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Abstract
Non-convex optimization problems arise fre-
quently in machine learning, including feature se-
lection, structured matrix learning, mixture model-
ing, and neural network training. We consider the
problem of finding critical points of a broad class
of non-convex problems with non-smooth compo-
nents. We analyze the behavior of two gradient-
based methods—namely a sub-gradient method,
and a proximal method. Our main results are to
establish rates of convergence for general prob-
lems, and also exhibit faster rates for sub-analytic
functions. As an application of our theory, we
obtain a simplification of the popular CCCP algo-
rithm, which retains all the desirable convergence
properties of the original method, along with a
significantly lower cost per iteration. We illus-
trate our methods and theory via application to
the problems of best subset selection, robust esti-
mation and shape from shading reconstruction.

1. Introduction
Non-convex optimization problems arise frequently in sta-
tistical machine learning; examples include the use of non-
convex penalties for enforcing sparsity, non-convexity in
likelihoods in mixture modeling, and non-convexity in neu-
ral network training. Of course, minimizing a non-convex
problem is NP-hard in general, but in machine learning ap-
plications, it is often sufficient to find critical points that
are first-order (and possibly second-order) stationary. There
have been a number of recent papers demonstrating that
all first (and/or second) order critical points have desirable
properties for certain statistical problems; for instance, see
the papers (Loh & Wainwright, 2013; Ge et al., 2017) as
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well as references therein. Accordingly, recent years have
witnessed an explosion of research on different algorithms
for non-convex problems, with the goal of trying to charac-
terize the nature of their fixed points, and their convergence
properties.

The most straightforward approach to obtaining a first-order
critical point is via gradient descent which can be shown,
under suitable regularity conditions and step size choices,
to compute (approximate) first-order critical points. Re-
cently, Lee et al. (2016) showed that for twice continuously
differentiable smooth functions, gradient descent with ran-
dom initializations converges to a second order stationary
solution almost surely. Despite the empirical success of
(sub)gradient-based methods in many non-convex problems,
an issue is that all the available theory applies to smooth
non-convex functions. In practice, many machine learning
problems have non-smooth components; examples include
the hinge loss in support vector machines, the rectified linear
unit in neural networks, and various types of matrix regu-
larizers in collaborative filtering and recommender systems.
Accordingly, a natural goal is to develop subgradient-based
techniques that apply to a broader class of non-convex func-
tions, allowing for non-smoothness.

The main contribution of this paper is to provide precisely
such a set of techniques, along with non-asymptotic guar-
antees on their convergence rates. In particular, we study
algorithms that can be used to obtain first-order (and in
some cases, also second-order) optimal solutions to a rel-
atively broad class of non-convex functions, allowing for
non-smoothness in certain portions of the problem. For
each sequence {xk}k≥0 generated by one of our algorithms,
we provide non-asymptotic bounds on the convergence rate
of the gradient sequence {‖∇f(xk)‖2}k≥0. Moreover, for
functions that satisfy a form of the Kurdaya-Łojasiewicz
inequality, we show that our methods achieve faster rates.

Our work also makes interesting points of contact with a
second line of work on non-convex optimization, namely
to functions that can be represented as a difference of two
convex functions, popularly known as DC functions. One
of the most popular DC optimization algorithms is Con-
vex Concave Procedure (CCCP); see the papers (Yuille &
Rangarajan, 2003; Lipp & Boyd, 2016) for further details.
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This is a double loop algorithm that minimizes a convex
relaxation of the non-convex function at each iteration. The
CCCP algorithm has some attractive convergence properties;
see (Lanckriet & Sriperumbudur, 2009) for details. But one
of the drawbacks is that it can be slow in many situations
due to its double loop structure. In this paper, we develop a
single-loop prox-method that retains the convergence guar-
antees of CCCP, but is much faster to run, as demonstrated
in our simulation performance.

Related Work: There is a lengthy literature on non-
convex optimization, dating back more than six decades.
A particular class that has been extensively studied are those
functions that can be represented as the difference of convex
functions, or DC functions for short; see the papers (Tuy,
1995; Hartman, 1959; Lanckriet & Sriperumbudur, 2009;
Yuille & Rangarajan, 2003) for more details. Recent years
have witnessed a re-surgence of interest in guarantees for
non-convex and non-smooth problems, in part driven by
the non-convexity of many objectives that arise in machine
learning and statistics. Bolte et al. (2014) developed a prox-
imal type algorithm when the objective function is a sum
of smooth (possibly non-convex) and a convex (possibly
non-differentiable) function. Some recent work (Xu & Yin,
2017) extended these ideas and provided analysis for block
co-ordinate descent methods for non-convex functions. In
other recent work, Hong et al. (2016) provided a analy-
sis of the ADMM method for non-convex problems. An
and Nam (2017) proposed a proximal type method for non-
convex functions which can be written as a sum of a smooth
function, a concave continuous function and a convex lower
semi-continuous function; we also analyze this class in one
of our results (Theorem 2).

Overview of our results

• Our first main result, stated in Theorem 1, gives a
gradient type algorithm for minimizing problem 2
over a closed convex set C . In Theorem 1, we provide
a rate of convergence of the gradient (or a gradient
type object in case of non-differentiable functions); we
show that the algorithm is optimal among all first order
algorithms. In Corollary 1 we prove that Algorithm 1
escapes strict saddle points with random initializing,
without smoothness assumption on the entire function
f = g − h. We next illustrate some consequences of
Theorem 1 by obtaining a new rate of convergence of
gradients in CCCP.

• In the second result, stated in Theorem 2, we provide a
proximal type algorithm for problem (1) and provide
rate of convergence of the proximal type algorithm. In
Section 5.2, we demonstrate how this proximal type
algorithm can be used to solve the best subset selec-
tion problem in linear regression. We demonstrate the

performance of Algorithm 2 and CCCP for best subset
selection problem.

• Finally, in Theorems 3 and 4 we show that under a mild
assumption, the rate of convergence of gradient can be
improved to at least 1/k. We also provide a large class
of function, namely subanalytic function (which in-
clude semi-algebraic, sub-analytic, analytic functions),
that satisfy our assumption. We also provide examples
of functions where the rate of convergence of gradient
is 1/kr for r = 1, 2, . . . .

Notation: Given a set C ⊂ Rd, we use int(C) to de-
note its interior. We use ‖x‖2 and ‖x‖1 to denote the Eu-
clidean and `1-norms, respectively, of a vector x ∈ Rd.
In many examples considered in this paper, the objec-
tive function f is linear combination of a differentiable
function g and one or more convex functions h and ϕ.
If f = g + ϕ − h, then we use ∇f(x) to denote the
Minkowski sum of {∇g(x)

}
, ∂ϕ(x) and − ∂h(x), i.e.

∇f(x) : = ∇g(x) + ∂ϕ(x)− ∂h(x). For any sequence
{ak}k≥0 we use Avg

(
ak
)

:= 1
k+1

∑`=k
`=0 a

`, the running
arithmetic mean of the sequence {ak}k≥0. Similarly, we
use GAvg

(
ak
)

to denote the running geometric mean.

2. Problem setup
In this paper, we study the problem of minimizing a non-
convex and possibly non-smooth function over a closed
convex set. Consider the optimization problem

min
x∈C

f(x) = min
x∈C

{
g(x)− h(x) + ϕ(x)

}
, (1)

where the domain C is a closed convex set. In all cases, we
assume the function f is bounded below over C, and that the
function h is continuous and convex. Our aim is to derive
algorithms for problem (1) for various types of g and ϕ.

Structural assumption on functions g and ϕ

(a) Theorems 1 and 3 assume that the function g is con-
tinuously differentiable and smooth, and that ϕ ≡ 0.

(b) In Theorems 2 and 4, we assume that the func-
tion g is continuously differentiable and smooth, and
that the function ϕ is proper convex and lower semi-
continuous.1

The class of non-convex functions covered in part (a) in-
cludes the class of difference of convex (DC) functions, for

1Taking ϕ ≡ 0 yields part (a) as a special case, but it is worth-
while to point out that the assumptions in Theorem 1 are weaker
than Theorem 2. Furthermore, we can prove some interesting
results about saddle points when ϕ ≡ 0; see Corollary 1.
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which the first convex function is smooth and the second
convex function is continuous, as a special case. Note that
we only put a mild assumption of continuity on the convex
function h, meaning that the difference function g − h can
be non-smooth and non-differentiable in general. It can be
shown that when h is continuously differentiable but non-
smooth, and g is smooth, then the difference function g − h
is non-smooth. Furthermore, if we take h ≡ 0, then we
recover the class of smooth functions as a special case.

3. Main results
Our main results are to analyze two algorithms for this class
of non-convex non-smooth problems; in particular, deriv-
ing non-asymptotic bounds on their rate of convergence.
The first algorithm is a (sub)-gradient type method, and is
mainly suited for unconstrained optimization; the second al-
gorithm is based on a proximal operator, and can be applied
to constrained optimization problems.

3.1. Gradient type method

In this section, we analyze a (sub)-gradient-based method
for solving a certain class of non-convex optimization prob-
lems. In particular, consider a pair of functions (g, h) such
that:

Assumption GR:

(a) The function g is continuously differentiable and
Mg-smooth.

(b) The function h is continuous and convex.

(c) There is a closed convex set C such that the difference
function f : = g − h is bounded below on C.

Under these conditions, we then analyze the behavior of a
(sub)-gradient method in application to the problem

f∗ = min
x∈C

f(x) = min
x∈C

{
g(x)− h(x)

}
. (2)

With a slight abuse of notation, we refer to a vector of the
form∇g(x)−u(x), where u(x) ∈ ∂h(x)—the convex sub-
gradient set of the function h at the point x— as a gradient
of the function f .

Algorithm 1 Subgradient type method

1: Given an initial point x0 ∈ int(C) and step size
α ∈ (0, 1

Mg
]:

2: for k = 0, 1, 2, . . . do
3: Choose subgradient uk ∈ ∂h(xk).
4: Update xk+1 = xk − α

(
∇g(xk)− uk

)
.

5: end for

In our analysis, we assume that the initial vector x0 ∈ int(C)
is chosen such that the associated level set

L(f(x0)) : =
{
x ∈ Rd | f(x) ≤ f(x0)

}
is contained within int(C). This condition is standard in the
analysis of non-convex optimization (e.g., see Nesterov and
Polyak (2006)). When C = Rd, it holds trivially.

With this set-up, we have the following guarantee on the
convergence rate of Algorithm 1
Theorem 1. Under Assumption GR, any sequence {xk}k≥0

produced by Algorithm 1 has the following properties:

(a) Any limit point is a critical point of f , and the sequence
of function values {f(xk)}k≥0 is strictly decreasing
and convergent.

(b) For all k = 0, 1, 2, . . ., we have

Avg
(
‖∇f(xk)‖22

)
≤

2
(
f(x0)− f∗

)
α(k + 1)

. (3)

We provide a proof sketch here, providing the full proof in
Appendix C.1. At a high level, the main part of the analysis
is devoted to establishing that Algorithm 1 with step size
α ≤ 1

Mg
enjoys the following descent property:

f(xk+1) ≤ f(xk)− α

2
‖∇f(xk)‖22. (4)

Combining this descent property with the fact that f is
bounded below, some further calculations then allow us to
establish the claimed convergence bounds on the function
value sequence {f(xk)}k≥0 as well as the gradient sequence
{‖∇f(xk)‖2}k≥0.

3.1.1. COMMENTS ON CONVERGENCE RATES

Note that the bound (3) guarantees that the gradient norm
sequence minj≤k ‖∇f(xj)‖2 converges to zero at the rate
O(1/

√
k). It is natural to wonder whether this convergence

rate can be improved. Interestingly, the answer is no, at
least for the general class of functions covered by Theo-
rem 1. Indeed, note that the class of M -smooth functions
is contained within the class of functions covered by The-
orem 1. It follows from past works (Cartis et al., 2010;
Carmon et al., 2017) that for the class of smooth functions,
the rate of convergence of any algorithm, given access to
only the function gradients and function values, cannot be
better than Ω(1/

√
k). Finally, observe that in the special

case h ≡ 0, Algorithm 1 reduces to the ordinary gradient de-
scent with fixed step size α. Putting together the pieces, we
conclude that for the class of functions which can be written
as a difference of smooth and a continuous convex function,
Algorithm 1 is optimal among all algorithms which has ac-
cess to the function gradients (and/or the sub-gradients) and
the function values.
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3.1.2. ESCAPING STRICT SADDLE POINTS

One of obstacles in gradient-based optimization is that these
methods can in principle converge to a saddle point. In
this section, we analyze the behavior of the gradient type
Algorithm 1 under random initialization. Our main result
is to show that under random initialization, Algorithm 1
escapes strict saddle points almost surely.
Corollary 1. In additions to the conditions on (g, h, C)
from Theorem 1, suppose that (g, h) are twice continuously
differentiable. Then the set of initial points for which Al-
gorithm 1 converges to a strict saddle point has measure
zero.

As a proof sketch, the main step is to show that the gradient
map x 7→ x− α∇g(x) is a diffeomorphism when the step
size α ≤ 1

Mg
. The rest of the proof follows from a simple

application of Stable Manifold Theorem; see Theorem 4.4 of
Lee et al. (2016). See Appendix C.2 for a detailed proof. We
note that Lee et al. (2016) provided the same guarantee when
the function f = g − h is twice continuously differentiable
and M -smooth. The novelty of Corollary 1 is that the same
guarantee holds without imposing a smoothness condition
on the entire function f .

3.2. Connections to the convex-concave procedure

We show that one can obtain a rate of convergence result for
CCCP(convex-concave procedure) as a corollary of Algo-
rithm 1; which is heavily used algorithm in Difference of
Convex (DC) optimization problems. Before we do so, let
us provide a brief description of DC functions and CCCP
algorithm.

DC functions: Let C ⊆ Rd be a convex set. We say a
function f : C 7→ R is DC on C if there exist convex func-
tions g and h such that f = g − h on C . Note that the
DC representation f = g − h mentioned in definition is
not unique; in fact, for any convex function p, we can write
f = (g + p)− (h+ p). The class of DC functions includes
a very large number of non-convex problems encountered in
practice. Obviously, both convex and concave functions are
(trivially) DC. Moreover, the class of DC functions remains
closed under addition and subtraction. More interestingly,
under mild restrictions on the domain, the class of non-zero
DC functions are also closed under multiplication, division,
and composition (Hartman, 1959; Tuy, 1995). The maxi-
mum and minimum of a finite collection of DC functions
are also DC functions.

Convex-concave procedure: One interesting class of DC
optimization problem is minimizing a DC function over a
closed convex set C ⊆ Rd, i.e.

f∗ : = min
x∈C

f(x) = min
x∈C

{
g(x)− h(x)

}
, (5)

where g and h are proper convex functions. The above
problem has been studied intensively, and there are various
methods for solving it; for instance, see the papers (Tuy,
1995; Pham Dinh et al., 2013; Lipp & Boyd, 2016) and
references therein for details. One of the popular algorithm
to solve problem (5) is Convex Concave Procedure (CCCP),
which was introduced by Yuille and Rangarajan (2003).
This iterative algorithm is a special case of a Majorization-
Minimization algorithm, which uses the DC structure of
the objective function in problem (5) to construct a convex
majorant at each step. We start with a feasible point x0 ∈
int(C). Let xk denote the iterate at kth iteration; at (k+ 1)th

iteration we construct a convex majorant q(·, xk) of f via

f(x) ≤ g(x)− h(xk)− 〈uk, x− xk〉︸ ︷︷ ︸
=: q(x,xk)

, (6)

where uk ∈ ∂h(xk). The next iterate xk+1 is obtained by
solving the convex program

xk+1 ∈ arg min
x∈C

q(x, xk). (7)

The CCCP algorithm has some attractive convergence prop-
erties. For example, it is a descent algorithm, and when
g is strongly convex differentiable and h is continuously
differentiable, then it can be shown that any limit point
of the sequence

{
xk
}
k≥0

obtained from CCCP is station-
ary. Under the same assumptions, one can also show that
limk→∞ ‖xk − xk+1‖2 = 0.

We now turn to an analysis of CCCP using the techniques
that underlie Theorem 1. Earlier analyses of CCCP, includ-
ing the papers (Lanckriet & Sriperumbudur, 2009; Yuille
& Rangarajan, 2003), are mainly based on the assumption
of strong convexity of g. Here we derive a rate of con-
vergence of the gradient sequence, and show that all limit
points of

{
xk
}
k≥0

are stationary. Unlike previous works,
we only assume g is Mg-smooth, and h is a convex continu-
ous function. When the function g is strongly convex, our
analysis recovers the well-known convergence result in past
work (Lanckriet & Sriperumbudur, 2009). In particular we
show that CCCP enjoys the same rate of convergence as that
of Algorithm 1.

Proposition 1. Under Assumption GR and with g being
convex, the CCCP sequence (7) has the following properties:

(a) Any limit point of the sequence
{
xk
}
k≥0

is a critical
point, and the sequence of function values

{
f(xk)

}
k≥0

is strictly decreasing and convergent.

(b) Furthermore, for all k = 1, 2, . . ., we have

Avg
(
‖∇f(xk)‖22

)
≤

2Mg

(
f(x0)− f∗

)
(k + 1)

, (8a)
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and assuming moreover that g is µ-strongly convex,

Avg
(
‖xk − xk+1‖22

)
≤

2
(
f(x0)− f∗

)
µ(k + 1)

. (8b)

As a high level proof sketch, the main observation here
is that the update step 7 is stronger than update equation
of Algorithm 1; hence CCCP update step 7 also enjoys
the descent property (4), and the rate of convergence in
terms of ‖∇f(xk)‖2 follows from proof of Algorithm 1.
When function h is strongly convex, we note that the convex
majorant q(x, xk) is also strongly convex. We leverage
this fact to obtain a rate of convergence of the successive
difference ‖xk − xk+1‖2. See Appendix C.3 for detailed
proof.

3.2.1. SIMPLIFYING CCCP

Algorithm 1 provides us an alternative algorithm for mini-
mizing difference of convex functions when the first convex
function is smooth. The benefit of Algorithm 1 over stan-
dard CCCP is that Algorithm 1 is a single loop algorithm and
is expected to be faster than standard double-loop CCCP
algorithm in many situations. Furthermore, Algorithm 1
shares convergence guarantees similar to a standard CCCP
algorithm.

3.3. Proximal type method

We now turn a more general class of optimization problems
of the form

f∗ : = min
x∈Rd

f(x) = min
x∈Rd

{(
g(x)− h(x)

)
+ ϕ(x)

}
.

(9)

We assume that the functions g, h andϕ satisfy the following
conditions:

Assumption PR

(a) The function f = g − h+ ϕ is bounded below on Rd.

(b) The function g is continuously differentiable and Mg-
smooth; the function h is continuous and convex;
and the function ϕ is proper, convex and lower semi-
continuous.

Typical example of ϕ could be ϕ(x) = ‖x‖1 or indicator
of a closed convex convex set X . For general lower semi-
continuous function ϕ, the gradient type algorithm does not
work, because the function g + ϕ is neither differentiable
nor a smooth function. One way to minimize such functions
is to apply a Proximal type method instead of gradient type
method.

Algorithm 2 Proximal type algorithm

1: Given an initial vector x0 ∈ C and step size
α ∈

(
0, 1

Mg

)
.

2: for k = 0, 1, 2, . . . do
3: Update xk+1 = proxϕ1/α

(
xk − α

(
∇g(xk) − uk

))
for some uk ∈ ∂h(xk).

4: end for

The proximal update in Line 3 of Algorithm 2 is very
easy to compute and often has a closed form solution
(e.g., see Parikh et al. (2014)). Let us now derive the rate of
convergence result of Algorithm 2.

Theorem 2. Under Assumption PR, any sequence
{
xk
}
k≥0

obtained from Algorithm 2 has the following properties:

(a) The sequence
{
f(xk)

}
k≥0

is strictly decreasing and
convergent, and any limit point of the sequence{
xk
}
k≥0

is stationary.

(b) For all k = 0, 1, 2, . . ., we have

Avg
(
‖xk − xk−1‖22

)
≤

2
(
f(x0)− f∗

)
α(k + 1)

. (10a)

If moreover h is Mh-smooth, then

Avg
(
‖∇f(xk)‖22

)
≤

2CM,α

(
f(x0)− f∗

)
α(k + 1)

, (10b)

where CM,α =
(
Mg +Mh + 1

α

)2
.

The proof of Theorem 2 reveals that the smoothness condi-
tion on function h in Theorem 2 can be replaced by smooth-
ness of function h in a set which contains all the iterates{
xk
}
k≥0

. Such a condition can be easily verified when the
sequence

{
xk
}
k≥0

is bounded and the norm of the Hessian
of the function f is upper bounded in that bounded set. The
boundedness assumption on the iterates

{
xk
}
k≥0

holds in
many situations. For instance, if f is coercive, meaning that
f(x) → ∞ as ‖x‖2 → ∞, then it follows that the iterates
remain bounded.

A special case of the Algorithm 2 is when ϕ = 1X is the
indicator function of a closed convex set X . Consider the
following constrained optimization problem

min
x∈X

{
g(x)− h(x)

}
, (11)

whereX is a closed convex set, the function g isMg-smooth,
and h is a convex continuous function. Following Algo-
rithm 2, the update equation in this case is given by

xk+1 = ΠX
(
xk − α(∇g(xk)− uk)

)
. (12)
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In projected gradient, we should not expect a rate in terms
of gradient, because the projected gradient step may not
be aligned with the gradient direction, and even when the
projected gradient step is along the gradient direction, the
step size may be arbitrarily small due to projection. In this
case, an appropriate analogue of gradient is follows:

∇fX
(
xk
)

=
1

α

(
xk −ΠX (xk − α(∇g(xk)− uk))

)
.

The analysis of Projected Gradient method using
∇fX

(
xk
)

is standard in optimization literature
(e.g., see Bubeck (2015)). It is worth pointing out
that the quantity ∇fX

(
xk
)

is the analogue of gradient
in constrained optimization setup, and coincides with the
gradient in unconstrained setup. Concretely, we have
∇fX

(
xk
)

= ∇f(xk) where f = g − h and X = Rd, and

hence Avg
(
‖∇fX

(
xk
)
‖22
)
≤ 2
(
f(x0)−f∗

)
α(k+1) .

4. Faster rates under KL conditions
In the preceding sections, we have derived rates of conver-
gence for the gradient norms for various classes of problems.
It is natural to wonder if faster convergence rates are pos-
sible when the objective function is equipped with some
additional structure. Based on Theorems 1 and 2, we see
that both Algorithms 1 and 2 ensure that ‖xk−xk+1‖2 → 0,
meaning that the successive differences between the iter-
ates converge to zero. Although we proved that any limit
point of the sequence {xk}k≥0 has desirable properties, the
condition ‖xk − xk+1‖2 → 0 is not sufficient—at least in
general—to prove convergence of the sequence {xk}k≥0,
when no further information is available about the sequence
{xk}k≥0 . In this section, we provide a sufficient conditions
under which Algorithms 1 and 2 yield convergent sequences
of iterates {xk}k≥0, and we establish that gradient sequence
{‖∇f(x)‖2}k≥0 converge at a faster rate.

4.1. Kurdaya-Łojasiewicz inequality

We prove a faster local rate of convergence of Algorithms 1
and 2 for a large class of functions which satisfy a form
of the Kurdaya-Łojasiewicz (KL) inequality, as formalized
in Assumption KL. We assume that there exists θ ∈ [0, 1)

such that the ratio |f(x)−f(x̄)|θ
‖∇f(x)‖2 is bounded above in a neigh-

borhood of every point x̄ ∈ domf . This type of inequality
is known as a Kurdaya-Łojasiewicz inequality, and the ex-
ponent θ is known as the Kurdaya-Łojasiewicz exponent
(KL-exponent) of the function f at a point x̄. These type
of inequalities were first proved by Łojasiewicz (1963)
for real analytic functions. Kurdaya (1998) and Bolte et
al. (2007) proved similar inequalities for non-smooth func-
tions, and also provided a large class of functions which
satisfy a form KL inequality. For sake of completeness we
provide a discussion on functions satisfying KL inequalities

in Appendix B.2.

Assumption KL: For any point 2 x̄ ∈ domf , there exists

a scalar θ ∈ [0, 1) such that the ratio |f(x)−f(x̄)|θ
‖∇f(x)‖2 is bounded

above in a neighborhood of x̄.

Note that the neighborhood mentioned in the Assumption
KL above may depend on the the function f and the point x̄.

4.2. Convergence guarantees

Theorem 3. Under Assumptions GR & KL any bounded
sequence {xk}k≥0 obtained from Algorithm 1 has the fol-
lowing properties:

(a) The sequence {xk}k≥0 converges to a critical point x̄,
and

Avg
(
‖∇f(xk)‖2

)
≤ c1

k
for all k = 1, 2, . . ..

(b) Suppose θ̄ be the KL-exponent of f at x̄ with
1
2 ≤ θ̄ <

r
2r−1 for some r ∈ {2, 3, . . .}, then

GAvg
(
‖∇f(xk)‖2

)
≤ c2
kr

for all k = 1, 2, . . . .

We provide a proof sketch here, providing the full proof
in Appendix E.2. The main step of the proof is to show
that under Assumption KL, Algorithm 1 enjoys following
stronger version of the descent property (4):(
f(xk+1)

)1−γθ ≤ (f(xk)
)1−γθ − c‖∇f(xk)‖2−γ2 , (13)

where 1
θ > γ ≥ 1 and c > 0 universal constants in-

dependent of k. The rate of convergence in terms of
Avg

(
‖∇f(xk)‖2

)
follows by leveraging the last descent

inequality, and substituting γ = 1. When 1
2 ≤ θ̄ < r

2r−1 ,
we show that one is allowed to take γ = 2r−1

r , thereby
ensuring 2 − γ = 1

r . We then utilize descent property
13 with 2 − γ = 1

r , and the Arithmetic-Geometric mean
inequality to obtain a rate of convergence in terms of
GAvg

(
‖∇f(xk)‖2

)
.

Theorem 4. Suppose the function h in Algorithm 2 is
smooth, then under Assumptions PR & KL any bounded
sequence {xk}k≥0 obtained from Algorithm 2 has the fol-
lowing properties:

(a) The sequence {xk}k≥0 converges to a critical point x̄,
and for all k = 0, 1, 2 . . .

Avg
(
‖∇f(xk)‖2

)
≤ c1

k
.

2It can be shown that such an inequality would hold at non-
critical point of a continuous function f ; see Remark 3.2 of Bolte
et al. (2007).
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(b) Given some r ∈ {2, 3, . . .}, suppose that f at x̄ has a
KL exponent θ̄ ∈

[
1
2 ,

r
2r−1

)
. Then

GAvg
(
‖∇f(xk)‖2

)
≤ c2
kr

for all k = 1, 2, . . . .

Here c1, c2 > 0 are constants independent of k.

See Appendix E.2 for the proof.

Comments: Note that min1≤i≤k ‖∇f(xk)‖2 is up-
per bounded by the quantities Avg

(
‖∇f(xk)‖2

)
and

GAvg
(
‖∇f(xk)‖2

)
. It thus follows that the sequence

{‖∇f(xk)‖2}k≥0 converges to zero at a rate of at least 1/k,
thereby improving the rate of convergence of ‖∇f(x)‖2
obtained in Theorems 1 and 2. A simple modification of
the proof by substituting γ = 2 shows that when θ < 1

2 ,
Algorithms 1 and 2 converge in a finite number of steps.

5. Some illustrative applications
In this section, we discuss various consequences of The-
orems 1 – 4 as well as Corollary 1 when applied to the
problem of Robust regression, Best subset selection. We
also add an application to the problem of shape from shading
reconstruction in the Appendix A.

5.1. Robust regression using Tuky’s bi-weight

We begin by considering robust regression problem with
Tuky’s bi-weight penalty function. Recall that in the frame-
work of robust mean estimation, we assume the following
model

yi = 〈zi, µ∗〉+ wi for i = 1, . . . , n.

Here the parameter µ∗ ∈ Rd is the unknown parameter of
interest, where as

{
zi, yi

}n
i=1

are the observations. In robust
regression, we obtain an estimate of µ∗ by minimizing the
following optimization problem,

min
µ∈Rd

{ 1

n

n∑
i=1

Ψ
(
yi − 〈zi, µ〉

)
︸ ︷︷ ︸

=: f(µ)

}
, (14)

where Ψ is a known function with some robustness prop-
erties. One popular example of loss function Ψ is Tukey’s
bi-weight function, which is given by

Ψ(t) =

{
1− (1− (t/λ)2)3 if |t| ≤ λ
1 otherwise

, (15)

where λ > 0 is a tuning parameter. Note that p is a smooth
function, whence the function f in the objective (14) is
also smooth, meaning that Algorithm 1 is suitable for the
problem. With this set-up, applying Theorem 1, Theorem 3
and Corollary 1 yields the following corollary:

Corollary 2. Given a random initialization, the sequence
{µk}k≥0 obtained by applying Algorithm 1 to the objec-
tive 14 has the following properties:

(a) Almost surely with respect to the random initialization,
the sequence {µk}k≥0 converges to a point µ̄ such that

∇f(µ̄) = 0, and ∇2f(µ̄) � 0.

(b) There is a universal constant c1 such that

Avg
(
‖∇f(µk)‖2

)
≤ c1

k
for all k = 1, 2, . . ..

We provide a detailed proof in Appendix F.1

5.2. Best subset selection

Moving beyond robust regression problem, we consider
the problem of best subset selection in linear regression.
Suppose that we observe the vector y ∈ Rn and a ma-
trix B ∈ Rn×d that are linked via the standard linear
model y = Bx∗ + w. Here w ∈ Rn is a noise vector, while
x∗ ∈ Rd is the unknown regression vector. We wish to
estimate the unknown parameter x∗ subject to a sparsity
constraint, and we do so by solving the following optimiza-
tion problem:

min
x∈Rd
‖x‖0≤s

‖y −Bx‖22. (16)

Here the positive integer s is a tuning parameter that con-
trols maximum number of allowable non-zero entries in
x. It is known (Gotoh et al., 2017) that the set of s-sparse
vectors can be expressed as the level set of a certain DC
function. In particular, let |x|(d) ≥ |x|(d−1) ≥ · · · ≥ |x|(1)

denote the values of x ∈ Rd re-ordered in terms of their
absolute magnitudes. In terms of this notation, we have
‖x‖1 ≥

∑d
i=d−s+1 |x|(i) for all x ∈ Rd, with equality hold-

ing if and only if x is s–sparse. This fact ensures that{
x ∈ Rd : ‖x‖0 ≤ s

}
=

{
x ∈ Rd : ‖x‖1 −

d∑
i=d−s+1

|x|(i) ≤ 0
}
. (17)

Since both the maps x 7→ ‖x‖1 and x 7→
∑d
i=d−s+1 |x|(i)

are convex (Boyd & Vandenberghe, 2004), this
level set formulation is a DC constraint. Now
using the representation (17), we can rewrite
problem (16) as minx∈Rd ‖y −Bx‖22 such that
‖x‖1 −

∑d
i=d−s+1 |x|(i) ≤ 0. For our experiments,

it is more convenient to solve the penalized analogue of this
problem, given by

min
x∈Rd

{
‖y −Bx‖2 + λ

(
‖x‖1 −

d∑
i=d−s+1

|x|(i)
)}

,

(18)
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where λ > 0 is a tuning parameter. The optimization
problem 18 can be solved using Algorithm 2 with g = g,
ϕ(x) = λ‖x‖1 and h(x) = λ

∑d
i=d−s+1 |x|(i). For the

non-smooth component ϕ(s) = λ‖x‖1, there is a closed
form expression of the proximal update in Algorithm 2, so
that the method is especially efficient in this case. It is
interesting to note that problem (18) is a DC optimization
problem, and is hence amenable to standard DC optimiza-
tion techniques like CCCP. In Section 6, we show through
simulations that solving the sparse linear regression prob-
lem (18) using Algorithm 2 is significantly faster than using
CCCP.

In order to obtain a satisfactory convergence result for an
algorithm applied to the problem (18), we need some further
assumption. Interestingly, it turns out that the convergence
of Algorithm 2 is dependent on the uniqueness of the so-
lution of a convex relaxation of the original problem (18).
For any point x̄ ∈ Rd with |x̄|(r) > |x̄|(r+1), consider the
following convex relaxation of problem (18)

P(x̄) : = min
x∈Rd

{
‖y −Bx‖22 + λ‖x‖1 − λ〈∇h(x̄), x− x̄〉

}
.

(19)

Note that |x̄|(r) > |x̄|(r+1) implies the differentiability of
the function h, ensuring that the last problem is well-defined.

Corollary 3. Let
{
xk
}
k≥0

be the sequence obtained by
applying Algorithm 2 on problem (18). Suppose there exists
a limit point x̄ of the sequence

{
xk
}
k≥0

satisfying |x̄|(r) >
|x̄|(r+1), and the convex problem (19) has unique solution.
Then the sequence

{
xk
}
k≥0

converges to the point x̄, and
for all k = 0, 1, 2, . . ., we have

Avg
(
‖∇f(xk)‖

)
≤ c1

k
, and ‖xk − x̄‖2 ≤ cqk, (20)

where q ∈ (0, 1) and c1, c > 0 are constants independent of
k.

The proof of this corollary is along the lines of the proof
of Theorem 4, but it requires additional care, since the
function h(x) : = λ

∑d
i=d−s+1 |x|(i) is not smooth. See

Appendix F.2 for the full proof.

6. Simulation
In this section, we compare the performance of Algorithm
2 (prox-type method for short) with the convex-concave
Procedure (CCCP). on best-subset selection problem de-
scribed in problem 18. Recall that, problem 18 can be
decomposed as a difference of two convex functions and
hence amenable to DC optimization algorithms like CCCP.
In this simulation experiment, we use CCCP update (7). The
inner convex optimization problem in update (7) is solved
by proximal methods for minimizing sum of smooth convex

function and `1 regularizer. The results for Algorithm 2
was obtained by applying Algorithm 2 on problem (18)
with g(x) = ‖y −Bx‖22 , h(x) = λ

∑d
i=d−s+1 |x|(i), and

ϕ(x) = λ‖x‖1.

Synthetic data generation: We generated the rows of the
n× d matrix B from a d-dimensional Gaussian distribution
with zero mean and an equicovariance matrix Σ satisfying
Σii = 1 for all i, and Σij = 0.7 for all i 6= j. The regression
vector x∗ ∈ Rd (true value) was chosen to be a binary vector
with sparsity s (s� d). The location of the nonzero entries
of the true regression vector x∗ was chosen uniformly form
{1, . . . , d}.

Performance comparison: We compare the two methods
in terms of the total runtime of the algorithms and in terms
of the estimator error. Recall that if x̄ is the estimated
value of the unknown regression vector x∗ ∈ Rd, then the
average estimation error is defined as ‖x̄−x

∗‖2√
p‖x∗‖2 . Note that

the average estimation error used here is scale invariant. For
both algorithms, the tolerance level η was set to η = 10−8,
maximum number of iterations was to be 1000, and both had
same initializations. The performance comparison between
the two algorithms is documented in the figure 1.
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Figure 1. Figure showing performance of CCCP and Algorithm 2
on best subset selection problem for synthetic data for different
values of (n, p). The left and right columns correspond to the set-
tings (n, p) = (190, 300) and (n, p) = (380, 600), respectively.
Plots in the first and second rows provide comparisons of running
times and estimation error, respectively. The prox-type method
(Algorithm 2) outperforms CCCP in terms of both the criteria.
Results shown above are averaged over 100 replications and the
bands represent the point-wise error bars.
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