
Supplementary Materials for Semi-Amortized Variational Autoencoders

A. Training Semi-Amortized Variational
Autoencoders with Gradient Clipping

For stable training we found it crucial to modify Algorithm
1 to clip the gradients at various stages. This is shown in
Algorithm 2, where we have a clipping parameter η. The
clip(·) function is given by

clip(u, η) =

{
η
‖u‖2u , if ‖u‖2 > η

u , otherwise

We use η = 5 in all experiments. The finite difference esti-
mation itself also uses gradient clipping. See https://github.
com/harvardnlp/sa-vae/blob/master/optim n2n.py for the
exact implementation.

B. Experimental Details
For all the variational models we use a spherical Gaussian
prior. The variational family is the diagonal Gaussian pa-
rameterized by the vector of means and log variances. For
models trained with SVI the initial variational parameters
are randomly initialized from a Gaussian with standard de-
viation equal to 0.1.

B.1. Synthetic Data

We generate synthetic data points according to the following
generative process:

z1, z2 ∼ N (0, 1) ht = LSTM(ht−1,xt)

xt+1 ∼ softmax(MLP([ht, z1, z2]))

Here LSTM is a one-layer LSTM with 100 hidden units
where the input embedding is also 100-dimensional. The
initial hidden/cell states are set to zero, and we generate
for 5 time steps for each example (so x = [x1, . . . ,x5]).
The MLP consists of a single affine transformation to
project out to the vocabulary space, which has 1000 to-
kens. LSTM/MLP parameters are randomly initialized
with U(−1, 1), except for the part of the MLP that directly
connects to the latent variables, which is initialized with
U(−5, 5). This is done to make sure that the latent variables
have more influence in predicting x. We generate 5000
training/validation/test examples.

When we learn the generative model the LSTM is initial-
ized over U(−0.1, 0.1). The inference network is also a
one-layer LSTM with 100-dimensional hidden units/input

Algorithm 2 Semi-Amortized Variational Autoencoders
with Gradient Clipping

Input: inference network φ, generative model θ,
inference steps K, learning rate α, momentum γ,
loss function f(λ, θ,x) = −ELBO(λ, θ,x),
gradient clipping parameter η

Sample x ∼ pD(x)
λ0 ← enc(x;φ)
v0 ← 0
for k = 0 to K − 1 do
vk+1 ← γvk − clip(∇λf(λk, θ,x), η)
λk+1 ← λk + αvk+1

end for
L ← f(λK , θ,x)
λK ← ∇λf(λK , θ,x)
θ ← ∇θf(λK , θ,x)
vK ← 0
for k = K − 1 to 0 do
vk+1 ← vk+1 + αλk+1

λk ← λk+1 −Hλ,λf(λk, θ,x)vk+1

λk ← clip(λk, η)
θ ← θ − clip(Hθ,λf(λk, θ,x)vk+1, η)
vk ← γvk+1

end for
dL
dθ ← θ
dL
dφ ←

dλ0

dφ λ0

Update θ, φ based on dL
dθ ,

dL
dφ

embeddings, where the variational parameters are predicted
via an affine transformation on the final hidden state of the
encoder. All models are trained with stochastic gradient
descent with batch size 50, learning rate 1.0, and gradi-
ent clipping at 5. The learning rate starts decaying by a
factor of 2 each epoch after the first epoch at which vali-
dation performance does not improve. This learning rate
decay is not triggered for the first 5 epochs. We train for 20
epochs, which was enough for convergence of all models.
For SVI/SA-VAE we perform 20 steps of iterative inference
with stochastic gradient descent and learning rate 1.0 with
gradient clipping at 5.

B.2. Text

We use the same model architecture as was used in Yang
et al. (2017). The inference network and the generative
model are both one-layer LSTMs with 1024-dimensional

https://github.com/harvardnlp/sa-vae/blob/master/optim_n2n.py
https://github.com/harvardnlp/sa-vae/blob/master/optim_n2n.py


Semi-Amortized Variational Autoencoders

INFERENCE NETWORK 3-LAYER RESNET 2-LAYER MLP

MODEL VAE SA-VAE VAE SA-VAE

DATA SIZE: 25% 92.21 (0.81) 91.89 (2.31) 92.33 (0.27) 92.03 (1.32)
DATA SIZE: 50% 91.38 (0.77) 91.01 (2.54) 91.40 (0.51) 91.10 (1.48)
DATA SIZE: 75% 90.82 (1.06) 90.51 (2.07) 90.90 (0.45) 90.67 (1.34)
DATA SIZE: 100% 90.43 (0.98) 90.05 (2.78) 90.56 (0.61) 90.25 (1.77)

1-LAYER PIXELCNN 96.53 (10.36) 96.01 (10.93) 98.30 (8.87) 96.43 (10.14)
3-LAYER PIXELCNN 93.75 (7.10) 93.16 (8.73) 94.45 (5.46) 93.55 (7.20)
6-LAYER PIXELCNN 91.24 (3.25) 90.79 (4.44) 91.40 (2.06) 91.01 (3.27)
9-LAYER PIXELCNN 90.54 (1.78) 90.28 (3.02) 90.72 (1.14) 90.34 (2.26)
12-LAYER PIXELCNN 90.43 (0.98) 90.05 (2.78) 90.56 (0.61) 90.25 (1.77)

Table 4. Upper bounds on negative log-likelihood (i.e. negative ELBO) of VAE/SA-VAE trained on OMNIGLOT, where we vary the
capacity of the inference network (3-layer ResNet vs 2-layer MLP). KL portion of the loss is shown in parentheses. (Top) Here we vary
the training set size from 25% to 100%, and use a 12-layer PixelCNN as the generative model. (Bottom) Here we fix the training set size
to be 100%, and vary the capacity of the generative model.

hidden states where the input word embedding is 512-
dimensional. We use the final hidden state of the encoder
to predict (via an affine transformation) the vector of vari-
ational means and log variances. The latent space is 32-
dimensional. The sample from the variational posterior is
used to initialize the initial hidden state of the generative
LSTM (but not the cell state) via an affine transformation,
and additionally fed as input (i.e. concatenated with the
word embedding) at each time step. There are dropout lay-
ers with probability 0.5 between the input-to-hidden layer
and the hidden-to-output layer on the generative LSTM
only.

The data contains 100000/10000/10000 train/validation/test
examples with 20000 words in the vocabulary. All mod-
els are trained with stochastic gradient descent with batch
size 32 and learning rate 1.0, where the learning rate starts
decaying by a factor of 2 each epoch after the first epoch
at which validation performance does not improve. This
learning rate decay is not triggered for the first 15 epochs
to ensure adequate training. We train for 30 epochs or until
the learning rate has decayed 5 times, which was enough
for convergence for all models. Model parameters are ini-
tialized over U(−0.1, 0.1) and gradients are clipped at 5.
We employ a KL-cost annealing schedule whereby the mul-
tiplier on the KL-cost term is increased linearly from 0.1
to 1.0 each batch over 10 epochs. For models trained with
iterative inference we perform SVI via stochastic gradient
descent with momentum 0.5 and learning rate 1.0. Gradients
are clipped after each step of SVI (also at 5).

B.3. Images

The preprocessed OMNIGLOT dataset does not have a stan-
dard validation split so we randomly pick 2000 images from
training as validation. As with previous works the pixel
value is scaled to be between 0 and 1 and interpreted as
probabilities, and the images are dynamically binarized dur-

ing training.

Our inference network consists of 3 residual blocks where
each block is made up of a standard residual layer (i.e. two
convolutional layers with 3 × 3 filters, ReLU nonlinear-
ities, batch normalization, and residual connections) fol-
lowed by a downsampling convolutional layer with filter
size and stride equal to 2. These layers have 64 feature maps.
The output of residual network is flattened and then used
to obtain the variational means/log variances via an affine
transformation.

The sample from the variational distribution (which is 32-
dimensional) is first projected out to the image spatial reso-
lution with 4 feature maps (i.e. 4×28×28) via a linear trans-
formation, then concatenated with the original image, and
finally fed as input to a 12-layer Gated PixelCNN (van den
Oord et al., 2016). The PixelCNN has three 9 × 9 layers,
followed by three 7× 7 layers, then three 5× 5 layers, and
finally three 3 × 3 layers. All the layers have 32 feature
maps, and there is a final 1× 1 convolutional layer followed
by a sigmoid nonlinearity to produce a distribution over bi-
nary output. The layers are appropriately masked to ensure
that the distribution over each pixel is conditioned only on
the pixels left/top of it. We train with Adam with learning
rate 0.001, β1 = 0.9, β2 = 0.999 for 100 epochs with batch
size of 50. Gradients are clipped at 5.

For models trained with iterative inference we perform SVI
via stochastic gradient descent with momentum 0.5 and
learning rate 1.0, with gradient clipping (also at 5).

C. Data Size/Model Capacity
In Table 4 we investigate the performance of VAE/SA-VAE
as we vary the capacity of the inference network, size of
the training set, and the capacity of the generative model.
The MLP inference network has two ReLU layers with 128
hidden units. For varying the PixelCNN generative model,



Semi-Amortized Variational Autoencoders

Figure 5. Input saliency by part-of-speech tag (left), position (center), and log frequency (right). The dotted gray line in each plot shows
the average saliency across all words.

we sequentially remove layers from our baseline 12-layer
model starting from the bottom (so the 9-layer PixelCNN
has three 7× 7 layers, three 5× 5 layers, three 3× 3 layers,
all with 32 feature maps).

Intuitively, we expect iterative inference to help more when
the inference network and the generative model are less
powerful, and we indeed see this in Table 4. Further, one
might expect SA-VAE to be more helpful in small-data
regimes as it is harder for the inference network amortize
inference and generalize well to unseen data. However we
find that SA-VAE outperforms VAE by a similar margin
across all training set sizes.

Finally, we observe that across all scenarios the KL portion
of the loss is much higher for models trained with SA-VAE,
indicating that these models are learning generative models
that make more use of the latent representations.

D. Input Saliency Analysis
In Figure 5 we show the input saliency by part-of-speech
tag (left), position (center), and frequency (right). Input
saliency of a token xt is defined as:∥∥∥Eq(z;λ)[d‖z‖2

dwt

] ∥∥∥
2

Here wt is the encoder word embedding for xt. Part-of-
speech tagging is done using NLTK.


