
An Alternative View: When Does SGD Escape Local Minima?

A. Discussions on one point convexity
If f is δ-one point strongly convex around x∗ in a convex domain D, then x∗ is the only local minimum point in D (i.e.,
global minimum).

To see this, for any fixed x ∈ D, look at the function g(t) = f(tx∗ + (1− t)x) for t ∈ [0, 1], then g′(t) = 〈∇f(tx∗ + (1−
t)x), x∗ − x〉. The definition of δ-one point strongly convex implies that the right side is negative for t ∈ (0, 1]. Therefore,
g(t) > g(1) for t > 0. This implies that for every point y on the line segment joining x to x∗, we have f(y) > f(x∗), so x∗

is the only local minimum point.

B. Proof for Lemma 5
Proof. Recall that we want to show
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Finally,
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Adding the three summands together, we get the claim.
6We made no effort to optimize the constants here.
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C. Proof for Theorem 3
Proof. Recall that we have xt+1 = xt − η∇f(xt). Since we have 〈−∇f(xt), x∗ − xt〉 ≤ c′‖x∗ − xt‖22, then

‖xt+1 − x∗‖22 = ‖xt − η∇f(xt)− x∗‖22
= ‖xt − x∗‖22 + η2‖∇f(xt)‖22 − 2η〈∇f(xt), xt − x∗〉
≥ (1− 2ηc′)‖xt − x∗‖22 + η2‖∇f(xt)‖22 > ‖xt − x∗‖22

Where the last inequality holds since we know η >
2c′‖xt−x∗‖22
‖∇f(xt)‖22

.
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