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Abstract
Most existing works on crowdsourcing assume
that the workers follow the Dawid-Skene model,
or the one-coin model as its special case, where
every worker makes mistakes independently of
other workers and with the same error probability
for every task. We study a significant extension of
this restricted model. We allow almost half of the
workers to deviate from the one-coin model and
for those workers, their probabilities of making
an error to be task-dependent and to be arbitrarily
correlated. In other words, we allow for arbitrary
adversaries, for which not only error probabilities
can be high, but which can also perfectly collude.
In this adversarial scenario, we design an efficient
algorithm to consistently estimate the workers’
error probabilities.

1. Introduction
Crowdsourcing is an omnipresent phenomenon: it has
emerged as an integral part of the machine learning pipeline
in recent years, and one reason for the great advances in
deep learning is the presence of large data sets that have been
labeled by the crowd (e.g., Deng et al., 2009; Krizhevsky,
2009). Crowdsourcing is also at the heart of peer grading
systems (e.g., Alfaro & Shavlovsky, 2014), which help with
rising enrollment at universities, and online rating systems
(e.g., Liao et al., 2014), which many of us rely on when
choosing the next restaurant, to provide just a few examples.

A crowdsourcing scenario consists of a set of workers and a
set of tasks that need to be solved. A data curator utilizing
crowdsourcing can aim at estimating various quantities of
interest. The first goal might be to estimate the true labels
or answers for the tasks at hand. Typically, additional con-
straints are involved here such as a worker not being willing

1Department of Computer Science, Rutgers University, Piscat-
away Township, New Jersey, USA. Correspondence to: Matthäus
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to solve too many tasks and the data curator wanting to get
high-quality labels at a low price. The canonical example
of this case is the Amazon Mechanical TurkTM. There one
cannot track specific workers as they are fleeting. However,
in scenarios such as peer grading or online rating systems, a
second goal might be to estimate worker qualities, especially
if workers can be reused at a later time.

In a seminal paper, Dawid & Skene (1979) proposed a
formal model that involves worker quality parameters for
crowdsourcing scenarios in the context of classification.
The Dawid-Skene model has become a standard theoretical
framework and has led to a flurry of research over the past
few years (Liu et al., 2012; Raykar & Yu, 2012; Li et al.,
2013; Gao et al., 2016; Zhang et al., 2016; Khetan et al.,
2017), in particular in its special symmetric form usually
referred to as one-coin model (Ghosh et al., 2011; Karger
et al., 2011a;b; Dalvi et al., 2013; Gao & Zhou, 2013; Karger
et al., 2014; Bonald & Combes, 2017; Ma et al., 2017). In its
general form for binary classification problems, the Dawid-
Skene model assumes that for each worker, the probability
of providing the wrong label only depends on the true label
of the task, but not on the task itself. Moreover, given the
true label, the responses provided by different workers are
independent. The one-coin model additionally assumes that
for each worker, the probability of providing the wrong label
is the same for both classes. We will formally introduce the
one-coin model in Section 2. A discussion of prior work
work is provided in Section 5 and Appendix A.

The crucial limitation of the Dawid-Skene and one-coin
model is the assumption that workers’ error probabilities are
task-independent. In particular, this excludes the possibility
of colluding adversaries (other than those that provide the
wrong label all of the time), which might make these models
a poor approximation of the real world encountered in such
applications as peer grading or online rating. In this pa-
per, we study a significant extension of the one-coin model
that allows for arbitrary, highly colluding adversaries. We
provide an algorithm for estimating the workers’ error prob-
abilities and prove that it asymptotically recovers the true
error probabilities. Using our estimates of the error probabil-
ities in weighted majority votes, we also provide strategies
to estimate ground-truth labels of the tasks. Experiments on
both synthetic and real data show that our approach clearly
outperforms existing methods in the presence of adversaries.



Crowdsourcing with Arbitrary Adversaries

2. Setup and problem formulation
We first describe a general model for crowdsourcing with
non-adaptive workers and binary classification tasks: there
are n workers w1, . . . , wn and an i.i.d. sample of m task-
label pairs ((xi, yi))

m
i=1 ∼ Dm, where D is a joint probabil-

ity distribution over tasks x ∈ X and corresponding labels
y ∈ {−1,+1}. There is a variable gij ∈ {0, 1}, i ∈ [m],
j ∈ [n], indicating whether worker wj is presented with
task xi (for k ∈ N, we use [k] to denote the set {1, . . . , k}).
If wj is presented with xi, that is gij = 1, wj provides an
estimate wj(xi) ∈ {−1,+1} of the ground-truth label yi.
Let A ∈ {−1, 0,+1}m×n be a matrix that stores all the
responses collected from the workers: Aij = wj(xi) if
gij = 1 and Aij = 0 if gij = 0.

We assume that each worker wj follows some (probabilistic
or deterministic) strategy such that wj(xi) only depends
on xi. In particular, given xi, any two different workers’
responses wj(xi) and wk(xi) and the ground-truth label yi
are independent. Let εwj (x, y) ∈ [0, 1] be the conditional
error probability that, given x and y, wj(x) does not equal y,
that is

εwj
(x, y) := Prwj |(x,y)[wj(x) 6= y | (x, y)]. (1)

Note that the unconditional probability of wj(x) being in-
correct, before seeing x and y, is given by

Pr(x,y)∼D,wj
[wj(x) 6= y] = E(x,y)∼D[εwj

(x, y)] =: εwj
.

Now one may study the following questions:

(i) Given only the matrix A, how can we estimate the
ground-truth labels y1, . . . , ym?

(ii) Given only the matrix A, how can we esti-
mate the workers’ unconditional error probabilities
εw1

, . . . , εwn
?

(iii) If we can choose gij (either in advance of collecting
workers’ responses or adaptively while doing so), how
should we choose it such that we can achieve (i) or (ii)
with a minimum number of collected responses?

In case of εwj
(x, y) as defined in (1) being constant on

X × {−1,+1}, that is εwj
(x, y) ≡ εwj

, for all j ∈ [n],
our model boils down to what is usually referred to as the
one-coin model (e.g., Szepesvari, 2015), for which (i) to
(iii) have been studied extensively (see Section 5 and Ap-
pendix A for references and a detailed discussion). With
this paper we initiate the study of a significant extension
of the one-coin model. We will allow almost half of the
workers to deviate from the one-coin model and for such a
worker wj , the conditional error probability εwj

(x, y) to be
a completely arbitrary random variable. In other words, we
will allow for arbitrary adversaries, for which not only error

probabilities can be high, but for which error probabilities
can be arbitrarily correlated. We mainly study (ii) in this
scenario. We then make use of existing results for the one-
coin model to answer (i) satisfactorily for our purposes. We
do not deal with (iii), but instead assume that gij has been
specified in advance.

3. General outline of our approach
In this section we want to present the general outline of our
approach. A key insight is that the unconditional probability
of workers wj and wk being agreeing is given by

Pr(x,y)∼D,wj ,wk
[wj(x) = wk(x)] = 1− εwj

− εwk
+

2εwjεwk
+ 2 Cov(x,y)∼D[εwj (x, y), εwk

(x, y)].

(2)

Cov(x,y)∼D[εwj (x, y), εwk
(x, y)] denotes the covariance

between random variables εwj (x, y) and εwk
(x, y), that is

Cov(x,y)∼D[εwj (x, y), εwk
(x, y)] =

E(x,y)∼D[(εwj (x, y)− εwj ) · (εwk
(x, y)− εwk

)].

A proof of (2) can be found in Appendix B. The probability
on the left-hand side of (2) can be easily estimated from A
by the ratio of the number of tasks that wj and wk agreed
on to the number of tasks they were both presented with:

Pr[wj(x) = wk(x)] ≈
∑m
i=1 gijgik1{Aij = Aik}∑m

i=1 gijgik
=: pjk.

(3)

This suggests to solve the system of equations

1− εj − εk + 2εjεk + 2cjk = pjk, 1 ≤ j < k ≤ n,
(4)

in the unknowns εl, l ∈ [n], and cjk, 1 ≤ j < k ≤ n, in
order to obtain estimates of the workers’ unconditional error
probabilities εw1

, . . . , εwn
. However, there is a catch: in

general, the system (4) is not identifiable and has several
solutions. We will assume that at least n2 + 2 of the work-
ers follow the one-coin model and have error probabilities
smaller than one half. A worker wj following the one-coin
model implies

Cov(x,y)∼D[εwj
(x, y), εwk

(x, y)] = 0, ∀k 6= j, (5)

and hence under this assumption we can restrict the search
for solutions of (4) to εl, l ∈ [n], and cjk, 1 ≤ j < k ≤ n,
with the property that1

∃L ⊆ [n] with |L| ≥ n/2 + 2 such that
∀j ∈ L : (εj < 1/2 ∧ [∀k 6= j : cjk = 0]) .

(6)

1Throughout the paper, we set cjk = ckj if j > k. We also
assume pjk = pkj .
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Note that we never assume to know which workers fol-
low the one-coin model, which corresponds to using the
existential quantifier for the set L in (6) rather than con-
sidering a “fixed” L. We can show that the system (4) has
at most one solution with property (6). We also provide
evidence that our assumption of n2 + 2 of the workers fol-
lowing the one-coin model and having error probabilities
smaller than one half is a necessary condition for guar-
anteeing the identifiability of system (4). If the workers
satisfy our assumption and pjk on the right-hand side of
(4) are actually true agreement probabilities, then εl = εwl

and cjk = Cov[εwj
(x, y), εwk

(x, y)] is the unique solu-
tion of (4) that satisfies (6). But if pjk are not exactly true
agreement probabilities, there might be no solution of (4)
with property (6) at all. We prove that if estimates pjk are
not too bad, we can solve (4) together with (6) approxi-
mately, and our approximate solution is guaranteed to be
close to true error probabilities εw1

, . . . , εwn
and covari-

ances Cov[εwj
(x, y), εwk

(x, y)], j < k. This answers (ii)
from Section 2 and is the main contribution of our paper:
Main result. Assume that at least n

2 + 2 of the workers
follow the one-coin model and have error probabilities not
greater than γTR <

1
2 . If |Pr[wj(x) = wk(x)] − pjk| ≤ β

for all j 6= k and β sufficiently small, we can compute
estimates ε̂w1 , . . . , ε̂wn of εw1 , . . . , εwn such that

|εwi
− ε̂wi

| ≤ C(γTR) · β1/4.

We answer (i) from Section 2 and provide two ways to
predict ground-truth labels y1, . . . , ym by taking weighted
majority votes over the responses provided by the workers.
In these majority votes, the weights depend on our estimates
of true error probabilities εw1 , . . . , εwn .

4. Details and analysis
4.1. Estimating agreement probabilities

If gij has been specified in advance, we have the following
guarantee on the quality of the estimates pjk (see (3)):
Lemma 1. Assume

∑m
i=1 gijgik > 0, j 6= k. Let δ > 0 and

βjk = min

{
1,
[
ln(2n2/δ)/

(
2
∑m

i=1
gijgik

)]1/2}
.

Then we have with probability at least 1− δ over the sample
((xi, yi))

m
i=1 and the randomness in workers’ strategies that

|Pr[wj(x) = wk(x)]− pjk| ≤ βjk, 1 ≤ j < k ≤ n.

Proof. A straightforward application of Hoeffding’s in-
equality and the union bound yields the result.

4.2. Identifiability and approximate solution

If all workers follow the one-coin model, that
is εwj (x, y) ≡ εwj for all j ∈ [n], we have

Cov(x,y)∼D[εwj
(x, y), εwk

(x, y)] = 0, 1 ≤ j < k ≤ n,
and system (4) reduces to

1− εj − εk + 2εjεk = pjk, 1 ≤ j < k ≤ n, (7)

in the unknowns εl, l ∈ [n]. It is well known that, in
general, even (7) is not identifiable. For example, if pjk = 1
for all 1 ≤ j < k ≤ n, there are the two solutions εl = 0,
l ∈ [n], and εl = 1, l ∈ [n], corresponding to either all
perfect or all completely erroneous workers. On the other
hand, the system (7) is identifiable if we assume that on
average workers are better than random guessing, that is
1
n

∑n
j=1 εwj

< 1
2 , and there are at least three informative

workers with εwj
6= 1

2 (Bonald & Combes, 2017).

Clearly, these two conditions do not guarantee identifiability
of the general system (4). The next lemma shows that even
if we additionally assume half of the workers to follow the
one-coin model, the system (4) is not identifiable. Here we
only state an informal version of the lemma. A detailed
version and its proof can be found in Appendix B.

Lemma 2. There exists an instance of the system (4), where
n is even, that has two different solutions. In both solutions,
it holds that εl < 1

2 , l ∈ [n]. Furthermore:

(a) In the first solution, cjk = 0 for all j ∈ [n2 ] and k 6= j,
and εl is small if l ∈ [n2 ] and big if l ∈ [n] \ [n2 ].

(b) In the second solution, cjk = 0 for all j ∈ [n]\ [n2 ] and
k 6= j, and εl is small if l ∈ [n] \ [n2 ] and big if l ∈ [n2 ].

We want to mention that a solution of (4) does not nec-
essarily correspond to actual workers, that is given εl,
l ∈ [n], and cjk, 1 ≤ j < k ≤ n, there might be
no collection of workers w1, . . . , wn such that εwl

= εl
and Cov[εwj

(x, y), εwk
(x, y)] = cjk. By the Bhatia-

Davis inequality (Bhatia & Davis, 2010) it holds that
Var[εwj (x, y)] ≤ εwj − ε 2

wj
. Hence, a necessary condi-

tion for a solution to correspond to actual workers is that
|cjk| ≤ (εj−ε 2

j )1/2(εk−ε 2
k )1/2 (in addition to εl ∈ [0, 1]).

The two solutions in Lemma 2 correspond to actual workers.

From now on we assume that at least n2 + 2 workers follow
the one-coin model and have error probabilities smaller than
one half:2

Assumption A. There exists L ⊆ [n] with |L| ≥ n/2 + 2
such that for all j ∈ L, the worker wj follows the one-coin
model with error probability εwj

< 1/2.

This corresponds to considering (4) together with the con-
straint (6). The system (4) together with (6) is identifiable:

Proposition 1. There exists at most one solution of sys-
tem (4) that has property (6).

2All results of Section 4.2 hold true if we assume, more gen-
erally, the existence of L ⊆ [n] with |L| ≥ n

2
+ 2 such that (5)

together with εwj < 1
2

holds for all j ∈ L.
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Proof. Assuming there are two solutions (εS1

l )l∈[n],
(c S1

jk )1≤j<k≤n and (εS2

l )l∈[n], (c S2

jk )1≤j<k≤n with L1 and
L2 satisfying (6), there have to be pairwise different
i1, i2, i3 ∈ L1 ∩ L2. It is easy to see that (εS1

i1
, εS1
i2
, εS1
i3

)

and (εS2
i1
, εS2
i2
, εS2
i3

) and consequently also all the other com-
ponents of the two solutions have to coincide. Details can
be found in Appendix B.

If pjk at the right-hand side of (4) are true agreement proba-
bilities, the true error probabilities εw1

, . . . , εwn
and covari-

ances Cov[εwj
(x, y), εwk

(x, y)], j < k, make up the unique
solution of (4) that satisfies (6), but if pjk are not exactly
true agreement probabilities, there might be no solution of
(4) that satisfies (6) at all. Our goal is then to find a solution
of (4) that satisfies (6) approximately and to show that our
approximate solution has to be close to εw1

, . . . , εwn
and

Cov[εwj
(x, y), εwk

(x, y)], j < k. As a first step towards
this goal we need a generalization of Proposition 1:

Proposition 2. Let γ < 1/2 and ν < 1/8− γ/2 + γ2/2.
If there exist two solutions (εSi

l )l∈[n], (c Si

jk )1≤j<k≤n,
i ∈ {1, 2}, of system (4) (where pjk ∈ [0, 1]) with the prop-
erty that εSi

l ∈ [0, 1], l ∈ [n], and

∃Li ⊆ [n] with |Li| ≥ n/2 + 2 such that

∀j ∈ Li :
(
εSi
j ≤ γ ∧

[
∀k 6= j : |c Si

jk | ≤ ν
])
,

(8)

then∣∣εS1

l − ε
S2

l

∣∣ ≤ G(γ, ν)
√
ν,

∣∣c S1

jk − c
S2

jk

∣∣ ≤ 3G(γ, ν)
√
ν

for l ∈ [n], j < k, where G(γ, ν)→ G(γ) > 0 as ν → 0.

The proof of Proposition 2, which provides an explicit ex-
pression for G(γ, ν), can be found in Appendix B.

In a next step, we assume that we are given pairwise dif-
ferent i1, i2, i3 ∈ [n] such that wi1 , wi2 , wi3 follow the one-
coin model with εwi1

, εwi2
, εwi3

< 1/2. In this case, as-
suming that estimates pjk are close to true agreement proba-
bilities, we can construct a solution of (4) that is guaranteed
to be close to the true error probabilities and covariances
(and hence approximately satisfies (6)). This is made precise
in the next lemma (its proof can be found in Appendix B).

Lemma 3. Let γTR < 1/2 and consider the system (4)
with p TR

jk ∈ [0, 1] as right-hand side. Assume there exists a
solution3 (εTR

l )l∈[n], (c TR
jk )1≤j<k≤n with the property that

εTR
l ∈ [0, 1] and

∃LTR ⊆ [n] with |LTR| ≥ n/2 + 2 such that

∀j ∈ LTR :
(
εTR
j ≤ γTR ∧

[
∀k 6= j : c TR

jk = 0
])
.

(9)

Now consider the system (4) with pjk ∈ [0, 1] as right-hand
side. Assume that |p TR

jk − pjk| ≤ β for all j 6= k, where

3By Proposition 1, this solution is unique.

β satisfies β < 1/2− 2γTR + 2γ2TR. Let i1, i2, i3 ∈ [n] be
pairwise different and set

B := −2 + 4pi1i3 ,

C := 1 + 2pi1i2pi2i3 − pi1i2 − pi1i3 − pi2i3 ,

εRi2 :=
1

2
−
√
B + 4C

2
√
B

, εSi2 := min(γTR,max(0, εRi2))

(10)

and for all l 6= i2 and for all 1 ≤ j < k ≤ n

εRl :=
pi2l − 1 + εSi2

2εSi2 − 1
,

εSl :=

{
min(γTR,max(0, εRl )) if l ∈ {i1, i3}
min(1,max(0, εRl )) if l /∈ {i1, i3}

,

c Sjk :=
pjk − (1− εSj − εSk + 2εSj ε

S
k )

2
.

(11)

If all expressions are defined (i.e., B > 0, B + 4C ≥ 0
and εSi2 6=

1
2 ), then (εSl )l∈[n], (c Sjk)1≤j<k≤n is a solution

of (4) with pjk as right-hand side. If i1, i2, i3 ∈ LTR, then
all expressions are defined and∣∣εTR

l − εSl
∣∣ ≤ H(γTR, β)

√
β, l ∈ [n],∣∣c TR

jk − c Sjk
∣∣ ≤ 3H(γTR, β)

√
β + β/2, j < k,

(12)

where H(γTR, β)→ H(γTR) > 0 as β → 0.

In Lemma 3, for constructing the solution (εSl )l∈[n],
(c Sjk)1≤j<k≤n as defined in (10) and (11) we need to know
γTR < 1/2, which is an upper bound on the error proba-
bilities of at least n2 + 2 workers that follow the one-coin
model. In practice, we might choose γTR depending on the
difficulty of the tasks or simply set it conservatively, for ex-
ample as γTR = 0.45. If i1, i2, i3 ∈ LTR, then (12) implies
that (εSl )l∈[n], (c Sjk)1≤j<k≤n satisfies (8) with

γ = γTR +H(γTR, β)
√
β, ν = 3H(γTR, β)

√
β + β/2.

(13)

If we know the value of β (using Lemma 1, we easily ob-
tain an upper bound β that holds with high probability),
we can compute these quantities. This suggests the follow-
ing strategy for obtaining estimates of εw1

, . . . , εwn
and

Cov[εwj
(x, y), εwk

(x, y)], j < k: we sample pairwise dif-
ferent i1, i2, i3 ∈ [n] uniformly at random and construct
(εSl )l∈[n], (c Sjk)1≤j<k≤n as defined in (10) and (11). If one
of the expressions is not defined, we can immediately dis-
card (i1, i2, i3). Otherwise, we check whether (εSl )l∈[n],
(c Sjk)1≤j<k≤n satisfies (8) with γ and ν as specified in (13).
If it does, since (εTR

l )l∈[n], (c TR
jk + (pjk− p TR

jk )/2)1≤j<k≤n
is a solution of (4) with pjk as right-hand side that satisfies
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property (8) too, Proposition 2 guarantees that

∣∣εTR
l − εSl

∣∣ ≤√3H(γTR, β)
√
β +

β

2
·

G

(
γTR +H(γTR, β)

√
β, 3H(γTR, β)

√
β +

β

2

)
∼ β1/4

(14)

for all l ∈ [n] and a similar bound on |c TR
jk − c Sjk|, j < k.

If (εSl )l∈[n], (c Sjk)1≤j<k≤n does not satisfy (8), we dis-
card (i1, i2, i3) and start anew. Note that under our As-
sumption A, the probability of choosing i1, i2, i3 such that
i1, i2, i3 ∈ LTR is greater than 1/8. In expectation we have
to discard (i1, i2, i3) for not more than eight times before
finding a solution that satisfies (8) and hence (14).

Assuming that every worker is presented with every task,
that is gij = 1 for all i ∈ [m] and j ∈ [n], it follows from
Lemma 1 and (14) that m has to scale as ln(n2/δ)/ρ8 in
order that the described strategy is guaranteed to yield, with
probability at least 1 − δ, estimates εS1 , . . . , ε

S
n satisfying

|εTR
l − εSl

∣∣ ≤ ρ, l ∈ [n]. This is significantly larger than the
rate m ∼ ln(n2/δ)/ρ2 required by the TE algorithm, which
solves the estimation problem for the error probabilities in
the one-coin model and is claimed to be minimax optimal
(Bonald & Combes, 2017). We suspect that our rate with its
dependence on ρ−8 is not optimal and consider it to be an
interesting follow-up question to study the minimax rate for
our extension of the one-coin model.

Although the convergence rate that we can guarantee for
the described strategy is slow, we might still hope that
the strategy performs better in practice. However, there
is an issue that we have to overcome. Unless β is very
small, γ and ν as specified in (13) are too big for being
meaningful, that is any solution (εSl )l∈[n], (c Sjk)1≤j<k≤n
as defined in (10) and (11) will satisfy (8) with these
values. We will not discard any (i1, i2, i3), regardless
of whether i1, i2, i3 ∈ LTR holds or not. We deal
with this issue by adapting the strategy as follows: let
P ⊆ {(i1, i2, i3) : i1, i2, i3 ∈ [n] pairwise different}. For
every p = (i1, i2, i3) ∈ P , we construct (εSl (p))l∈[n],
(c Sjk(p))1≤j<k≤n as defined in (10) and (11). We set
Qp = [n] unless γ as specified in (13) is smaller than one,
in which case we set Qp = {l ∈ [n] : εSl (p) ≤ γ} and dis-
card any solution (εSl (p))l∈[n], (c Sjk(p))1≤j<k≤n for which
|Qp| < n

2 + 2. Let νp be the dn2 + 2e-th smallest element of
{maxk∈[n]\{l} |c Slk (p)| : l ∈ Qp}. Then we finally return
the solution (εSl (p0))l∈[n], (c Sjk(p0)))1≤j<k≤n for which
νp is smallest, that is p0 = argminp ν

p.

If γ is small enough, it follows from Proposition 2 that∣∣εTR
l − εSl (p0)

∣∣ ≤√max{νp0 , β/2} ·

G
(
γTR +H(γTR, β)

√
β,max{νp0 , β/2}

)
.

(15)

Note that if P contains at least one triple of indices
i1, i2, i3 ∈ LTR, then νp0 ≤ 3H(γTR, β)

√
β + β

2 , so that
the guarantee (15) is at least as good as (14). We also expect
νp0 to be smaller the larger P is. Hence, we should choose
P as large as we can afford due to computational reasons,
but in practice, there is one more aspect that we have to con-
sider. Depending on how gij has been chosen, there might
be workers wj and wk that were presented with only a few
common tasks or no common tasks at all. In this case, the es-
timate pjk of the agreement probability between wj and wk
is only poor and there is no uniform bound β on |p TR

jk −pjk|
(where p TR

jk are true agreement probabilities). We can deal
with this aspect by choosing P in a way such that for all
p ∈ P , all estimates pjk that are involved in the computa-
tion of (εSl (p))l∈[n] are somewhat reliable. We present a
concrete implementation of this in Algorithm 1 below.

4.3. Predicting ground-truth labels

Once we have estimates ε̂w1
, . . . , ε̂wn

of the true error prob-
abilities εw1

, . . . , εwn
, we predict ground-truth labels yi by

taking a weighted majority vote over the responses collected
for the task xi. Our estimate for yi is given by

ŷi = sign
{∑n

l=1
f(ε̂wl

) ·Ail
}
, (16)

where f : [0, 1]→ [−∞,+∞]. Ties are broken uniformly
at random. We consider two choices for the function f .

It is well-known that if all workers follow the one-coin
model with known error probabilities εw1

, . . . , εwn
, ground-

truth labels are balanced, that is Pr(x,y)∼D[y = +1] =
Pr(x,y)∼D[y = −1], and gij are independent Bernoulli ran-
dom variables with common success probability α > 0, then
the optimal estimator for the ground-truth label yi is given
by the weighted majority vote (16) with f(ε̂wl

) replaced
by f(εwl

) = ln ((1− εwl
)/εwl

) (Nitzan & Paroush, 1982;
Berend & Kontorovich, 2015; Bonald & Combes, 2017).
Hence, a common approach for the one-coin model is to
first estimate the true error probabilities and then to estimate
ground-truth labels by using the majority vote (16) with
f(ε̂wl

) = ln ((1− ε̂wl
)/ε̂wl

) (Bonald & Combes, 2017;
Ma et al., 2017). We propose to use the same majority vote,
but restricted to answers from workers that we believe to
follow the one-coin model. Using the notation from Sec-
tion 4.2, this means that we set f(ε̂wl

) = ln ((1− ε̂wl
)/ε̂wl

)
for l ∈ Qp0 with maxk∈[n]\{l} |c Slk (p0)| ≤ νp0 and
f(ε̂wl

) = 0 otherwise.

Alternatively, we suggest to set f(ε̂wl
) = 1 − 2ε̂wl

for
l ∈ [n]. With this choice of f we make use of the responses
provided by all workers. The same choice has been used
for the one-coin model too (Dalvi et al., 2013). A third
option would be to set f(ε̂wl

) = 1− 2ε̂wl
for l ∈ Qp0 with

maxk∈[n]\{l} |c Slk (p0)| ≤ νp0 and f(ε̂wl
) = 0 otherwise,

but we do not consider this choice any further.
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4.4. Algorithm

In the interests of clarity, we present our approach as self
contained Algorithm 1. Choosing P as the set of triples
such that involved pairs of workers have been provided with
at least ten or three common tasks might seem somewhat ar-
bitrary here. Indeed, one could introduce two parameters to
the algorithm instead. Without optimizing for these parame-
ters, we chose them as ten and three in all our experiments
on real data, and hence we state Algorithm 1 as is.

Our analysis best applies to the setting of a full matrix A
(or variables gij that are independent Bernoulli random
variables with common success probability, as it is assumed
by Bonald & Combes, 2017, for example). In this case,
which we consider in our experiments on synthetic data,
choosing P as stated in Algorithm 1 reduces to choosing
P as the set of all triples of pairwise different indices. If
the number of workers n is small, this is the best one can
do. If n is large, it is infeasible to choose P as the set of
all triples though since the running time of Algorithm 1 is
in O(n2(m + |P |)). If n is large and A full, one should
sample P uniformly at random. For |P | ≥ ln δ/ ln(7/8)
our error guarantee (14) holds with probability at least 1− δ
then (compare with Section 4.2).

5. Related work
We briefly survey related work here. A complete discussion
can be found in Appendix A. As discussed in Sections 1
and 2, in crowdsourcing one might be interested in estimat-
ing ground-truth labels and/or worker qualities given the
response matrix A, but also in optimal task assignment. In
their seminal paper, Dawid & Skene (1979) proposed an EM
based algorithm to address the first two goals. Since then
numerous works have followed addressing all three goals for
the Dawid-Skene and one-coin model (Ghosh et al., 2011;
Karger et al., 2011a;b; 2013; 2014; Dalvi et al., 2013; Gao
& Zhou, 2013; Gao et al., 2016; Zhang et al., 2016; Bonald
& Combes, 2017; Ma et al., 2017). There have also been
efforts to study generalizations of the Dawid-Skene model
(Jaffe et al., 2016; Khetan & Oh, 2016; Shah et al., 2016)
as well as to explicitly deal with adversaries (Raykar & Yu,
2012; Jagabathula et al., 2017). However, none of the prior
work can handle a number of arbitrary adversaries almost
as large as the number of reliable workers as we do.

6. Experiments
On both synthetic and real data, we compared our proposed
Algorithm 1 to straightforward majority voting for predict-
ing labels (referred to as Maj) and the following methods
from the literature: the spectral algorithms by Ghosh et al.
(2011) (GKM), Dalvi et al. (2013) (RoE and EoR) and
Karger et al. (2013) (KOS), the two-stage procedure by

Algorithm 1
Input: crowdsourced labels stored in
A ∈ {−1, 0,+1}m×n, upper bound 0 < γTR < 1

2
on the error probabilities of dn2 + 2e workers that follow
the one-coin model, confidence parameter 0 < δ < 1

Output: estimates (εFl )l∈[n], (c Fjk )j<k, (ŷi)i∈[m] of er-
ror probabilities, covariances and ground-truth labels

I Estimating agreement probabilities
set gij = 1{Aij 6= 0}, i ∈ [m], j ∈ [n]
set qjk =

∑m
i=1 gijgik, j, k ∈ [n]

set pjk as in (3), j, k ∈ [n] (pjk = NaN if qjk = 0)

I Estimating error probabilities and covariances
set β =

[
ln(2n2/δ)/

(
2 minj,k∈[n] qjk

)]1/2 ∈ (0,+Inf ]
set γ as in (13)
if γ /∈ [0, 1] then

set γ = 1
end if
set P =

{
(i1, i2, i3) : i1, i2, i3 ∈ [n] pairwise different

and qjk ≥ 10, j, k ∈ {i1, i2, i3}, and qi2j ≥ 3, j 6= i2
}

set νold = Inf, (εFl )l∈[n] = 0, (c Fjk )1≤j<k≤n = 0, L = ∅
for (i1, i2, i3) ∈ P do

if not all expressions in (10) or (11) are defined then
break

end if
compute (εSl )l∈[n], (c Sjk)1≤j<k≤n as in (10) and (11)
set Q = {l ∈ [n] : εSl ≤ γ}
set ν = dn2 + 2e-th smallest element of
{maxk∈[n]\{l} |c Slk | : l ∈ Q} (ν = NaN ifQ = ∅)

if |Q| ≥ n
2 + 2 AND ν < νold then

set (εFl )l∈[n] = (εSl )l∈[n], (c Fjk )j<k = (c Sjk)j<k
set L = {l ∈ Q : maxk∈[n]\{l} |c Slk | ≤ ν}
set νold = ν

end if
end for

I Estimating ground-truth labels
set f(ε̂wl

) = ln ((1− ε̂wl
)/ε̂wl

) ∈ [−Inf,+Inf], l ∈ L,
and f(ε̂wl

) = 0, l ∈ [n] \ L
(alternatively set f(ε̂wl

) = 1− 2ε̂wl
, l ∈ [n])

set ŷi as in (16), i ∈ [m]

Zhang et al. (2016) (S-EM1 and S-EM10, where we run
one or ten iterations of the EM algorithm) and the recent
method by Bonald & Combes (2017) (TE). We used the
Matlab implementation of KOS, S-EM1 and S-EM10 made
available by Zhang et al. (2016). In our implementations
of the other methods, we adapted GKM, RoE and EoR as
to assume that the average error of the workers is smaller
than one half rather than assuming that the error of the first
worker is. We always called Algorithm 1 with parameters
γTR = 0.4 and δ = 0.1, which resulted in γ being set to 1
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Figure 1. Synthetic data: prediction error and estimation error as a function of the number of corrupted workers.
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Figure 2. Synthetic data: prediction and estimation error of Algo-
rithm 1 as a function of the number of tasks m.

in the execution of the algorithm in all our experiments. We
refer to Algorithm 1 with the logarithmic weights in (16)
as Alg. 1 and and with the linear weights as Alt-Alg. 1. In
the following, all results are average results obtained from
running an experiment for 100 times.

6.1. Synthetic data

In our first experiment, we consider n = 50 workers and
m = 5000 tasks with balanced ground-truth labels. Ev-
ery worker is presented with every task. For 0 ≤ t ≤ 25,
we choose t workers at random. These workers are cor-
rupted workers that all provide the same random response
to every task, which is incorrect with error probability 0.5.
The remaining n − t workers provide responses accord-
ing to the one-coin model, where the error probability of
each of these workers is 0.4. Figure 1 shows the predic-
tion error for estimating ground-truth labels and the es-
timation error for estimating error probabilities in both
the maximum norm and the normalized 1-norm for the
various methods as a function of t. The prediction er-
ror is given by 1

m

∑m
i=1 1{yi 6= ŷi} for ground-truth la-

bels yi and estimates ŷi and the estimation error is given by
maxl∈[n] |εwl

− ε̂wl
| or 1

n

∑n
l=1 |εwl

− ε̂wl
| for true error

probabilities εwl
and estimates ε̂wl

. The methods Maj and
KOS, by default, do not provide estimates of the workers’ er-
ror probabilities. We adapt these two methods in order to re-
turn estimates of the error probabilities too as follows: if the
method returns label estimates ŷ1, . . . , ŷm and worker wl
provides responses A1l, . . . , Aml 6= 0, then the method

returns 1
m

∑m
i=1 1{ŷi 6= Ail} as estimate ε̂wl

of εwl
.

Our Algorithm 1 is the only method that can handle up to
23 = n

2 − 2 corrupted workers (in accordance with our
theoretical results). Its estimation error is constant as the
number of corrupted workers increases from 0 to 23. Its
prediction error depends on which weights we use in (16):
the prediction error of Alg. 1 is constant in this range too, the
one of Alt-Alg. 1 is slightly increasing. If only a few workers
are corrupted, Alt-Alg.1 performs better than Alg. 1, while it
is the other way round if more than 13 workers are corrupted.
The methods from the literature predict ground-truth labels
as badly as random guessing already in the presence of only
six corrupted workers. All these methods are outperformed
by majority voting. We do not have an explanation for
the non-monotonic behavior of the estimation error of S-
EM10 in the maximum norm. In Appendix C we present
similar experiments, in which the error probability of the
workers following the one-coin model is smaller or the error
probabilities of the corrupted workers are less correlated.
Still, the overall picture there is the same.

One might wonder whether one can combine the considered
methods from the literature with one of the algorithms by
Jagabathula et al. (2017) in order to first sort the corrupted
workers out and then apply the method only to the remaining
workers and their responses. However, those algorithms
cannot deal with the corrupted workers considered in this
experiment, which are perfectly colluding, at all. Even
though provided with the correct number t of corrupted
workers as input, when t ≥ 3, the soft-penalty algorithm by
Jagabathula et al. (2017) was not able to identify any of the
corrupted workers in any of the 100 runs of the experiment.

In our next experiment, we study the convergence rate of
Algorithm 1. We consider n = 50 workers, out of which
t = 23 are corrupted in the same way as above. Figure 2
shows the prediction and estimation error of Algorithm 1
as a function of the number of tasks m varying from 5000
to 20000. The prediction error of Alg. 1 decreases only
slightly as m increases, the prediction error of Alt-Alg. 1
decreases more significantly. Most interesting is the decay
of the estimation error. Apparently, in this experiment it
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Data set Maj GKM RoE EoR KOS S-EM1 S-EM10 TE Alg. 1 Alt-Alg. 1
Bird 0.2407 0.2778 0.2778 0.2778 0.1111 0.1111 0.1019 0.1759 0.2963 0.2778
Dog 0.1883 0.2020 0.1834 0.1871 0.2069 0.1834 0.1772 0.9913 0.1921 0.1859

Duchenne 0.3802 0.3000 0.3125 0.3250 0.3813 0.3250 0.3562 0.3562 0.3062 0.2937
RTE 0.2562 0.4925 0.4937 0.1175 0.4000 0.1613 0.1025 0.2100 0.3638 0.2900
Temp 0.0976 0.5649 0.5693 0.0563 0.0671 0.0671 0.0628 0.0714 0.1991 0.0584
Web 0.1217 0.0249 0.0426 0.1014 0.0377 0.0931 0.0513 0.9955 0.0309 0.0611

Table 1. Real world data sets: prediction error of the various methods. The smallest value of each row is shown in red.
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Figure 3. Real world data sets: prediction error of the various methods as a function of the number of corrupted workers.

decreases at a rate ofm−1/2 rather than at a rate ofm−1/8 as
suggested by our upper bound (compare with Section 4.2).

6.2. Real data

We performed experiments on six publicly available data
sets that are are commonly used in the literature (cf. Snow
et al., 2008, Zhang et al., 2016, and Bonald & Combes,
2017). All six data sets come with ground truth labels for
each task. For most of the data sets the matrix A, which
stores the collected responses, is highly sparse. In order
to reduce sparseness, we removed workers that provided
fewer than 50 labels. For two of the data sets, we merged
classes in order to end up with binary classification prob-
lems in the same way as Bonald & Combes (2017) did
(Dog: {0, 2} vs {1, 3}; Web: {0, 1, 2} vs {3, 4}). Table 2
in Appendix C provides the characteristic values of the data
sets. Note that only for the Bird data set every worker
provided a label for every task whereas for the other ones
A is still rather sparse. Figure 5 in Appendix C shows
for each data set a histogram of the error probabilities
of the workers (computed over those tasks that a worker
was presented with). Figure 6 shows a heat map of the
matrix (|Cov[εwj

(x, y), εwk
(x, y)]|)nj,k=1 (computed over

those tasks that two workers were jointly presented with).

Table 1 shows the prediction error for the various methods
and data sets. There is no method that performs best on
all data sets. Overall, S-EM10 seems to be the method
of choice. Our Algorithm 1 can compete with the other
methods, and on four out of the six data sets, the prediction
error of Alt-Alg. 1 is smaller or larger only by 0.01 than the
prediction error of S-EM10. Alg. 1 performs slightly worse
than Alt-Alg. 1. The poor performance of our method on

the Bird data set might be explained by the fact that there the
workers clearly deviate from our model: as Figure 6 shows,
there are no n

2 + 2 workers that follow the one-coin model.

We performed another experiments on these data sets by
corrupting some of the workers (chosen at random). Like
in the experiments of Section 6.1, the corrupted workers
provide the same random response to every task. Figure 3
shows the prediction errors for the various methods and the
first three data sets as functions of the number of corrupted
workers. Similar plots for the other data sets are shown
in Figure 7 in Appendix C. On none of the data sets, any
method can handle more corrupted workers than Alt-Alg. 1.

7. Discussion
In this work, we studied an extension of the well-known
one-coin model for crowdsourcing that allows for colluding
adversaries. Our results show that even if almost half of the
workers are adversarial, one can consistently estimate the
workers’ error probabilities with an efficient algorithm.

For future work, it would be interesting to relax the assump-
tion that the reliable workers follow the one-coin model and
to allow for task-dependent error probabilities also for them.
It would also be interesting to see whether our approach can
be extended to multiclass classification problems. Another
direction concerns improving the sufficient rate m ∼ ρ−8 ,
which we obtained for our algorithm for recovering worker
qualities up to error ρ. In the absence of adversaries one
can achieve a rate m ∼ ρ−2, and we would like to un-
derstand whether this gap is inherent or an artifact of our
algorithm/proof. Finally, we wonder about the role of adap-
tive task assignment in our extension of the one-coin model.
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Appendix

A. Related work
In the context of the Dawid-Skene model, one might be interested in estimating ground-truth labels and/or worker qualities
given the response matrix A ((i) and (ii) from Section 2). At the same time, there have been works addressing the problem
of optimal task assignment ((iii) from Section 2). In their seminal paper, Dawid & Skene (1979) propose an EM based
algorithm, which comes without theoretical guarantees, to simultaneously estimate ground-truth labels and worker qualities.
Ghosh et al. (2011) provide a spectral algorithm to infer ground-truth labels in the one-coin model. They also provide a
simple strategy to infer worker qualities as part of an online algorithm for estimating ground-truth labels. The work by
Karger et al. (2011a;b; 2014) is the first to provide near-optimal estimators for the ground-truth labels in the one-coin
model when the data curator is free to choose the task assignment graph G. Surprisingly, Karger et al. (2014) show that a
non-adaptively chosen task assignment graph results in a near-optimal algorithm even when comparing to adaptive task
assignment schemes (a crucial assumption made there is that workers are fleeting). The work by Karger et al. (2011a;b)
has been carried on by Karger et al. (2013) in the general Dawid-Skene model and for multiclass classification problems.
Dalvi et al. (2013) study estimation of both ground-truth labels and worker qualities in the one-coin model when the task
assignment graph G is fixed and provide error guarantees in terms of the expansion gap of G (the expansion gap of G is the
gap between the first and the second eigenvalue of GTG). A projected EM algorithm for the one-coin model, assuming every
worker is presented with every tasks, is analyzed in Gao & Zhou (2013). Minimax rates for estimating ground-truth labels
in the general Dawid-Skene model are studied by Gao et al. (2016). Zhang et al. (2016) propose an EM based algorithm
together with a spectral method for initialization to estimate both ground-truth labels and worker qualities in the general
Dawid-Skene model. They prove their algorithm to converge to the true parameters at a near-optimal rate, even when
performing only one iteration of EM. Another near-optimal estimator for worker qualities in the one-coin model is provided
by Bonald & Combes (2017). Their approach bears some resemblance to ours by considering system (7) and solving it
using three of its equations at a time. Ma et al. (2017) study estimating worker qualities in the one-coin model in the case of
sparsely interacting workers (where

∑m
i=1 gijgik = 0 for most j 6= k).

Assuming that the true worker qualities are known in the one-coin model, Berend & Kontorovich (2015) analyze the
weighted majority vote (16) with f(ε̂wl

) replaced by f(εwl
) = ln ((1− εwl

)/εwl
) for estimating ground-truth labels. They

also analyze the weighted majority vote (16) with f(ε̂wl
) set to f(ε̂wl

) = ln ((1− ε̂wl
)/ε̂wl

) or f(ε̂wl
) = 1− 2ε̂wl

, where
ε̂wl

is an estimate of the true error probability εwl
. However, they assume that ε̂wl

is obtained as a relative frequency of
incorrectly solved tasks (i.e., for some set of tasks, the number of tasks that worker wl solved incorrectly divided by the
total number of tasks that worker wl solved), and hence they assume access to certain gold standard tasks for which the
ground-truth label is known.

Several extensions of the Dawid-Skene model have been suggested. Zhou et al. (2012) consider a general model, in which for
all workers, error probabilities can be task-dependent. They propose an algorithm based on a minimax entropy principle and
empirically demonstrate its effectiveness, but do not provide any theoretical guarantees. Khetan & Oh (2016) build on the
work by Karger et al. (2011a;b; 2014) and study a generalized Dawid-Skene model, where the workers’ error probabilities
are task-dependent as a specific expression of both a task and a worker quality parameter. In the model of Jaffe et al. (2016),
workers can be clustered into groups such that answers of workers in different groups are independent given the ground-truth
label while answers of workers in the same group are independent given a group specific latent variable. Jaffe et al. (2016)
show that in their model the worker-worker covariance matrix is a combination of two rank-one matrices. Note that in our
model almost half of the workers can be arbitrarily correlated and the worker-worker covariance matrix does not necessarily
have a low-rank structure. Shah et al. (2016) study a model where there is a hidden permutation of the workers and also a
hidden permutation of the tasks such that the probability of worker wj solving task xi correctly monotonically depends on
both the position of wj and of xi in the permutations. They provide an efficient and consistent estimator for their model.
They also show that their estimator is near-optimal for an intermediate model that is a special case of their permutation-based
model, but still a strict generalization of the one-coin model.

There has also been work on crowdsourcing in the presence of adversaries. Raykar & Yu (2012) study the problem
of eliminating spammers in the general Dawid-Skene model, where spammers are workers that assign labels randomly.
Jagabathula et al. (2017) try to identify adversaries when honest workers follow the one-coin model. Also their theoretical
analysis applies only to specific types of adversarial behavior (e.g., all adversaries provide a label +1). Note that, on the
contrary, our model allows for arbitrary adversaries. Another line of work focuses on identifying adversaries when having
access to gold standard tasks (Snow et al., 2008; Le et al., 2010).
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B. Proofs and detailed version of Lemma 2
Here we provide the proof of (2), the detailed version of Lemma 2 and its proof, and the proofs of Proposition 1, Proposition 2
and Lemma 3.

Proof of (2):

Pr(x,y)∼D,wj ,wk
[wj(x) = wk(x)] =

= E(x,y)∼D[Prwj ,wk|(x,y)[wj(x) = wk(x) | (x, y)]] (17)

= E(x,y)∼D[Prwj ,wk|(x,y)[wj(x) = y ∧ wk(x) = y | (x, y)] + Prwj ,wk|(x,y)[wj(x) 6= y ∧ wk(x) 6= y | (x, y)]] (18)

= E(x,y)∼D[Prwj |(x,y)[wj(x) = y | (x, y)] · Prwk|(x,y)[wk(x) = y | (x, y)]+

Prwj |(x,y)[wj(x) 6= y | (x, y)] · Prwk|(x,y)[wk(x) 6= y | (x, y)]]
(19)

= E(x,y)∼D[(1− εwj
(x, y))(1− εwk

(x, y)) + εwj
(x, y)εwk

(x, y)] (20)
= 1− εwj

− εwk
+ 2E(x,y)∼D[εwj

(x, y)εwk
(x, y)] (21)

= 1− εwj
− εwk

+ 2εwj
εwk

+ 2 Cov(x,y)∼D[εwj
(x, y), εwk

(x, y)]. (22)

From (17) to (18) we used the fact that wj(x), wk(x), y ∈ {−1,+1}. From (18) to (19) we used that wj(x) and wk(x),
given x, are independent. We plugged in the definition of εwj (x, y) and εwk

(x, y) (see (1)) in order to derive (20) from (19).
Equation (22) follows from (21) because of

Cov(x,y)∼D[εwj
(x, y), εwk

(x, y)] = E(x,y)∼D[(εwj
(x, y)− εwj

) · (εwk
(x, y)− εwk

)]

= E(x,y)∼D[εwj
(x, y)εwk

(x, y)]− εwj
εwk

.

�

Lemma 2 (Detailed version). Let 0 < γ < 1
2 and n ∈ N be even. Consider the system of equations

1− εj − εk + 2εjεk + 2cjk = pjk, 1 ≤ j < k ≤ n,

with

pjk =


82
100 for 1 ≤ j < k ≤ n

2 ,

1− 2γ + 4γ2 for n
2 + 1 ≤ j < k ≤ n,

9
10 −

8
10γ for 1 ≤ j ≤ n

2 <
n
2 + 1 ≤ k ≤ n

in the unknowns (εl)l∈[n] and (cjk)1≤j<k≤n. One solution of this system is given by (εS1

l )l∈[n] and (c S1

jk )1≤j<k≤n with

εS1

l =

{
1
10 for l ∈

[
n
2

]
,

γ for l ∈ [n] \
[
n
2

] and c S1

jk =

{
0 for j ∈

[
n
2

]
and k 6= j,

γ2 for n
2 + 1 ≤ j < k ≤ n

.

IfX = [0, 1] ⊆ R andD is the uniform distribution on [0, 1]×{−1,+1}, this solution corresponds to workerswS1
1 , . . . , wS1

n

with

ε
w

S1
l

(x, y) ≡ 1

10
, l ∈

[n
2

]
, and ε

w
S1
l

(x, y) = 2γ · 1{x > 0.5}, l ∈ [n] \
[n

2

]
.

Another solution of the system is given by (εS2

l )l∈[n] and (c S2

jk )1≤j<k≤n with

εS2

l =


5
√

8γ2−4γ+1+8γ−4
10
√

8γ2−4γ+1
for l ∈

[
n
2

]
,

1
2 −
√

8γ2−4γ+1

2 for l ∈ [n] \
[
n
2

] and c S2

jk =

{
16γ2

200γ2−100γ+25 for 1 ≤ j < k ≤ n
2 ,

0 for j ∈ [n] \
[
n
2

]
and k 6= j

,

which corresponds to workers wS2
1 , . . . , wS2

n with

ε
w

S2
l

(x, y) = 2κ · 1{x > ι}, l ∈
[n

2

]
, and ε

w
S2
l

(x, y) ≡ 1

2
−
√

8γ2 − 4γ + 1

2
, l ∈ [n] \

[n
2

]
,
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where

κ =
80γ − 40 + 41

√
8γ2 − 4γ + 1

160γ − 80 + 100
√

8γ2 − 4γ + 1
, ι =

64γ2

(80γ − 40 + 41
√

8γ2 − 4γ + 1)
√

8γ2 − 4γ + 1
.

For example, if γ = 4
10 , then

εS2

l ≈

{
0.403 for l ∈

[
n
2

]
,

0.088 for l ∈ [n] \
[
n
2

] and c S2

jk ≈

{
0.151 for 1 ≤ j < k ≤ n

2 ,

0 for j ∈ [n] \
[
n
2

]
and k 6= j

,

and

ε
w

S2
l

(x, y) ≈ 0.776 · 1{x > 0.481}, l ∈
[n

2

]
, and ε

w
S2
l

(x, y) ≈ 0.088, l ∈ [n] \
[n

2

]
.

Proof. Note that 8γ2 − 4γ + 1 > 0 for all γ ∈ R. Also note that

E(x,y)∼D = Ex∼U[0,1] [2κ · 1{x > ι}] = 2κ(1− ι)

and

Cov(x,y)∼D[2κ · 1{x > ι}, 2κ · 1{x > ι}] = Covx∼U[0,1] [2κ · 1{x > ι}, 2κ · 1{x > ι}]
= Ex∼U[0,1] [(2κ · 1{x > ι} − 2κ(1− ι))2]

= ι · 4κ2(1− ι)2 + (1− ι) · 4κ2ι2,

where U[0,1] denotes the uniform distribution on [0, 1]. It is straightforward to verify that both (εS1

l )l∈[n] and (c S1

jk )1≤j<k≤n

and (εS2

l )l∈[n] and (c S2

jk )1≤j<k≤n are solutions of the system and correspond to workers wS1
1 , . . . , wS1

n and wS2
1 , . . . , wS2

n ,
respectively.

Proof of Proposition 1:

Assume there were two solutions (εS1

l )l∈[n], (c S1

jk )1≤j<k≤n and (εS2

l )l∈[n], (c S2

jk )1≤j<k≤n satisfying (6) with L1 and L2,
respectively. Because of |L1|, |L2| ≥ n

2 + 2 we have |L1 ∩ L2| ≥ 4 > 3. Consequently, there exist i1, i2, i3 (pairwise
different) with

εS1
i1
, εS1
i2
, εS1
i3
<

1

2
∧
[
∀j 6= i1 : c S1

i1j
= 0 ∧ ∀j 6= i2 : c S1

i2j
= 0 ∧ ∀j 6= i3 : c S1

i3j
= 0
]
,

εS2
i1
, εS2
i2
, εS2
i3
<

1

2
∧
[
∀j 6= i1 : c S2

i1j
= 0 ∧ ∀j 6= i2 : c S2

i2j
= 0 ∧ ∀j 6= i3 : c S2

i3j
= 0
]
.

Both (εS1
i1
, εS1
i2
, εS1
i3

) and (εS2
i1
, εS2
i2
, εS2
i3

) are a solution to the system

1− εi1 − εi2 + 2εi1εi2 = pi1i2

1− εi1 − εi3 + 2εi1εi3 = pi1i3

1− εi2 − εi3 + 2εi2εi3 = pi2i3 .

(23)

We show that the system (23) has at most one solution εSi1 , ε
S
i2
, εSi3 that satisfies εSi1 , ε

S
i2
, εSi3 <

1
2 . Assuming that εi2 6= 1

2 ,
the first and the third equation of (23) are equivalent to

εi1 =
pi1i2 − 1 + εi2

2εi2 − 1
, εi3 =

pi2i3 − 1 + εi2
2εi2 − 1

(24)

and it follows from the second equation that

Aε2i2 +Bεi2 + C = 0 (25)
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with

A = 2− 4pi1i3 , B = −2 + 4pi1i3 , C = 1 + 2pi1i2pi2i3 − pi1i2 − pi1i3 − pi2i3 .

Because of −B/(2A) = 1
2 there is at most one solution εSi2 of (25) with εSi2 <

1
2 , which uniquely determines εSi1 and εSi3

due to (24). It follows that (εS1
i1
, εS1
i2
, εS1
i3

) = (εS2
i1
, εS2
i2
, εS2
i3

). Because of c S1
i1j

= c S2
i1j

= 0, j 6= i1, and both (εS1

l )l∈[n],
(c S1

jk )1≤j<k≤n and (εS2

l )l∈[n], (c S2

jk )1≤j<k≤n are a solution of (4), we also have

εS1
j =

pi1j − 1 + εS1
i1

2εS1
i1
− 1

=
pi1j − 1 + εS2

i1

2εS2
i1
− 1

= εS2
j , j 6= i1,

and

c S1

jk =
pjk − 1 + εS1

j + εS1

k − 2εS1
j ε

S1

k

2
=
pjk − 1 + εS2

j + εS2

k − 2εS2
j ε

S2

k

2
= c S2

jk , j 6= k.

�

For the proofs of Proposition 2 and Lemma 3 we need the following lemma:

Lemma 4. Consider f : [0, 1]× [0, 1]→ R with f(x, y) = x+ y − 2xy. We have:

(i) 0 ≤ f(x, y) ≤ 1
2 for all (x, y) ∈ [0, 12 ]× [0, 12 ] and 0 < f(x, y) < 1

2 for all (x, y) ∈ (0, 12 )× (0, 12 ).

(ii) ∀γ < 1
2 : f(x, y) ≤ 2γ − 2γ2 = f(γ, γ) < 1

2 for all (x, y) ∈ [0, γ]× [0, γ].

(iii) 0 ≤ f(x, y) ≤ 1
2 for all (x, y) ∈ [ 12 , 1]× [ 12 , 1] and 0 < f(x, y) < 1

2 for all (x, y) ∈ ( 1
2 , 1)× ( 1

2 , 1).

(iv) ∀γ > 1
2 : f(x, y) ≤ 2γ − 2γ2 = f(γ, γ) < 1

2 for all (x, y) ∈ [γ, 1]× [γ, 1].

Proof.

(i) We have f(x, 0) = x ≤ 1
2 , f(0, y) = y ≤ 1

2 , f(x, 12 ) = 1
2 , f( 1

2 , y) = 1
2 . For 0 < x < 1

2 let fx(y) = f(x, y). We have
f ′x(y) = 1− 2x > 0 for all 0 < x < 1

2 and all y, and it follows that 0 < f(x, y) < 1
2 for all (x, y) ∈ (0, 12 )× (0, 12 ).

(ii) For 0 ≤ x, y < 1
2 let fx(y) = fy(x) = f(x, y). It is f ′x(y) = 1 − 2x and f ′y(x) = 1 − 2y. Because of f ′x, f

′
y > 0

on [0, γ], it follows that f(x, y) ≤ f(γ, γ) = 2γ − 2γ2.

(iii) Follows from (i) because of f(1− x, 1− y) = f(x, y).

(iv) For 1
2 < x, y ≤ 1 let fx(y) = fy(x) = f(x, y). It is f ′x(y) = 1 − 2x and f ′y(x) = 1 − 2y. Because of f ′x, f

′
y < 0

on [γ, 1], it follows that f(x, y) ≤ f(γ, γ) = 2γ − 2γ2.

Proof of Proposition 2:

We set L := 1−2γ+2γ2−2ν. Because of ν < 1/8−γ/2+γ2/2, we have L > 1
2 +2ν. Note that L ≤ 1−2ν and ν ≤ 1/8.

The proof is similar to the one of Proposition 1. Assume there were two solutions (εS1

l )l∈[n], (c S1

jk )1≤j<k≤n and (εS2

l )l∈[n],
(c S2

jk )1≤j<k≤n satisfying (8) with L1 and L2, respectively. Because of |L1|, |L2| ≥ n
2 + 2 we have |L1 ∩ L2| ≥ 4 > 3.

Consequently, there exist i1, i2, i3 (pairwise different) with

εS1
i1
, εS1
i2
, εS1
i3
≤ γ ∧

[
∀j 6= i1 : |c S1

i1j
| ≤ ν ∧ ∀j 6= i2 : |c S1

i2j
| ≤ ν ∧ ∀j 6= i3 : |c S1

i3j
| ≤ ν

]
,

εS2
i1
, εS2
i2
, εS2
i3
≤ γ ∧

[
∀j 6= i1 : |c S2

i1j
| ≤ ν ∧ ∀j 6= i2 : |c S2

i2j
| ≤ ν ∧ ∀j 6= i3 : |c S2

i3j
| ≤ ν

]
.

(26)
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Both (εS1
i1
, εS1
i2
, εS1
i3

), (c S1
i1i2

, c S1
i1i3

, c S1
i2i3

) and (εS2
i1
, εS2
i2
, εS2
i3

), (c S2
i1i2

, c S2
i1i3

, c S2
i2i3

) are a solution to the system

1− εi1 − εi2 + 2εi1εi2 + 2ci1i2 = pi1i2

1− εi1 − εi3 + 2εi1εi3 + 2ci1i3 = pi1i3

1− εi2 − εi3 + 2εi2εi3 + 2ci2i3 = pi2i3 .

(27)

Assuming that εi2 6= 1
2 , the first and the third equation of (27) are equivalent to

εi1 =
pi1i2 − 2ci1i2 − 1 + εi2

2εi2 − 1
, εi3 =

pi2i3 − 2ci2i3 − 1 + εi2
2εi2 − 1

(28)

and it follows from the second equation that

Aε2i2 +Bεi2 + C = 0 (29)

with

A = 2− 4(pi1i3 − 2ci1i3) = 2− 4pi1i3 + 8ci1i3 ,

B = −2 + 4(pi1i3 − 2ci1i3) = −2 + 4pi1i3 − 8ci1i3 = −A,
C = 1 + 2(pi1i2 − 2ci1i2)(pi2i3 − 2ci2i3)− (pi1i2 − 2ci1i2)− (pi1i3 − 2ci1i3)− (pi2i3 − 2ci2i3)

= 1 + 2pi1i2pi2i3 − pi1i2 − pi1i3 − pi2i3 − 4pi1i2ci2i3 − 4pi2i3ci1i2 + 8ci1i2ci2i3 + 2ci1i2 + 2ci1i3 + 2ci2i3 .

It follows from (26), (27) and Lemma 4 (ii) that pi1i2 , pi1i3 , pi2i3 ≥ 1 − 2γ + 2γ2 − 2ν = L. Recall that pjk ∈ [0, 1],
1 ≤ j < k ≤ n. It follows that

−3 ≤ −2− 8ν ≤ A ≤ 2− 4L+ 8ν < 0, 0 < −2 + 4L− 8ν ≤ B ≤ 2 + 8ν ≤ 3. (30)

and

−3 ≤ 1− (2L− 2L2)− 1− 15ν ≤ C ≤ 1− L+ 15ν ≤ 3. (31)

In the lower bound on C we used Lemma 4 (iv).

Because of −B/(2A) = 0.5, for fixed values of ci1i2 , ci1i3 , ci2i3 there is at most one solution εSi2 of (29) with εSi2 <
1
2 .

Allowing (ci1i2 , ci1i3 , ci2i3) to vary in [−ν,+ν]3, we consider all equations

A(ci1i2 , ci1i3 , ci2i3)ε2i2 +B(ci1i2 , ci1i3 , ci2i3)εi2 + C(ci1i2 , ci1i3 , ci2i3) = 0.

We abbreviateA = A(ci1i2 , ci1i3 , ci2i3), B = B(ci1i2 , ci1i3 , ci2i3), C = C(ci1i2 , ci1i3 , ci2i3) and Â = A(ĉi1i2 , ĉi1i3 , ĉi2i3),
B̂ = B(ĉi1i2 , ĉi1i3 , ĉi2i3), Ĉ = C(ĉi1i2 , ĉi1i3 , ĉi2i3). For u, v, u′, v′ ∈ R it holds that

|uv − u′v′| ≤ |v| · |u− u′|+ |u′| · |v − v′|, (32)

and it is straightforward to verify that

|A− Â| ≤ 16ν, |B − B̂| ≤ 16ν, |C − Ĉ| ≤ 28ν + 32ν2 ≤ 32ν. (33)

A solution εSi2 of Aε2i2 +Bεi2 + C = 0 and a solution ε̂Si2 of Âε2i2 + B̂εi2 + Ĉ = 0, with εSi2 , ε̂
S
i2
< 1

2 and given by

εSi2 = − B

2A
+

√
B2 − 4AC

2A
=

1

2
−
√
B2 + 4BC

2B
=

1

2
−
√
B + 4C

2
√
B

, ε̂ Si2 =
1

2
−

√
B̂ + 4Ĉ

2
√
B̂

,

can differ by

|εSi2 − ε̂
S
i2 | =

∣∣∣∣∣
√
B + 4C

2
√
B

−

√
B̂ + 4Ĉ

2
√
B̂

∣∣∣∣∣
(30)
≤ 1

2
(−2 + 4L− 8ν)−1 ·

∣∣∣∣√B̂√B + 4C −
√
B

√
B̂ + 4Ĉ

∣∣∣∣
(32)
≤ 1

2
(−2 + 4L− 8ν)−1 ·

[√
B + 4C ·

∣∣∣√B̂ −√B∣∣∣+
√
B ·
∣∣∣∣√B + 4C −

√
B̂ + 4Ĉ

∣∣∣∣]
(30)&(31)
≤ 1

2
(−2 + 4L− 8ν)−1 ·

[
4 ·
∣∣∣√B̂ −√B∣∣∣+

√
3 ·
∣∣∣∣√B + 4C −

√
B̂ + 4Ĉ

∣∣∣∣] .
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For u, v > 0 it holds that

|
√
u−
√
v| ≤

√
|u− v|, (34)

and it follows that

|εSi2 − ε̂
S
i2 |

(33)&(34)
≤ 1

2
(−2 + 4L− 8ν)−1 ·

[
16
√
ν + 2

√
|B + 4C − B̂ − 4Ĉ|

]
(33)
≤ (−2 + 4L− 8ν)−1 ·

[
8
√
ν +
√

16ν + 4 · 32ν
]

=
20
√
ν

(−2 + 4L− 8ν)
.

Hence, we have

|εS1
i2
− εS2

i2
| ≤ 20

√
ν

(−2 + 4L− 8ν)
,

and using (28) we obtain

|εS1
i1
− εS2

i1
| =

∣∣∣∣∣pi1i2 − 2c S1
i1i2
− 1 + εS1

i2

2εS1
i2
− 1

−
pi1i2 − 2c S2

i1i2
− 1 + εS2

i2

2εS2
i2
− 1

∣∣∣∣∣
≤
|(εS2

i2
− εS1

i2
)(2pi1i2 − 1) + 2(c S1

i1i2
− c S2

i1i2
) + 4(εS1

i2
c S2
i1i2
− εS2

i2
c S1
i1i2

)|
(1− 2γ)2

(32)
≤ (1− 2γ)−2

[
|εS2
i2
− εS1

i2
|+ 4ν + 4(γ · 2ν + ν · |εS2

i2
− εS1

i2
|)
]

≤ (1− 2γ)−2
[

3

2
· 20

√
ν

(−2 + 4L− 8ν)
+ 8ν

]
,

≤ 36(1− 2γ)−2
√
ν

(−2 + 4L− 8ν)
.

Similarly, we have

|εS1
i3
− εS2

i3
| ≤ 36(1− 2γ)−2

√
ν

(−2 + 4L− 8ν)
.

It also holds for all other l 6= i2 that

εS1

l =
pi2l − 2c S1

i2l
− 1 + εS1

i2

2εS1
i2
− 1

, εS2

l =
pi2l − 2c S2

i2l
− 1 + εS2

i2

2εS2
i2
− 1

and

|εS1

l − ε
S2

l | ≤ 36(1− 2γ)−2
√
ν

(−2 + 4L− 8ν)
.

For j < k we have

c S1

jk =
pjk − 1 + εS1

j + εS1

k − 2εS1
j ε

S1

k

2
, c S2

jk =
pjk − 1 + εS2

j + εS2

k − 2εS2
j ε

S2

k

2

and

|c S1

jk − c
S2

jk | ≤
1

2
|εS1
j − ε

S2
j |+

1

2
|εS1

k − ε
S2

k |+ |ε
S1
j ε

S1

k − ε
S2
j ε

S2

k |
(32)
≤ 1

2
|εS1
j − ε

S2
j |+

1

2
|εS1

k − ε
S2

k |+ |ε
S1
j − ε

S2
j |+ |ε

S1

k − ε
S2

k |

≤ 3 · 36 · (1− 2γ)−2
√
ν

(−2 + 4L− 8ν)
.
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The claim of Proposition 2 follows with

G(γ, ν) := 36(1− 2γ)−2(−2 + 4L− 8ν)−1 = 36(1− 2γ)−2(2− 8γ + 8γ2 − 16ν)−1.

�

Proof of Lemma 3:

Clearly, if all expressions in (10) and (11) are defined, then (εSl )l∈[n], (c Sjk)1≤j<k≤n is a solution of (4) with pjk as
right-hand side because of the choice of c Sjk. We need to show that if i1, i2, i3 ∈ LTR, then all expressions are defined and∣∣εTR

l − εSl
∣∣ ≤ H(γTR, β)

√
β,

∣∣c TR
jk − c Sjk

∣∣ ≤ 3H(γTR, β)
√
β + β/2,

where we set

H(γTR, β) :=
14

(1− 2γTR)2
√

1− 4γTR + 4γ2TR

√
1− 4γTR + 4γ2TR − 2β

.

The proof of this claim is similar to the one of Proposition 2.

Let i1, i2, i3 ∈ LTR be pairwise distinct. We have εTR
i1
, εTR
i2
, εTR
i3
≤ γTR <

1
2 and

1− εTR
i1 − ε

TR
i2 + 2εTR

i1 ε
TR
i2 = p TR

i1i2

1− εTR
i1 − ε

TR
i3 + 2εTR

i1 ε
TR
i3 = p TR

i1i3

1− εTR
i2 − ε

TR
i3 + 2εTR

i2 ε
TR
i3 = p TR

i2i3

(35)

It is

εTR
i1 =

p TR
i1i2
− 1 + εTR

i2

2εTR
i2
− 1

, εTR
i3 =

p TR
i2i3
− 1 + εTR

i2

2εTR
i2
− 1

and εTR
i2

has to be the smaller solution of

ATRε22 +BTRε2 + CTR = 0 (36)

with

ATR = 2− 4p TR
i1i3 , BTR = −2 + 4p TR

i1i3 = −ATR, CTR = 1 + 2p TR
i1i2p

TR
i2i3 − p

TR
i1i2 − p

TR
i1i3 − p

TR
i2i3 .

We set

A := 2− 4pi1i3 , B := −2 + 4pi1i3 = −A, C := 1 + 2pi1i2pi2i3 − pi1i2 − pi1i3 − pi2i3 .

and consider

B2 − 4AC = 32pi1i2pi1i3pi2i3 − 16pi1i2pi1i3 − 16pi1i3pi2i3 − 16pi1i2pi2i3 + 8pi1i2 + 8pi1i3 + 8pi2i3 − 4.

Let r > 1
2 and f : [r, 1]3 → R with f(x, y, z) = 32xyz − 16xy − 16xz − 16yz + 8x + 8y + 8z − 4. Let fy,z(x) =

fx,z(y) = fx,y(z) = f(x, y, z). Using Lemma 4 (iv) we have

f ′y,z(x) = 32yz − 16y − 16z + 8 = 16(2yz − y − z) + 8 ≥ 16(−2r + 2r2) + 8 > 0

and similarly f ′x,z(y) > 0 and f ′x,y(z) > 0 for all (x, y, z) ∈ [r, 1]3. It follows that

4 = f(1, 1, 1) ≥ f(x, y, z) ≥ f(r, r, r) = 32(r − 1/2)3 > 0, (x, y, z) ∈ [r, 1]3.

Set ΓTR := 1− 2γTR + 2γ2TR. Note that 1/2 < ΓTR < 1. It follows from Lemma 4 (ii) and (35) that

p TR
i1i2 , p

TR
i1i3 , p

TR
i2i3 ≥ ΓTR. (37)
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Because of |p TR
jk − pjk| ≤ β, j 6= k, and the assumption on β, we have

pi1i2 , pi1i3 , pi2i3 ≥ ΓTR − β > 1/2. (38)

Consequently, BTR > 0 and

B > 0, B2 − 4AC ≥ 32 (ΓTR − β − 1/2)
3
> 0, B + 4C = (B2 − 4AC)/B > 0,

and all expressions in (10) and (11) are defined. It is

εRi2 =
1

2
−
√
B + 4C

2
√
B

, εTR
i2 =

1

2
−
√
BTR + 4CTR

2
√
BTR

by definition of εRi2 (see (10)) and since εTR
i2

is the smaller solution of (36), respectively. Because of (37), (38), |p TR
jk −pjk| ≤

β, j 6= k, and p TR
jk , pjk ∈ [0, 1] we have

4ΓTR − 2 ≤ BTR ≤ 2, 4(ΓTR − β)− 2 ≤ B ≤ 2, |BTR −B| ≤ 4β, CTR, C ≤ 1, |CTR − C|
(32)
≤ 7β.

(39)

It follows that

|εRi2 − ε
TR
i2 | =

∣∣∣∣∣12 −
√
B + 4C

2
√
B

−

(
1

2
−
√
BTR + 4CTR

2
√
BTR

)∣∣∣∣∣
(32)&(34)
≤ 1

2

1

|
√
BTR
√
B|

[√
|B −BTR| ·

√
B + 4C +

√
B ·
√
|BTR + 4CTR − (B + 4C)|

]
(39)
≤ 1

2

1
√

4ΓTR − 2
√

4(ΓTR − β)− 2

[
2
√
β ·
√

6 +
√

2 ·
√

32
√
β
]

≤ 4
√
β

√
2ΓTR − 1

√
2(ΓTR − β)− 1

and since εTR
i2
∈ [0, γTR] that

|εSi2 − ε
TR
i2 | ≤ |ε

R
i2 − ε

TR
i2 | ≤

4
√
β

√
2ΓTR − 1

√
2(ΓTR − β)− 1

. (40)

For l 6= i2 we have

εRl =
pi2l − 1 + εSi2

2εSi2 − 1
, εTR

l =
p TR
i2l
− 1 + εTR

i2

2εTR
i2
− 1

by definition (see (11)) and since (εTR
l )l∈[n], (c TR

jk )1≤j<k≤n is a solution of (4) with p TR
jk as right-hand side that satisfies (9)

and i2 ∈ LTR. Because of

εSi2 , ε
TR
i2 ∈ [0, γTR] (41)
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with γTR <
1
2 , we have

|εRl − εTR
l | =

∣∣∣∣∣pi2l − 1 + εSi2
2εSi2 − 1

−
p TR
i2l
− 1 + εTR

i2

2εTR
i2
− 1

∣∣∣∣∣
(41)
≤
|εTR
i2
− εSi2 |+ |p

TR
i2l
− pi2l|+ 2|εSi2p

TR
i2l
− εTR

i2
pi2l|

(1− 2γTR)2

(32)&(41)
≤

3|εTR
i2
− εSi2 |+ 2|p TR

i2l
− pi2l|

(1− 2γTR)2

(40)
≤ 12

√
β

(1− 2γTR)2
√

2ΓTR − 1
√

2(ΓTR − β)− 1
+

2β

(1− 2γTR)2

≤ 14
√
β

(1− 2γTR)2
√

2ΓTR − 1
√

2(ΓTR − β)− 1

= H(γTR, β)
√
β.

Since εTR
l ∈ [0, 1], l ∈ [n], and εTR

i1
, εTR
i3
∈ [0, γTR], this yields

|εSl − εTR
l | ≤ |εRl − εTR

l | ≤ H(γTR, β)
√
β. (42)

For j < k, it is

c Sjk =
pjk − (1− εSj − εSk + 2εSj ε

S
k )

2
, c TR

jk =
p TR
jk − (1− εTR

j − εTR
k + 2εTR

j ε
TR
k )

2
,

and because of εSl , ε
TR
l ∈ [0, 1], l ∈ [n],

|c Sjk − c TR
jk | =

1

2

∣∣pjk − (1− εSj − εSk + 2εSj ε
S
k )−

[
p TR
jk − (1− εTR

j − εTR
k + 2εTR

j ε
TR
k )
]∣∣

≤ 1

2
|pjk − p TR

jk |+
1

2
|εSj − εTR

j |+
1

2
|εSk − εTR

k |+ |εSj εSk − εTR
j ε

TR
k |

(32)
≤ 1

2
|pjk − p TR

jk |+
3

2
|εSj − εTR

j |+
3

2
|εSk − εTR

k |
(42)
≤ 1

2
β + 3H(γTR, β)

√
β.
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Figure 4. Synthetic data: prediction error and estimation error as a function of the number of corrupted workers in various scenarios
similar to the first experiment of Section 6.1.

C. Further experiments and characteristic values of the real world data sets
Figure 4 shows three experiments that are similar to the first experiment of Section 6.1:

In the experiment shown in the first row, the setup is the same as in the experiment of Section 6.1, but here we restrict
0 ≤ t ≤ 24 to be even and divide the corrupted workers into two groups. For each group, the workers in the group provide
the same random responses, independently from the responses of the corrupted workers in the other group. Hence, the error
probabilities of a corrupted worker from the one group and of a corrupted worker from the other group are uncorrelated and
the problem is more similar to an instance of the one-coin model. Indeed, the methods from the literature perform slightly
better than in the experiment of Section 6.1. However, the overall picture is the same.

In the experiment shown in the second row, tasks are uniformly distributed on the unit interval [0, 1] and for every task
the ground-truth label is +1. For 0 ≤ t ≤ 25, we consider t corrupted workers that all have the same conditional error
probability ε(x,+1) = x, x ∈ [0, 1]. Compared to the experiment of Section 6.1, where the covariance between the error
probabilities of two corrupted workers is 1/4, in this experiment this covariance is only 1/12. Like in the experiment
of Section 6.1 and the one shown in the first row, workers that are not corrupted follow the one-coin model with error
probability 0.4. Interestingly, KOS, S-EM1 and S-EM10 cannot deal with this setup even in the case when there are no
corrupted workers at all. The reason is that these methods assume that both Pr(x,y)∼D[y = +1] and Pr(x,y)∼D[y = −1] are
strictly positive. GKM, RoE and EoR can handle up to six corrupted workers. TE can handle only two corrupted workers.
Our Algorithm 1 can perfectly handle up to 23 corrupted workers.

Finally, in the third row we can see the same experiment as in Section 6.1, but here the error probability of the workers that
are not corrupted and follow the one-coin model is only 0.15 instead of 0.4. The methods from the literature perform much
better here. Except for TE, all methods can handle 16 or more corrupted workers. Still, again our Algorithm 1 is the only
method that can perfectly handle up to 23 corrupted workers.
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Data set # tasks # workers (# +1) / (# -1) # crowdsourced
labels (overall)

average (min/max)
# labels / worker

average (min/max)
# workers / task

Bird 108 39 0.8 4212 108 (108 / 108) 39 (39 / 39)
Dog 807 49 1.07 7213 147.2 (53 / 345) 8.9 (4 / 10)

Duchenne 160 10 0.57 1072 107.2 (50 / 160) 6.7 (5 / 8)
RTE 800 23 1 4840 210.4 (60 / 800) 6 (4 / 9)
Temp 462 21 0.78 3754 178.8 (50 / 462) 8.1 (6 / 10)
Web 2653 54 0.77 13797 255.5 (50 / 1225) 5.2 (1 / 10)

Table 2. Real world data sets: characteristic values after removing workers that provided fewer than 50 labels.

Figure 5. Real world data sets: histograms of the error probabilities of the workers.

Table 2 provides the characteristic values of the real world data sets used in the experiments of Section 6.2.

Figure 5 shows for each of the real world data sets a histogram of the error probabilities of the workers.

Figure 6 shows for each of the real world data sets a heat map of the matrix (|Cov[εwj (x, y), εwk
(x, y)]|)nj,k=1.

Figure 7 corresponds to Figure 3 of Section 6.2 and shows the plots for the remaining data sets.
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Figure 6. Real world data sets: heat maps of the matrices (|Cov[εwj (x, y), εwk (x, y)]|)
n
j,k=1 (if workers wj and wk were not presented

with at least one common task, we set Cov[εwj (x, y), εwk (x, y)] = NaN).

0 2 4 6 8 10 12

# corrupted workers

0.1

0.2

0.3

0.4

0.5

0.6

P
re

d
ic

ti
o

n
 e

rr
o

r

RTE

Maj

GKM

RoE

EoR

KOS

SEM1

SEM10

TE

Alg. 1

Alt-Alg. 1

0 2 4 6 8 10 12

# corrupted workers

0

0.1

0.2

0.3

0.4

0.5

0.6

P
re

d
ic

ti
o

n
 e

rr
o

r

Temp

0 5 10 15 20

# corrupted workers

0

0.2

0.4

0.6

0.8

1

P
re

d
ic

ti
o

n
 e

rr
o

r

Web

Figure 7. Real world data sets: prediction error of the various methods as a function of the number of corrupted workers.


