
Neural Relational Inference for Interacting Systems

A. Further experimental analysis
A.1. Kuramoto LSTM vs. NRI comparison

From the results in our main paper it became evident that a
simple LSTM model excels at predicting the dynamics of
a network of phase-coupled oscillators (Kuramoto model)
for short periods of time, while predictive performance de-
teriorates for longer sequences. It is interesting to compare
the qualitative predictive behavior of this fully recurrent
model with our NRI (learned) model that models the state
xt+1 at time t+ 1 solely based on the state xt at time t and
the learned latent interaction graph. In Fig. 9 we provide
visualizations of model predictions for the LSTM (joint)
and the NRI (learned) model, compared to the ground truth
continuation of the simulation.

It can be seen that the LSTM model correctly captures the
shape of the sinusoidal waveform but fails to model the
phase dynamics that arise due to the interactions between
the oscillators. Our NRI (learned) model captures the quali-
tative behavior of the original coupled model at a very high
precision and only in some cases slightly misses the phase
dynamics (e.g. in the purple and green curve in the lower
right plot). The LSTM model rarely matches the phase of
the ground truth trajectory in the last few time steps and
often completely goes “out of sync” by up to half a wave-
length.

A.2. Spring simulation variants

In addition to the experiments presented in the main paper,
we analyze the following two variants of the spring simu-
lation experimental setting: i) we test a trained model on
completely non-interacting (free-floating) particles, and ii)
we add a third edge type with a lower coupling constant.

To test whether our model can infer an empty graph, we
create a test set of 1000 simulations with 5 non-interacting
particles and test an unsupervised NRI model which was
trained on the spring simulation dataset with 5 particles as
before. We find that it achieves an accuracy of 98.4% in
identifying ”no interaction” edges (i.e. the empty graph).

The last variant explores a simulation with more than two
known edge types. We follow the same procedure for the
spring simulation with 5 particles as before with the ex-
ception of adding an additional edge type with coupling
constant kij = 0.5 (all three edge types are sampled with
equal probability). We fit an unsupervised NRI model to
this data (K = 3 in this case, other settings as before) and
find that it achieves an accuracy of 99.2% in discovering the
correct edge types.

A.3. Motion capture visualizations

In Fig. 10 we visualize predictions of a trained NRI model
with learned latent graph for the motion capture dataset. We
show 30 predicted time steps of future movement, condi-
tioned on 49 time steps that are provided as ground truth
to the model. It can be seen that the model can capture the
overall form of the movement with high precision. Mistakes
(e.g. the misplaced toe node in frame 30) are possible due
to the accumulation of small errors when predicting over
long sequences with little chance of recovery. Curriculum
learning schemes where noise is gradually added to training
sequences can potentially alleviate this issue.

A.4. NBA visualizations

We show examples of three pick and roll trajectories in Fig.
11. In the left column we show the ground truth, in the
middle we show our prediction and in the right we show
the edges that where sampled by our encoder. As we can
see even when our model does not predict the true future
path, which is extremely challenging for this data, it still
makes semantically reasonable predictions. For example in
the middle row it predicts that the player defending the ball
handler passes between him and the screener (going over
the screen) which is a reasonable outcome even though in
reality the defenders switched players.

B. Simulation data
B.1. Springs model

We simulate N ∈ {5, 10} particles (point masses) in a 2D
box with no external forces (besides elastic collisions with
the box). We randomly connect, with probability 0.5, each
pair of particles with a spring. The particles connected by
springs interact via forces given by Hooke’s law Fij =
−k(ri − rj) where Fij is the force applied to particle vi
by particle vj , k is the spring constant and ri is the 2D
location vector of particle vi. The initial location is sampled
from a Gaussian N (0, 0.5), and the initial velocity is a
random vector of norm 0.5. Given the initial locations
and velocity we can simulate the trajectories by solving
Newton’s equations of motion PDE. We do this by leapfrog
integration using a step size of 0.001 and then subsample
each 100 steps to get our training and testing trajectories.

We note that since the leapfrog integration is differentiable,
we are able to use it as a ground-truth decoder and back-
propagate through it to train the encoder. We implemented
the leapfrog integration in PyTorch, which allows us to
compare model performance with a learned decoder versus
the ground-truth simulation decoder.

Neural Relational Inference for Interacting Systems

Ground truth NRI (learned)LSTM (joint)

Figure 9. Qualitative comparison of model predictions for the LSTM (joint) model (left) and the NRI (learned) model (right). The ground
truth trajectories (middle) are shown for reference.

B.2. Charged particles model

Similar to the springs model, we simulate N ∈ {5, 10}
particles in a 2D box, but instead of springs now our particles
carry positive or negative charges qi ∈ {±q}, sampled
with uniform probability, and interact via Coulomb forces:
Fij = C · sign(qi · qj) ri−rj

||ri−rj ||3 where C is some constant.
Unlike the springs simulations, here every two particles
interact, although the interaction might be weak if they stay
far apart, but they can either attract or repel each other.

Since the forces diverge when the distance between particles
goes to zero, this can cause issues when integrating with
a fixed step size. The problem might be solved by using a
much smaller step size, but this would slow the generation
considerably. To circumvent this problem, we clip the forces
to some maximum absolute value. While not being exactly
physically accurate, the trajectories are indistinguishable to
a human observer and the generation process is now stable.

The force clipping does, however, create a problem for
the simulation ground-truth decoder, as gradients become
zero when the forces are clipped during the simulation.
We attempted to fix this by using “soft” clipping with a
softplus(x) = log(1 + ex) function in the differentiable
simulation decoder, but this similarly resulted in vanish-
ing gradients once the model gets stuck in an unfavorable
regime with large forces.

B.3. Phase-coupled oscillators

The Kuramoto model is a nonlinear system of phase-coupled
oscillators that can exhibit a range of complicated dynamics

based on the distribution of the oscillators’ internal frequen-
cies and their coupling strengths. We use the common form
for the Kuramoto model given by the following differential
equation:

dφi
dt

= ωi +
∑
j 6=i

kij sin(φi − φj) (20)

with phases φi, coupling constants kij , and intrinsic frequen-
cies ωi. We simulate 1D trajectories by solving Eq. (20)
with a fourth-order Runge-Kutta integrator with step size
0.01.

We simulate N ∈ {5, 10} phase-coupled oscillators in 1D
with intrinsic frequencies ωi and initial phases φt=1

i sam-
pled uniformly from [1, 10) and [0, 2π), respectively. We
randomly, with probability of 0.5, connect pairs of oscilla-
tors vi and vj (undirected) with a coupling constant kij = 1.
All other coupling constants are set to 0. We subsample the
simulated φi by a factor of 10 and create trajectories xi by
concatenating dφi

dt , sinφi, and the intrinsic frequencies ωi
(copied for every time step as ωi are static).

C. Implementation details
We will describe here the details of our encoder and decoder
implementations.

C.1. Vectorized implementation

The message passing operations v→e and v→e can be evalu-
ated in parallel for all nodes (or edges) in the graph and allow
for an efficient vectorized implementation. More specifi-

Neural Relational Inference for Interacting Systems

t = 0 t = 10 t = 20 t = 30

pr
ed

ic
tio

n
tru

th

(a) Test trial 1.

pr
ed

ic
tio

n
tru

th

t = 0 t = 10 t = 20 t = 30

(b) Test trial 2.

Figure 10. Examples of predicted walking motion of an NRI model with learned latent graph compared to ground truth sequences for two
different test set trials.

Neural Relational Inference for Interacting Systems

Figure 11. Visualization of NBA trajectories. Left: ground truth; middle: model prediction; right: sampled edges.

cally, the node-to-edge message passing function fv→e can
be vectorized as:

H1
e = fe([M

in
v→eH

1
v,M

out
v→eH

1
v]) (21)

with Hv = [h>1 ,h
>
2 , . . . ,h

>
N]> ∈ RN×F and He ∈ RE×F

defined analogously (layer index omitted), where F and E
are the total number of features and edges, respectively.
(·)> denotes transposition. Both message passing matrices
Mv→e ∈ RE×N are dependent on the graph structure and
can be computed in advance if the underlying graph is static.
Min

v→e is a sparse binary matrix with Min
v→e,ij = 1 when

the j-th node is connected to the i-th edge (arbitrary order-
ing) via an incoming link and 0 otherwise. Mout

v→e is defined
analogously for outgoing edges.

Similarly, we can vectorize the edge-to-node message pass-
ing function fe→v as:

H2
v = fv(M

in
e→vH

1
e) (22)

with Min
e→v = (Min

v→e)
>. For large sparse graphs (e.g. by

constraining interactions to nearest neighbors), it can be ben-
eficial to make use of sparse-dense matrix multiplications,
effectively allowing for an O(E) algorithm.

C.2. MLP Encoder

The basic building block of our MLP encoder is a 2-layer
MLP with hidden and output dimension of 256, with batch
normalization, dropout, and ELU activations. Given this, the
forward model for our encoder is given by the code snippet
in Fig. 12. The node2edge module returns for each edge

the concatenation of the receiver and sender features. The
edge2node module accumulates all incoming edge features
via a sum.

x = self.mlp1(x) # 2−layer ELU net per node
x = self.node2edge(x)
x = self.mlp2(x)
x skip = x

x = self.edge2node(x)
x = self.mlp3(x)
x = self.node2edge(x)
x = torch.cat((x, x skip), dim=2)
x = self.mlp4(x)
return self.fully connected out(x)

Figure 12. PyTorch code snippet of the MLP encoder forward pass.

C.3. CNN Encoder

The CNN encoder uses another block which performs 1D
convolutions with attention. This allows for encoding with
changing trajectory size, and is also appropriate for tasks
like the charged particle simulations when the interaction
can be strong for a small fraction of time. The forward
computation of this module is presented in Fig. 13 and the
overall decoder in Fig. 14.

C.4. MLP Decoder

In Fig. 15 we present the code for a single time-step predic-
tion using our MLP decoder for Markovian data.

Neural Relational Inference for Interacting Systems

CNN block
inputs is of shape ExFxT, E: number of edges,
T: sequence length, F: num. features
x = F.relu(self.conv1(inputs))
x = self.batch norm1(x)
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.batch norm2(x)
out = self.conv out(x)
attention = softmax(self.conv attn(x), axis=2)

out = (out ∗ attention).mean(dim=2)
return out

Figure 13. PyTorch code snippet of the CNN block forward pass,
used in the CNN encoder.

CNN encoder
x = self.node2edge(x)
x = self.cnn(x) # CNN block from above
x = self.mlp1(x) # 2−layer ELU net per node
x skip = x

x = self.edge2node(x)
x = self.mlp2(x)
x = self.node2edge(x)
x = torch.cat((x, x skip), dim=2)
x = self.mlp3(x)
return self.fully connected out(x)

Figure 14. PyTorch code snippet of the CNN encoder model for-
ward pass.

Single prediction step
pre msg = self.node2edge(inputs)

Run separate MLP for every edge type
For non−edge: start idx=1, otherwise 0
for i in range(start idx, num edges):

msg = F.relu(self.msg fc1[i](pre msg))
msg = F.relu(self.msg fc2[i](msg))
msg = msg ∗ edge type[:, :, :, i:i + 1]
all msgs += msg

Aggregate all msgs to receiver
agg msgs = self.edge2node(all msgs)
hidden = torch.cat([inputs, agg msgs], dim=−1)

Output MLP
pred = F.relu(self.out fc1(hidden)
pred = F.relu(self.out fc2(pred)
pred = self.out fc3(pred)

return inputs + pred

Figure 15. PyTorch code snippet of a single prediction step in the
MLP decoder.

C.5. RNN Decoder

The RNN decoder adds a GRU style update to the single
step prediction, the code snippet for the GRU module is
presented in Fig. 16 and the overall RNN decoder in Fig. 17.

GRU block
Takes arguments: inputs, agg msgs, hidden
r = F.sigmoid(self.input r(inputs) +

self.hidden r(agg msgs))
i = F.sigmoid(self.input i(inputs) +

self.hidden i(agg msgs))
n = F.tanh(self.input n(inputs) +

r ∗ self.hidden h(agg msgs))
hidden = (1 − i) ∗ n + i ∗ hidden
return hidden

Figure 16. PyTorch code snippet of a GRU block, used in the RNN
decoder.

Single prediction step
pre msg = self.node2edge(inputs)

Run separate MLP for every edge type
For non−edge: start idx=1, otherwise 0
for i in range(start idx, num edges):

msg = F.relu(self.msg fc1[i](pre msg))
msg = F.relu(self.msg fc2[i](msg))
msg = msg ∗ edge type[:, :, :, i:i + 1]
Average over types for stability
all msgs += msg/(num edges−start idx)

Aggregate all msgs to receiver
agg msgs = self.edge2node(all msgs)

GRU−style gated aggregation (see GRU block)
hidden = self.gru(inputs, agg msgs, hidden)

Output MLP
pred = F.relu(self.out fc1(hidden))
pred = F.relu(self.out fc2(pred))
pred = self.out fc3(pred)

Predict position/velocity difference
pred = inputs + pred

return pred, hidden

Figure 17. PyTorch code snippet of a single prediction step in the
RNN decoder.

D. Experiment details
All experiments were run using the Adam optimizer
(Kingma & Ba, 2015) with a learning rate of 0.0005, de-
cayed by a factor of 0.5 every 200 epochs. Unless otherwise
noted, we train with a batch size of 128. The concrete distri-
bution is used with τ = 0.5. During testing, we replace the
concrete distribution with a categorical distribution to obtain

Neural Relational Inference for Interacting Systems

discrete latent edge types. Physical simulation and sports
tracking experiments were run for 500 training epochs. For
motion capture data we used 200 training epochs, as models
tended to converge earlier. We saved model checkpoints
after every epoch whenever the validation set performance
(measured by path prediction MSE) improved and loaded
the best performing model for test set evaluation. We ob-
served that using significantly higher learning rates than
0.0005 often produced suboptimal decoders that ignored the
latent graph structure.

D.1. Physics simulations experiments

The springs, charged particles and Kuramoto datasets each
contain 50k training instances and 10k validation and test
instances. Training and validation trajectories where of
length 49 while test trajectories continue for another 20 time
steps (50 for visualization). We train an MLP encoder for
the springs experiment, and CNN encoder for the charged
particles and Kuramoto experiments. All experiments used
MLP decoders and two edge types. For the Kuramoto model
experiments, we explicitly hard-coded the first edge type as
a “non-edge”, i.e. no messages are passed along edges of
this type.

As noted previously, all of our MLPs have hidden and output
dimension of 256. The overall input/output dimension of
our model is 4 for the springs and charged particles exper-
iments (2D position and velocity) and 3 for the Kuramoto
model experiments (phase-difference, amplitude and intrin-
sic frequency). During training, we use teacher forcing in
every 10-th time step (i.e. every 10th time step, the model
receives a ground truth input, otherwise it receives its previ-
ous prediction as input). As we always have two edge types
in these experiments and their ordering is arbitrary (apart
from the Kuramoto model where we assign a special role to
edge type 1), we choose the ordering for which the accuracy
is highest.

D.1.1. BASELINES

Edge recovery experiments In edge recovery experi-
ments, we report the following baselines along with the
performance of our NRI (learned) model:

• Corr. (path): We calculate a correlation matrix R,
where Rij =

Cij√
CiiCjj

with Cij being the covariance

between all trajectories xi and xj (for objects vi and
vj) in the training and validation sets. We determine
an ideal threshold θ so that Aij = 1 if Rij > θ and
Aij = 0 otherwise, based on predictive accuracy on
the combined training and validation set. Aij denotes
the presence of an interaction edge (arbitrary type) be-
tween object vi and vj . We repeat the same procedure
for the absolute value of Rij , i.e. Aij = 1 if |Rij | > θ′

and Aij = 0 otherwise. Lastly, we pick whichever
of the two (θ or θ′) produced the best match with the
ground truth graph (i.e. highest accuracy score) and
report test set accuracy with this setting.

• Corr. (LSTM): Here, we train a two-layer LSTM with
shared parameters and 256 hidden units that models
each trajectory individually. It is trained to predict the
position and velocity for every time step directly and
is conditioned on the previous time steps. The input
to the model is passed through a two-layer MLP (256
hidden units and ReLU activations) before it is passed
to the LSTM, similarly we pass the LSTM output (last
time step) through a two-layer MLP (256 hidden units
and ReLU activation on the hidden layer). We provide
ground truth trajectory information as input at every
time step. We train to minimize MSE between model
prediction and ground truth path. We train this model
for 10 epochs and finally apply the same correlation
matrix procedure as in Corr. (path), but this time cal-
culating correlations between the output of the second
LSTM layer at the last time step (instead of using the
raw trajectory features). The LSTM is only trained on
the training set. The optimal correlation threshold is
estimated using the combined training and validation
set.

• NRI (sim.): In this setting, we replace the decoder of
the NRI model with the ground-truth simulator (i.e. the
integrator of the Newtonian equations of motion). We
implement both the charged particle and the springs
simulator in PyTorch which gives us access to gradi-
ent information. We train the overall model with the
same settings as the original NRI (learned) model by
backpropagating directly through the simulator. We
find that for the springs simulation, a single leap-frog
integration step is sufficient to closely approximate the
trajectory of the original simulation, which was gen-
erated with 100 leap-frog steps per time step. For the
charged particle simulation, 100 leap-frog steps per
time step are necessary to match the original trajectory
when testing the simulation decoder in isolation. We
find, however, that due to the force clipping necessary
to stabilize the original charged particle simulation, gra-
dients will often become zero, making model training
difficult or infeasible.

• Supervised: For this baseline, we train the encoder in
isolation and provide ground-truth interaction graphs
as labels. We train using a cross-entropy error and
monitor the validation accuracy (edge prediction) for
model checkpointing. We train with dropout of p = 0.5
on the hidden layer representation of every MLP in the
encoder model, in order to avoid overfitting.

Neural Relational Inference for Interacting Systems

Path prediction experiments Here, we use the following
baselines along with our NRI (learned) model:

• Static: This baseline simply copies the previous state
vector xt+1 = xt.

• LSTM (single): Same as the LSTM model in
Corr. (LSTM), but trained to predict the state vector
difference at every time step (as in the NRI model).
Instead of providing ground truth input at every time
step, we use the same training protocol as for an NRI
model with recurrent decoder (see main paper).

• LSTM (joint): This baseline differs from LSTM (sin-
gle) in that it concatenates the input representations
from all objects after passing them through the input
MLP. This concatenated representation is fed into a sin-
gle LSTM where the hidden unit number is multiplied
by the number of objects—otherwise same setting as
LSTM (single). The output of the second LSTM layer
at the last time step is then divided into vectors of same
size, one for each object, and fed through the output
MLP to predict the state difference for each object sep-
arately. LSTM (joint) is trained with same training
protocol as the LSTM (single) model.

• NRI (full graph): For this model, we keep the latent
graph fixed (fully-connected on edge type 2; note that
edge types are exclusive, i.e. edges of type 1 are not
present in this case) and train the decoder in isolation in
the otherwise same setting as the NRI (learned) model.

• NRI (true graph): Here, we train the decoder in iso-
lation and provide the ground truth interaction graph
as latent graph representation.

D.2. Motion capture data experiments

Our extracted motion capture dataset has a total size of
8,063 frames for 31 tracked points each. We normalize all
features (position/velocity) to maximum absolute value of
1. Training and validation set samples are 49 frames long
(non-overlapping segments extracted from the respective
trials). Test set samples are 99 frames long. In the main
paper, we report results on the last 50 frames of this test set
data.

We choose the same hyperparameter settings as in the physi-
cal simulation experiments, with the exception that we train
models for 200 epochs and with a batch size of 8. Our
model here uses an MLP encoder and an RNN decoder (as
the dynamics are not Markovian). We further take sam-
ples from the discrete distribution during the forward pass
in training and calculate gradients via the concrete relax-
ation. The baselines are identical to before (path prediction
experiments for physical simulations) with the following

exception: For LSTM (joint) we choose a smaller hidden
layer size of 128 units and train with a batch size of 1, as
the model did otherwise not fit in GPU memory.

D.3. NBA experiments

For the NBA data each example is a 25 step trajectory of a
pick and roll (PnR) instance, subsampled from the original
25 frames-per-second SportVU data. Unlike the physical
simulation where the dynamics of the interactions do not
change over time and the motion capture data where the
dynamics are approximately periodic, the dynamics here
change considerably over time. The middle of the trajectory
is, more or less, the pick and roll itself and the behavior
before and after are quite different. This poses a problem
for fair comparison, as it is problematic to evaluate on the
next time steps, i.e. after the PnR event, since they are quite
different from our training data. Therefore in test time we
feed in the first 17 time-steps to the encoder and then predict
the last 8 steps.

If we train the model normally as an autoencoder, i.e. feed-
ing in the first N = 17 or 25 time-steps to the encoder and
having the decoder predict the same N , then this creates
a large difference between training and testing setting, re-
sulting in poor predictive performance. This is expected,
as a model trained with N = 17 never sees the post-PnR
dynamics and the encoder trained with N = 25 has a much
easier task than one trained on N = 17. Therefore in order
for our training to be consistent with our testing, we feed
during training the first 17 steps to the encoder and predict
all 25 with the decoder.

We used a CNN encoder and RNN decoder with two edge
types to have comparable capacity to the full graph model.
If we “hard code” one edge type to represent “non-edge”
then our model learns the full graph as all players are highly
connected. We also experimented with 10 and 20 edge types
which did not perform as well on validation data, probably
due to over-fitting.

