotes the
ambient dimension.

Stopping criterion. A side-effect of subsampling the lin-
ear oracle is that �−∇f(xt); st−xt�, where st is the atom
selected by the randomized linear oracle is no longer an up-
per bound on f(xt)− f(x∗). This property is a feature of
FW algorithms that cannot be retrieved in our variant. As
a replacement, the stopping criteria that we propose is to
compute a full LMO every k� 1

η � iterations, with k ∈ N∗

(k = 2 is a good default value).

2.1. Analysis

In this subsection we prove an O(1/t) convergence rate for
the RFW algorithm. As is often the case for FW-related
algorithms, our convergence result will be stated in terms
of the curvature constant Cf , which is defined as follows
for a convex and differentiable function f and a convex and
compact domain M:

Cf
def
= sup
x,s∈M,γ∈[0,1]
y=x+γ(s−x)

2

γ2

�
f(y)− f(x)− �∇f(x),y − x�

�
.

It is worth mentioning that a bounded curvature constant
Cf corresponds to a Lipschitz assumption on the gradient
of f (Jaggi, 2013).
Theorem 2.1. Let f be a function with bounded smooth-
ness constant Cf and subsampling parameter η ∈ (0, 1].
Then Algorithm 1 (in both variants) converges towards a
solution of (OPT). Furthermore, the following inequality
is satisfied:

E[h(xT )] ≤
2(Cf + f(x0)− f(x∗))

ηT + 2
. (2)

Proof. See Appendix A.
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The rate obtained in the previous theorem is similar to
known bounds for FW. For example, (Jaggi, 2013, Theo-
rem 1) established for FW a bound of the form

h(xT ) ≤
2Cf

T + 2
. (3)

This is similar to the rate of Theorem 2.1, except for the
factor η in the denominator. Hence, if our updates are η
times as costly as the full FW update (as is the case e.g.
for the �1 ball), then the theoretical convergence rate is
the same. This bound is likely tight, as in the worst case
one will need to sample the whole atomic set to decrease
the objective if there is only one descent direction. This is
however a very pessimistic scenario, and in practice good
descent directions can often be found without sampling the
whole atomic set. As we will see in the experimental sec-
tion, despite these conservative bounds, the algorithm often
exhibits large computational gains with respect to the deter-
ministic algorithm.

3. Randomized Away-steps Frank-Wolfe
A popular variant of the FW algorithm is the Away-steps
FW variant of Guélat & Marcotte (1986). This algorithm
adds the option to move away from an atom in the cur-
rent representation of the iterate. In the case of a polytope
domain, it was recently shown to have much better conver-
gence properties, such as linear (i.e. exponential) conver-
gence rates for generally-strongly convex objectives (Gar-
ber & Hazan, 2013; Beck & Tetruashvili, 2013; Lacoste-
Julien & Jaggi, 2015).

In this section we describe the first provably convergent
randomized version of the Away-steps FW, which we name
Randomized Away-steps FW (RAFW). We will assume
throughout this section that the domain is a polytope, i.e.
that M = conv(A), where A is a finite set of atoms. We
will make use of the following notation.

• Active set. We denote by St the active set of the current
iterate, i.e. xt decomposes as xt =

�
v∈St

α
(t)
v v, where

α
(t)
v > 0 are positive weights that are iteratively updated.

• Subsampling parameter. The method depends on a sub-
sampling parameter p. It controls the amount of compu-
tation per iteration of the LMO. In this case, the atomic
set is finite and p denotes an integer 1 ≤ p ≤ |A|. This
sampling rate is approximately �η|A|� in the RFW for-
mulation of §2.

The method is described in Algorithm 2 and, as in the
Away-steps FW, requires computing two linear minimiza-
tion oracles at each iteration. Unlike the determinis-
tic version, the first oracle is computed on the subsam-
pled set St ∪At (Line 3), where At is a subset of size

Algorithm 2: Randomized Away-steps FW (RAFW)

Input: x0 ∈ M, x0 =
�

v∈A α
(0)
v v with |S0| = s, a

subsampling parameter 1 ≤ p ≤ |A|.
1 for t = 0, 1 . . . , T do
2 Get At by sampling min{p,|A\St|} elements

uniformly from A\St.
3 Compute st = LMO(∇f(xt),St ∪At)

4 Let dFW
t = st − xt � RFW direction

5 Compute vt = LMO(−∇f(xt),St)

6 Let dA
t = xt − vt. � Away direction

7 if �−∇f(xt),d
FW
t � ≥ �−∇f(xt),d

A
t � then

8 dt = dFW
t and γmax = 1 � FW step

9 else
10 dt = dA

t and γmax=α
(t)
vt /(1−α

(t)
vt ) � Away step

11 Set γt by line-search, with
γt = argmaxγ∈[0,γmax] f(xt + γdt)

12 Let xt+1 = xt + γtdt � update α(t+1) (see text)
13 Let St+1 = {v ∈ A s.t. α(t+1)

v > 0}

min{p, |A\St|}, sampled uniformly at random from A\St.
The second LMO (Line 5) is computed on the active set,
which is also typically much smaller than the atomic do-
main.

As a result of both oracle calls, we obtain two potential
descent directions, the RFW direction dFW

t and the Away
direction dA

t . The chosen direction is the one that correlates
the most with the negative gradient, and a maximum step
size is chosen to guarantee that the iterates remain feasible
(Lines 7–10).

Updating the support. Line 12 requires updating the
support and the associated α coefficients. For a FW step
we have St+1 = {st} if γt = 1 and otherwise St+1 =
St ∪ {st}. The corresponding update of the weights is
α
(t+1)
v = (1 − γt)α

(t)
v when v ∈ St \ {st} and α

(t+1)
st =

(1− γt)α
(t)
st + γt otherwise.

For an away step we instead have the following update
rule. When γt = γmax (which is called a drop step), then
St+1 = St \ {vt}. Combined with γmax < 1 (or equiv-
alently αvt ≤ 1

2 ) we call them bad drop step, as it corre-
sponds to a situation in which we are not able to guarantee
a geometrical decrease of the dual gap.

For away steps in which γt < γmax, the away atom is not re-
moved from the current representation of the iterate. Hence
St+1 = St, α

(t+1)
v = (1 + γt)α

(t)
v for v ∈ St \ {vt} and

α
(t+1)
vt = (1 + γt)α

(t)
vt − γt otherwise.

Note that when choosing Away step in Line 10, it cannot
happen that αvt = 1. Indeed this would imply xt = vt,
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and so dA
t = 0. Since we would have St = {vt} and the

LMO of Line 3 is performed over St ∪At, we necessarily
have �−∇f(xt),d

FW
t � ≥ 0. It thus leads to a choice of FW

step, contradiction.

Per iteration cost. Establishing the per iteration cost of
this algorithm is not as straightforward as for RFW, as the
cost of some operations depends on the size of the active
set, which varies throughout the iterations. However, for
problems with sparse solutions, we have observed empir-
ically that the size of the active set remains small, mak-
ing the cost of the second LMO and the comparison of
Line 7 negligible compared to the cost of an LMO over the
full atomic domain. In this regime, and assuming that the
atomic domain has a sparse structure that allows gradient
coordinate subsampling, RAFW can achieve a per iteration
cost that is, like RFW, roughly |A|/p times lower than that
of its deterministic counterpart.

3.1. Analysis

We now provide a convergence analysis of the Randomized
Away-steps FW algorithm. These convergence results are
stated in terms of the away curvature constant CA

f and the
geometric strong convexity µA

f , which are described in Ap-
pendix B and in (Lacoste-Julien & Jaggi, 2015). Through-
out this section we assume that f has bounded CA

f , which is
implied by the usual assumption of Lipschitz continuity of
the gradient, and strictly positive geometric strong convex-
ity constant µA

f , which is verified whenever f is strongly
convex and the domain is a polytope.
Theorem 3.1. Let M = conv(A), with A a finite set
of extreme atoms. Then after T iterations of Algorithm 2
(RAFW) we have the following linear convergence rate

E
�
h(xT+1)

�
≤

�
1− η2ρf

�max{0,�(T−s)/2�}
h(x0) , (4)

with ρf =
µA
f

4CA
f

, η = p
|A| and s = |S0|.

Proof. See Appendix B.

Proof sketch. Our proof structure roughly follows that
of the deterministic case in (Lacoste-Julien & Jaggi, 2015;
Beck & Tetruashvili, 2013) with some key differences due
to the LMO randomness, and can be decomposed into three
parts.

The first part consists in upper bounding ht and is no differ-
ent from the proof of its deterministic counterpart (Lacoste-
Julien & Jaggi, 2015; Beck & Tetruashvili, 2013).

The second part consists in lower bounding the progress
ht − ht+1. For this algorithm we can guarantee a decrease
of the form

ht+1 ≤ ht

�
1− ρf

�gt
g̃t

�2�zt
, (5)

where gt = �−∇f(xt), st − vt� is the partial pair-wise
dual gap while g̃t is the pair-wise dual gap, in which st is
replaced by the result of a full (and not subsampled) LMO.

We can guarantee a geometric decrease in expectation on ht

at each iteration, except for bad drop steps, where we can
only secure ht+1 ≤ ht. We mark these by setting zt = 0.

One crucial issue is then to quantify gt/g̃t. This can be
seen as a measure of the quality of the subsampled oracle:
if it selects the same atom as the non-subsampled oracle the
quotient will be 1, in all other cases it will be ≤ 1.

To ensure a geometrical decrease we further study the prob-
ability of events zt = 1 and �gt = gt: first, we produce
a simple bound on the number of bad drop steps (where
zt = 0). Second, when zt = 1 holds, Lemma 3 provides a
lower bound on the probability of gt = �gt.
The third and last part of the proof analyzes the expectation
of the decrease rate

�T
t=0 (1− ρf

�
gt
g̃t

�2
)zt given the above

discussion. We produce a conservative bound assuming the
maximum possible number of bad drop steps. The key el-
ement in this part is to make this maximum a function of
the size of the support of the initial iterate and of the num-
ber of iteration. The convergence bound is then proven by
induction.

Comparison with deterministic convergence rates.
The rate for away Frank-Wolfe in (Lacoste-Julien & Jaggi,
2015, Theorem 8), after T iteration is

h(xT+1) ≤
�
1− ρf

��T/2�
h(x0) . (6)

Due to the dependency on η2 of the convergence rate in
Theorem 3.1, our bound does not show that RAFW is com-
putationally more efficient than AFW. Indeed we use a very
conservative proof technique in which we measure progress
only when the sub-sampling oracle equals the full one.
Also, the cost of both LMOs depends on the support of the
iterates which is unknown a priori except for a coarse up-
per bound (e.g. the support cannot be more than the number
of iterations). Nevertheless, the numerical results do show
speed ups compared to the deterministic method.

Beyond strong convexity. The strongly convex objec-
tive assumption may not hold for many problem instances.
However, the linear rate easily holds for f of the form
g(Ax) where g is strongly convex and A a linear oper-
ator. This type of function is commonly know as a µ̃-
generally strongly convex function (Beck & Tetruashvili,
2013; Wang & Lin, 2014) or (Lacoste-Julien & Jaggi,
2015) (see “Away curvature and geometric strong convex-
ity” in Appendix B for definition). The proof simply adapts
that of (Lacoste-Julien & Jaggi, 2015, Th. 11) to our set-
ting.
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Theorem 3.2. Suppose f has bounded smoothness con-
stant CA

f and is µ̃-generally-strongly convex. Consider the
set M = conv(A), with A a finite set of extreme atoms.
Then after T iterations of Algorithm 2, with s = |S0| and a
p parameter of sub-sampling, we have

E
�
h(xT+1)

�
≤

�
1− η2ρ̃f

�max{0,�T−s
2 �}

h(x0) , (7)

with ρ̃f = µ̃
4CA

f

and η = p
|A| .

Proof. See end of Appendix B.

4. Applications
In this section we compare the proposed methods with their
deterministic versions. We consider two regularized least
squares problems: one with �1 regularization and another
one with latent group lasso (LGL) regularization. In the
first case, the domain is a polytope and the analysis of AFW
and RAFW holds.

Our results show the FW gap versus number of iterations,
and also cumulative number of computed gradient coeffi-
cients, which we will label “nbr coefficients of grad”. This
allows to better reflect the true complexity of our exper-
iments since sub-sampling the LMO in the problems we
consider amounts to computing the gradient on a subset of
coordinates.

In the case of latent group lasso, we also compared the per-
formance of RFW against FW in terms of wall-clock time
on a large dataset stored in disk and accessed sequentially
in chunks (i.e., in streaming model).

4.1. Lasso problem

Synthetic dataset. We generate a synthetic dataset fol-
lowing the setting of (Lacoste-Julien & Jaggi, 2015), with
a Gaussian design matrix A of size (200, 500) and noisy
measurements b = Ax∗ + ε, with ε a random Gaussian
vector and x∗ a vector with 10% of nonzero coefficients
and values in {−1,+1}.

In Figures 1 and 2, we consider a problem of the form
(OPT), where the domain is an �1 ball, a problem often
referred to as Lasso. We compare FW against RFW, and
AFW against RAFW. The �1 ball radius set to 40, so that
the unconstrained optimum lies outside the domain.

RFW experiments. Figure 1 shows a comparison be-
tween FW and RFW. Each call to the randomized LMO
outputs a direction, likely less aligned with the opposite of
the gradient than the direction proposed by FW, which ex-
plains why RFW requires more iterations to converge on
the upper left graph of Figure 1. Each call of the random-
ized LMO is cheaper than the LMO in terms of number of
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Figure 1. Comparison between FW and RFW with subsampling
parameter η = p

|A| = 0.05 (chosen arbitrarily) on the lasso prob-
lem. Upper left: progress in FW dual gap versus number of itera-
tions. Lower left: progress of the FW dual gap versus cumulative
number of computed coefficients of gradient per call to LMO,
called nbr coefficients of grad here. Lower right: recovered coef-
ficients in support of the ground truth versus number of iterations.
Upper right: size of support of iterate versus number of iterations.

computed coefficients of the gradient, and the trade-off is
beneficial as can be seen on the bottom left graph, where
RFW outperforms its deterministic variant in terms of nbr
coefficients of grad.

Finally, the right panels of Figure 1 provide an insight on
the evolution of the sparsity of the iterate, depending on
the algorithm. FW and RFW perform similarly in terms of
the fraction of recovered support (bottom right graph). In
terms of the sparsity of the iterate, RFW under-performs
FW (upper right graph). This can be explained as follows:
because of the sub-sampling, each atom of the randomized
LMO provides a direction less aligned with the opposite of
the gradient than the one provided by the LMO. Each up-
date in such a direction may result in putting weight on an
atom that would better be off the representation of the iter-
ate. It impacts the iterate all along the algorithm as vanilla
FW removes past atoms from the representation only by
multiplicatively shrinking their weight.

RAFW experiments. Unlike RFW, the RAFW method
outperforms AFW in terms on number of iterations in the
upper left graph in Figure 2. These graphs also illustrate the
linear rate of convergence of both algorithms. The bottom
left graph shows that the gap between RAFW and AFW
is even larger when comparing the cumulative number of
computed coefficients of the gradient required to reach a
certain target precision.
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Figure 2. Same parameters and setting as in Figure 1 but to com-
pare RAFW and AFW. AFW performed 880 away steps among
which 14 were a drop steps while RAFW performed 1242 away
steps and 37 drop steps.

This out-performance of RAFW over AFW in term of num-
ber of iteration to converge is not predicted by our conver-
gence analysis. We conjecture that the away mechanism
improves the trade-off between the cost of the LMO and the
alignment of the descent direction with the opposite of the
gradient. Indeed, because of the oracle subsampling, the
partial FW gap (e.g. the scalar product of the Randomized
FW direction with the opposite of the gradient) in RAFW
is smaller than in the non randomized variant, and so there
is a higher likelihood of performing an away step.

Finally, the away mechanism enables the support of the
RAFW to stay close to that of AFW, which was not the case
in the comparison of RFW versus FW. This is illustrated in
the right panels of Figure 2.

Real dataset. On figure 3, we test the Lasso problem on
the E2006-tf-idf data set (Kogan et al., 2009), which gath-
ers volatility of stock returns from companies with financial
reports. Each financial reports is then represented through
its TF-IDF embedding (n = 16087 and d = 8000 after
an initial round of feature selection). The regularizing pa-
rameter is chosen to obtain solution with a fraction of 0.01
nonzero coefficients.

4.2. Latent Group-Lasso

Notation. We denote by [d] the set of indices from 1 to
d. For g ⊆ [d] and x ∈ Rd, we denote by x(g) the pro-
jection of x onto the coordinates in g. We use the notation
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Figure 3. Performance of FW and AFW against RFW and RAFW
respectively on the lasso problem with TF-IDF 2006 dataset. The
subsampling parameter is η = p

|A| = 0.06 (again chosen arbi-
trarily) for RFW and η = 0.25 for RAFW. Right: Comparison of
RAFW against RFW. Left: Comparison of RFW against FW. Up-
per: progress in FW dual gap versus number of iterations. Lower:
progress of the FW dual gap versus cumulative number of com-
puted coefficients in gradient per call to LMO.

∇(g)f(xt) to denote the gradient with respect to the vari-
ables in group g. Similarly x[g] ∈ Rd is the vector that
equals x in the coordinates of g and 0 elsewhere.

Model. As outlined by Jaggi (2013), FW algorithms are
particularly useful when the domain is a ball of the latent
group norm (Obozinski et al., 2011). Consider a collection
G of subsets of [d] such that

�
g∈G g = [d] and denote by

|| · ||g any norm on R|g|. Frank-Wolfe can be used to solve
(OPT) with M being the ball corresponding to the latent
group norm

||x||G def
= min

v(g)∈R|g|

�

g∈G
||v(g)||g

s.t. x =
�

v∈G v[g] .

(8)

This formulation matches a constrained version of the reg-
ularized (Obozinski et al., 2011, equation (5)) when each
|| · ||g is proportional to the Euclidean norm. For simplicity
we will consider || · ||g to be the euclidean norm.

When G forms a partition of [d] (i.e., there is no overlap
between groups), this norm coincides with the group lasso
norm.

Sub-sampling. Given g ∈ G, consider the hyper-disk

Dg(β) =
�
v ∈ Rd | v = v[g], ||v(g)|| ≤ β

�
.
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Obozinski et al. (2011, Lemma 8) shows that such constrain
set M is the convex hull of A def

=
�
g∈G

Dg .

The RFW can be used to solve this problem, with At
def
=�

g∈Gp

Dg and where the random oracle is performed over a

random subset Gp ⊆ G of size p. Denoting by gp =
�

g∈Gp

g

the LMO in RFW becomes

LMO(xt,At) ∈ argmax
v∈At

�v(gp),−∇(gp)f(xt)� .

With this formulation we only need to compute the gradient
on the gp index. Depending on G and on the sub-sampling
rate, this can be a significant computational benefit.

Experiments. We illustrate the convergence speed-up of
using RFW over FW for latent group lasso regularized least
square regression.

For d = 10000 we consider a collection G of groups of
size 10 with an overlap of 3 and the associated atomic set
A. We chose the ground truth parameter vector w0 ∈
conv(A) with a fraction of 0.01 of nonzero coefficients,
where on each active group, the coefficients are generated
from a Gaussian distribution. The data is a set of n pairs
(yi,wi) ∈ R × Rd, where wi is generated from a Gaus-
sian distribution and yi = wT

i w0 + εi, where εi is again
a Guassian random variable. The regularizing parameter is
β = 14, set so that the unconstrained optimum lies outside
of the constrain set.

Large dataset and Streaming Model. The design ma-
trix is stored in disk. We allow both RFW and FW to ac-
cess it only through chunks of size n×500. This streaming
model allows a wall clock comparison of the two methods
on very large scale problems.

Computing the gradient when the objective is the least
squares loss consists in a matrix vector product. Comput-
ing it on a batch of coordinates then requires same opera-
tion with a smaller matrix. When computing the gradient at
each randomized LMO call, the cost of slicing the design
matrix can then compensate the gain in doing a smaller ma-
trix vector product.

With data loaded in memory, which is typically the case
for large datasets, both the LMO and the randomized LMO
have this access data cost. Consider also that RFW allows
any scheme of sampling, including one that minimizes the
cost of data retrieval.

5. Conclusion and future work
We give theoretical guarantees of convergence of random-
ized versions of FW that exhibit same order of convergence
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Figure 4. Both panels are in log log scale and show convergence
speed up for FW and RFW on latent group lasso regularized least
square regression. The parameter of subsampling η = 0.1, is
chosen arbitrarily. Left: evolution of the precision in FW dual gap
versus the wall clock time. Right: evolution of the precision in
FW dual gap versus the cumulative number of computed coeffi-
cients of the gradient.

as their deterministic counter-parts. As far as we know,
for the case of RAFW, this is the first contribution of the
kind. While the theoretical complexity bounds don’t neces-
sarily imply this, our numerical experiments show that ran-
domized versions often outperform their deterministic ones
on �1-regularized and latent group lasso regularized least
squares. In both cases, randomizing the LMO allows us to
compute the gradient only on a subset of its coordinates.
We use it to speed up the method in a streaming model
where the data is accessed by chunks, but there might be
other situations where the structure of the polytope can be
leveraged to make subsampling computationally beneficial.

There are other linearly-convergent variants of FW besides
AFW, such as the Pairwise FW algorithm (Lacoste-Julien
& Jaggi, 2015), for which it might be possible to derive
randomized variants.

Finally, recent results such as (Goldfarb et al., 2016; 2017;
Hazan & Luo, 2016) combine various improvements of
FW (away mechanism, sliding, lazy oracles, stochastic FW,
etc.). Randomized oracles add to this toolbox and could
further improve its benefits.
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