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Abstract

We explore dynamic evaluation, where sequence
models are adapted to the recent sequence history
using gradient descent, assigning higher proba-
bilities to re-occurring sequential patterns. We
develop a dynamic evaluation approach that out-
performs existing adaptation approaches in our
comparisons. We apply dynamic evaluation to
outperform all previous word-level perplexities
on the Penn Treebank and WikiText-2 datasets
(achieving 51.1 and 44.3 respectively) and all pre-
vious character-level cross-entropies on the text8
and Hutter Prize datasets (achieving 1.19 bits/char
and 1.08 bits/char respectively).

1. Introduction

Sequence generation and prediction tasks span many modes
of data, ranging from audio and language modelling, to
more general timeseries prediction tasks. Applications of
such models include speech recognition, machine transla-
tion, dialogue generation, speech synthesis, forecasting, and
music generation. Neural networks can be applied to these
tasks by predicting sequence elements one-by-one, condi-
tioning on the history, thus forming an autoregressive model.
Convolutional neural networks (CNNs) and recurrent neu-
ral networks (RNNs), including long-short term memory
(LSTM) networks (Hochreiter & Schmidhuber, 1997) in
particular, have achieved many successes at these tasks.
However, in their basic form, these models have a limited
ability to adapt to recently observed parts of a sequence.

Many sequences contain repetition; a pattern that occurs
once is more likely to occur again. For instance, a word
that occurs once in a document is much more likely to occur
again. A sequence of handwriting will generally stay in
the same handwriting style. A sequence of speech will
generally stay in the same voice. Although RNNs have
a hidden state that can summarize the recent past, they
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have been shown to have problems learning to reproduce
sequence elements (Marcus, 2001; Prickett, 2017). In the
case of RNN language modelling, augmenting a model with
a simple unigram cache improves perplexity (Grave et al.,
2017), demonstrating that RNNs have difficulty using the
recent frequency of words in a sequence. Models such
as pointer networks (Vinyals et al., 2015), copy nets (Gu
et al., 2016), pointer-sentinel RNNs (Merity et al., 2017)
and the neural cache method (Grave et al., 2017) allow
inputs to be used directly as outputs, thus enabling them
to more naturally handle “direct repetitions” in a sequence,
where a symbol repeats itself. However, such approaches do
not model “indirect repetitions”, when a synonym or word
related to a recently-occurring word appears. More broadly,
it is desirable for an adaptive model to be able to capture
deeper regularities such as topic or style.

This paper examines dynamic evaluation (Mikolov et al.,
2010; Mikolov, 2012; Graves, 2013), which adapts mod-
els to recent sequences using gradient descent, as a way
to model re-occurring sequential patterns. Previous work
using dynamic evaluation did not explore or describe its
methodology in depth, and had mixed results. In contrast,
our work develops a method and tuning procedure to con-
sistently obtain strong results (Section 5), and uses this
approach to outperform previously reported results in word
and character-level language modelling (Section 7). Fur-
thermore, we design a method to dramatically reduce the
number of adaptation parameters in dynamic evaluation,
making it practical in a wider range of settings (Section 6).
We analyse the performance of dynamic evaluation over
varying time-scales and distribution shifts, and demonstrate
that dynamically evaluated models can generate conditional
samples that repeat many patterns from the conditioning
data (Section 7.4). Finally, we show that dynamic evalua-
tion can generalize to related words, giving it the potential
to model indirect repetitions in sequences (Section 7.5).

2. Motivation

Generative models can assign a probability to a sequence

x1.7 = {x1,..., 27} by factorizing it as
T
P(zrr) = P(z) [ [ Platlre). @)

t=2
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Figure 1. Illustration of dynamic evaluation. The model evaluates
the probability of sequence segments s;. The gradient VL(s;)
with respect to the log probability of s; is used to update the model
parameters 9;71 to 67 before the model progresses to the next
sequence segment. Dashed edges are what distinguish dynamic
evaluation from static (normal) evaluation.

Methods that apply this factorization either use a fixed con-
text when predicting P(x¢|x1.+—1), or use a recurrent hidden
state to summarize the context, as in an RNN. However,
for longer sequences, the history z;.;—; often contains re-
occurring patterns that are difficult to capture using static
models with fixed parameters.

In a dataset of sequences {x{,;, 23,7, ..., 21/p}, each se-
quence xi.p is typically generated from a slightly different
distribution P(z%..). At any point in time ¢, the history of a
sequence z}., ; contains useful information about the gen-
erating distribution for that sequence. Therefore we aim to
adapt the global model parameters 6, learned during train-
ing, by inferring a set of local model parameters 6; from
x%,,_; that will better approximate P(xi|z}., ;).

The generating distribution may change continuously across
a single sequence; for instance, a text excerpt may change
topic. Furthermore, many machine learning benchmarks
do not distinguish between sequence boundaries, and con-
catenate all sequences into one continuous sequence. Thus,
many sequence modelling tasks can be viewed as having
a local distribution P;(z) as well as a global distribution
Py(z) := [ P(I)P(x)dl. When training, the goal is to
find the best fixed model possible for P,(x). However, at
evaluation, a model that can infer the current P;(z) from
the recent history has an advantage.

3. Dynamic evaluation

Dynamic evaluation continuously adapts the model param-
eters learned at training time, 0 , to parts of a sequence

during evaluation. The goal is to learn adapted parameters
0, that provide a better model of the local sequence distribu-
tion, P;(x). In this work, we apply dynamic evaluation by
splitting a long test sequence x1.7 into a sequence, 1.7, of
shorter sequence segments s; of length n:

S1:M = {81=$1:n, $2=Tn+41:2ny -+ sM}. )

The initial adapted parameters 69 are set to 6,, and used
to compute the probability of the first segment, P(s1]6?).
This probability gives a cross entropy loss £(s1), with gra-
dient VL(s1), which is computed using truncated back-
propagation through time (Werbos, 1990). The gradient
VL(s1) is used to update the model, resulting in adapted
parameters 6}, before evaluating P(s2|6; ). The same pro-
cedure is then repeated for so, and for each s; (Figure 1).
Gradients for each loss £(s;) are only backpropagated to the
beginning of s;, so the computation is linear in the sequence
length. Each update applies one maximum likelihood train-
ing step to approximate the current local distribution P;(x).
The computational cost of dynamic evaluation is thus one
forward pass and one gradient computation through the data,
with an additional small overhead to apply the update rule
for every sequence segment.

As in all autoregressive models, dynamic evaluation only
conditions on sequence elements that it has already pre-
dicted, and so evaluates a valid log-probability for each
sequence. Dynamic evaluation can also be used while gen-
erating sequences. In this case, the model generates each
sequence segment s; using fixed weights, and performs a
gradient descent based update step on L(s;). Applying
dynamic evaluation for sequence generation could result
in generated sequences with more consistent regularities,
meaning that patterns that occur in the generated sequence
are more likely to occur again.

4. Related approaches

Adaptive language modelling was first considered for n-
grams, adapting to recent history via caching (Kuhn, 1988;
Jelinek et al., 1991), and other methods (Bellegarda, 2004).
The neural cache approach (Grave et al., 2017) and the
related pointer sentinel-LSTM (Merity et al., 2017) have
been used for adaptive neural language modelling. Neural
caching was recently used to improve the state-of-the-art at
word-level language modelling (Merity et al., 2018).

The neural cache model learns a non-parametric output layer
on the fly at test time, enabling the network to adapt to recent
observations. Each past hidden state h; is paired with the
next input x;1, and stored as a tuple (h;,z;41). When a
new hidden state h, is observed, the output probabilities are
adjusted to give a higher weight to words that coincide with
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past hidden states with a large inner product (k! h;):

t—1
Peache (Tes1]@1:6, Pist) o< Z e@i+1) exp(wh'hy), (3)

=1

where ¢(®i+1) is a one hot encoding of x;4;, and w is a
scale parameter. Test time adaptation is carried out by in-
terpolating the cache probabilities with the base network
probabilities.

Both the neural cache and dynamic evaluation can be used
to adapt a base model at test time. The main difference
is the mechanism used to fit to recent history: the neu-
ral cache uses a non-parametric, nearest neighbours-like
method, whereas dynamic evaluation uses gradient descent.
Both methods rely on an autoregressive factorisation, as they
depend on observing sequence elements after they are pre-
dicted in order to perform adaptation. Dynamic evaluation
and neural caching methods are therefore both applicable to
sequence prediction and generation tasks, but not directly to
more general supervised learning tasks.

The neural cache has limited ability to capture information
that occurs jointly between successive sequence elements,
since it cannot adjust the recurrent hidden state dynam-
ics. This capability is critical for adapting to sequences in
which each element has very little independent meaning,
e.g. character level language modelling. Additionally, the
neural cache can only raise the probability of symbols it
has previously seen in a test sequence, which could limit its
generalization ability in word-level language modelling.

Mikolov et al. (2010) proposed dynamic evaluation of neu-
ral language models, with stochastic gradient descent (SGD)
updates at every time step, computing the gradient with fully
truncated backpropagation through time — equivalent to set-
ting n=1in (2). Dynamic evaluation has since been applied
to character- and word-level language models (Graves, 2013;
Krause et al., 2017; Ororbia II et al., 2017; Fortunato et al.,
2017), although it has largely been considered as an aside
and not explored in depth.

Dynamic evaluation as applied at test time, could be consid-
ered a form of fast weights (Schmidhuber, 1992; Ba et al.,
2016) — recurrent architectures with dynamically changing
weight matrices as a function of recent sequence history.
In traditional fast weights, the network learns to control
changes to the weights during training time, allowing it to
be applied to more general sequence problems including
sequence labeling. In dynamic evaluation, the procedure to
change the weights is automated at test time via gradient
descent, making it only directly applicable to autoregres-
sive sequence modelling. As dynamic evaluation leverages
gradient descent, it has the potential to generalize better to
previously unseen pattern repetitions at test time.

5. Dynamic evaluation methodology

We propose several changes to Mikolov et al. (2010)’s dy-
namic evaluation update rule with SGD and fully truncated
backpropagation, which we refer to as traditional dynamic
evaluation. The first modification reduces the update fre-
quency, so that gradients are backpropagated over more
timesteps. This change provides more accurate gradient
information, and also improves the computational efficiency
of dynamic evaluation, since the update rule is applied much
less often. We use sequence segments of length 5 for word-
level tasks and 20 for character-level tasks.

Next, we add a global decay prior to bias the model towards
the parameters 6, learned during training. Our motivation
for dynamic evaluation assumes that the local generating
distribution P;(x) is constantly changing, so it is potentially
desirable to weight recent sequence history higher in adap-
tation. Adding a global decay prior accomplishes this by
causing previous adaptation updates to decay exponentially
over time. The use of a decay prior for dynamic evaluation
relates to an update rule used for fast weights (Ba et al.,
2016), which decayed fast weights towards zero. For SGD
with a global prior, learning rate 7, and decay rate \ we
form the update rule

0] « 0,7 —nVL(s;) + N0, — 0,7 1). 4)

We then consider using an RMSprop (Tieleman & Hinton,
2012) derived update rule for the learning rule in place of
SGD. RMSprop uses a moving average of recent squared
gradients to scale learning rates for each weight. In dynamic
evaluation, near the start of a test sequence, RMSprop has
had very few gradients to average, and therefore may not be
able to leverage its updates as effectively. For this reason,
we collect mean squared gradients, MS,, on the training
data rather than on recent test data. NS, is given by

Ny

1
- VL )2 5
Nb;( k)2, (5)

MS,
where N, is the number of training batches and VL, is
the gradient on the kth training batch. The mini-batch size
for this computation becomes a hyper-parameter, as larger
mini-batches will result in smaller mean squared gradients.
The update rule, which we call RMS with a global prior in
our experiments, is then

VL(s;)

———+ A\, -0, (©
MSg+e+ O =07) ©

0 0" —n

where ¢ is a stabilization parameter. For the decay step
of our update rule, we also scale the decay rate for each
parameter proportionally to |/MS,, since parameters with
a high RMS gradient affect the dynamics of the network
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more. RMSyorm is 1/ MS, divided by its mean, resulting
in a normalized version of |/ MJS, with a mean of 1:

M5,

MS,)

RMSnorm =
ave(

(7

We clip the values of RMSyorm to be no greater than 1/x
to ensure that the decay rate does not exceed 1 for any
parameter. Combining the learning component and the reg-
ularization component results in the final update equation,
which we refer to as RMS with an RMS global prior

0; %0;_1_77 MS, + ¢
g

+A(og_0;_1)®RMSHOTHl' (8)

Hyper-parameter tuning: Regardless of update rule, we
found it was important to properly tune the hyper-parameters
of dynamic evaluation. Like in the neural cache model, this
hyper-parameter tuning procedure applied a post training
step in which the model was dynamically evaluated over
different hyper-parameter settings. We found tuning the
learning rate was by far the most important, however we also
found a small benefit to tuning the decay parameter. Hyper-
parameter tuning for dynamic evaluation is much faster
than hyper-parameter tuning for general training, because it
requires a single pass through the validation set per setting.
We also found that it is possible to use a small subset of the
validation set to tune hyper-parameters and achieve a similar
performance. We suspect that poor hyper-parameter tuning
is why past dynamic evaluation results have been mixed. For
instance, Sprechmann et al. (2018) reported using dynamic
evaluation with optimisation parameters obtained during
training, and achieved minimal test time improvements.

6. Sparse dynamic evaluation

Mini-batching over sequences is desirable for some test-time
applications because it allows faster processing of multiple
sequences in parallel. Dynamic evaluation has a high mem-
ory cost for mini-batching because it is necessary to store
a different set of parameters for each sequence in the mini-
batch. Therefore, we consider a sparse dynamic evaluation
variant that updates a smaller number of parameters. We
introduce a new adaptation matrix M which is initialized
to zeros. M multiplies hidden state vector h; of an RNN at
every time-step to get a new hidden state h}, via

B, = hy + Mhy. ©)

h; then replaces h; and is propagated throughout the net-
work via both recurrent and feed-forward connections. In
a stacked RNN, this formulation could be applied to every
layer or just one layer. Applying dynamic evaluation to M
avoids the need to apply dynamic evaluation to the original

parameters of the network, reduces the number of adap-
tation parameters, and makes mini-batching less memory
intensive. We reduce the number of adaptation parameters
further by only using M to transform an arbitrary subset of
H hidden units. This results in M being an H x H matrix
with d = H? adaptation parameters. If H is chosen to be
much smaller than the number of hidden units, this reduces
the number of adaptation parameters dramatically.

7. Experiments

We applied dynamic evaluation to word- and character-level
language modelling!. After training the base model, we tune
hyper-parameters for dynamic evaluation on the validation
set, and evaluate both the static and dynamic versions of the
model on the test set. We also analyse the sequence lengths
for which dynamic evaluation is useful, and investigate how
dynamic evaluation can generalize to related words.

7.1. Small scale word-level language modelling

We performed word-level language modelling experiments
on the Penn Treebank (PTB, Marcus et al., 1993) and
WikiText-2 (Merity et al., 2017) datasets. These experi-
ments compared the performance of static and dynamic
evaluation, different dynamic evaluation variants, and the
neural cache.

The PTB language modelling dataset, which is derived from
Wall Street Journal articles, contains 929k training tokens
with a vocabulary limited to 10k words. WikiText-2 is
roughly twice the size of PTB, with 2 million training to-
kens and a vocabulary size of 33k. It features articles in a
non-shuffled order, with dependencies across articles that
adaptive methods should be able to exploit.

For our baseline model, we use the recent state-of-the-art av-
eraged SGD (ASGD) weight-dropped LSTM (AWD-LSTM,
Merity et al., 2018). The AWD-LSTM is a vanilla LSTM
that combines the use of drop-connect (Wan et al., 2013) on
recurrent weights for regularization, and a variant of ASGD
(Polyak & Juditsky, 1992) for optimisation. Our model
used 3 layers and tied input and output embeddings (Press
& Wolf, 2017; Inan et al., 2017), and was intended to be a
direct replication of AWD-LSTM.

We experiment with traditional dynamic evaluation, as well
as each modification we make building up to our final update
rule as described in Section 5. We also apply our proposed
hyper-parameter tuning scheme to all dynamic evaluation
methods. Results for PTB are given in Tab. 1, and results
for Wikitext-2 are given in Tab. 2. As our final update rule
(RMS + RMS global prior) worked best, we use this for all

'code available at https://github.com/benkrause/
dynamic-evaluation
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model parameters valid test

RNN+LDA+kN-5+cache (Mikolov & Zweig, 2012) 92.0
CharCNN (Kim et al., 2016) 19M 78.9
LSTM (Zaremba et al., 2014) 66M 822 784
Variational LSTM (Gal & Ghahramani, 2016) 66M 73.4
Pointer sentinel-LSTM (Merity et al., 2017) 2IM 724  70.9
Variational LSTM + augmented loss (Inan et al., 2017) 5IM 71.1  68.5
Variational RHN (Zilly et al., 2017) 23M 679 654
NAS cell (Zoph & Le, 2017) 54M 62.4
Variational LSTM + gradual learning (Aharoni et al., 2017) 105M 61.7
LSTM + BB tuning (Melis et al., 2018) 24M 60.9 583
LSTM (Grave et al., 2017) 869 823
LSTM + neural cache (Grave et al., 2017) 74.6  72.1
AWD-LSTM (Merity et al., 2018) 24M 60.0 573
AWD-LSTM + neural cache (Merity et al., 2018) 24M 539 528
AWD-LSTM (rerun) 24M 598 577
AWD-LSTM + traditional dynamic eval (sgd, bptt=1) 24M 549 535
AWD-LSTM + dynamic eval (sgd, bptt=5) 24M 54.7 533
AWD-LSTM + dynamic eval (sgd, bptt=5, global prior) 24M 540 524
AWD-LSTM + dynamic eval (RMS, bptt=5, global prior) 24M 527 520
AWD-LSTM + dynamic eval (RMS, bptt=5, RMS global prior) 24M 51.6 51.1

Table 1. Penn Treebank perplexities. bptt refers to sequence segment lengths. The bold lines show that dynamic evaluation gives a large
improvement over a state-of-the-art static model. Each of our other contributions leads to further improvements.

future experiments and use “dynamic eval” by default to
refer to this update rule in tables.

All dynamic evaluation variants give large improvements to
both datasets. We demonstrate much larger improvements
on PTB even with traditional dynamic evaluation than some
past work (Mikolov, 2012), highlighting the importance of
using our proposed hyper-parameter tuning scheme. Our
most advanced dynamic evaluation variant achieves better fi-
nal results than the neural cache, improving the state-of-the-
art on PTB and WikiText-2. This improvement is especially
pronounced on WikiText-2, suggesting that dynamic evalu-
ation is exploiting the rich vocabulary or the non-shuffled
order of documents. Since publishing our code, the state-of-
the-art on PTB and Wikitext-2 has been further improved
by applying our dynamic evaluation implementation on top
of a stronger base model (Yang et al., 2018).

7.2. Medium scale word-level language modelling

We benchmarked the performance of dynamic evaluation
against static evaluation and the neural cache on the larger
text8 dataset. Like WikiText-2, text8 is derived from
Wikipedia text. Text8 was introduced for word-level lan-
guage modelling by Mikolov et al. (2014), who prepro-
cessed the data by mapping rare words to an ‘<unk>’ token,
resulting in a vocabulary of 44k and 17M training tokens.
We use the same test set as in Mikolov et al. (2014), but also

hold out the final 100k training tokens as a validation set to
allow for fair hyper-parameter tuning (the original task did
not have a validation set). We trained an AWD-LSTM with
52M parameters using the implementation from Merity et al.
(2018), and compared the performance of static evaluation,
dynamic evaluation, and neural caching at test time.

We used the hyper-parameter settings for dynamic evalua-
tion found on PTB, and only tuned the learning rate (to 2 sig-
nificant figures). The neural cache uses 3 hyper-parameters:
the cache length, a mixing parameter and a flatness param-
eter. Starting from a cache size of 3000, we used a series
of grid searches to find optimal values for the mixing pa-
rameter and flatness parameter (to 2 significant figures). We
found that the affect of varying the cache size in the range
2000-4000 was negligible, so we kept the cache size at 3000.
Results are given in table 3, with the results from Grave et al.
(2017) that used the same test set given for context.

Dynamic evaluation soundly outperforms static evaluation
and the neural cache method, demonstrating that the benefits
of dynamic evaluation are maintained when using a stronger
model with more training data.

7.3. Character-level language modelling

We consider dynamic evaluation for character-level lan-
guage modelling using the text8 and Hutter Prize datasets.
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model parameters valid  test

Byte mLSTM (Krause et al., 2016) 46M 92.8 88.8
Variational LSTM (Inan et al., 2017) 28M 91.5 87.0
Pointer sentinel-LSTM (Merity et al., 2017) 84.8 80.8
LSTM + BB tuning (Melis et al., 2018) 24M 69.1 65.9
LSTM (Grave et al., 2017) 104.2 99.3
LSTM + neural cache (Grave et al., 2017) 72.1 68.9
AWD-LSTM (Merity et al., 2018) 33M 68.6  65.8
AWD-LSTM + neural cache (Merity et al., 2018) 33M 53.8 52.0
AWD-LSTM (rerun) 33M 68.9 66.1
AWD-LSTM + traditional dynamic eval (sgd, bptt=1) 33M 51.6 49.0
AWD-LSTM + dynamic eval (sgd, bptt=5) 33M 51.5 48.8
AWD-LSTM + dynamic eval (sgd, bptt=5, global prior) 33M 498 474
AWD-LSTM + dynamic eval (RMS, bptt=5, global prior) 33M 46.9 44.7
AWD-LSTM + dynamic eval (RMS, bptt=5, RMS global prior) 33M 464 443

Table 2. WikiText-2 perplexities.

model valid test
LSTM (Grave et al., 2017) 121.8
LSTM + neural cache (Grave et al., 2017) 99.9
AWD-LSTM 80.0 875
AWD-LSTM + neural cache 67.5 751
AWD-LSTM + dynamic eval 633 703

Table 3. text8 (word-level) perplexities

The Hutter Prize dataset (Hutter, 2006) is comprised of
Wikipedia text, including XML and characters from non-
Latin languages. It is 100 million UTF-8 bytes long and
contains 205 unique bytes. Similarly to other reported re-
sults, we used a 90:5:5 split for training, validation, and
testing. The text8 dataset is derived from the Hutter Prize
dataset, with all XML removed, and lower cased to 26 char-
acters of English text plus spaces. As with Hutter Prize, we
used the standard 90:5:5 split for training, validation, and
testing for text8. We used a multiplicative LSTM (mLSTM)
(Krause et al., 2016) as our base model for both datasets.
The mLSTMs for both tasks used 2800 hidden units, an em-
bedding layer of 400 units, weight normalization (Salimans
& Kingma, 2016), variational dropout (Gal & Ghahramani,
2016), and ADAM (Kingma & Ba, 2014) for training.

We also used sparse dynamic evaluation (Section 6) on
the Hutter Prize dataset. In this case, we adapted a subset
of 500 hidden units, resulting in a 500 x 500 adaptation
matrix and 250k adaptation parameters. Our mLSTM only
contained one recurrent layer, so only one adaptation matrix
was needed. All of our dynamic evaluation results in this
section use the final update rule given in Section 5. Results
for Hutter Prize are given in Table 4, and results for text8

are given in Table 5.

Dynamic evaluation achieves large improvements to our
base models and state-of-the-art results on both datasets.
Sparse dynamic evaluation also achieves significant im-
provements on Hutter Prize using only 0.5% of the adapta-
tion parameters of regular dynamic evaluation.

7.4. Time-scales of dynamic evaluation

Starting from the model trained on Hutter Prize, we measure
the time-scales at which dynamic evaluation is useful by
plotting the performance of static and dynamic evaluation
against the number of characters processed on sequences
from the Hutter Prize test set, and sequences in Spanish
from the European Parliament dataset (Koehn, 2005).

The Hutter Prize data experiments show the timescales at
which dynamic evaluation gained the advantage observed
in Table 4. We divided the Hutter Prize test set into 500
sequences of length 10000, and applied static and dynamic
evaluation to these sequences using the same model and
methodology used to obtain results in Table 4. Losses
were averaged across these 500 sequences to obtain average
losses at each time step. Plots of the average cross-entropy
errors against the number of Hutter characters sequenced
are given in Figure 2a.

The Spanish experiments measure how dynamic evaluation
handles large distribution shifts between training and test
time, as Hutter Prize contains very little Spanish. We used
the first 5 million characters of the Spanish European Parlia-
ment data in place of the Hutter Prize test set. The Spanish
experiments used the same base model and dynamic eval-
uation settings as Hutter Prize. Plots of the average cross-
entropy errors against the number of Spanish characters
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model parameters  test
Stacked LSTM (Graves, 2013) 21IM 1.67
Stacked LSTM + traditional dynamic eval (Graves, 2013) 21M 1.33
Multiplicative integration LSTM (Wu et al., 2016) 1M 1.44
HyperLSTM (Ha et al., 2017) 27TM 1.34
Hierarchical multiscale LSTM (Chung et al., 2017) 1.32
Bytenet decoder (Kalchbrenner et al., 2016) 1.31
LSTM + BB tuning (Melis et al., 2018) 46M 1.30
Recurrent highway networks (Zilly et al., 2017) 46M 1.27
Fast-slow LSTM (Mujika et al., 2017) 47M 1.25
mLSTM (Krause et al., 2016) 46M 1.24
mLSTM + sparse dynamic eval (d = 250k) 46M 1.13
mLSTM + dynamic eval 46M 1.08
Table 4. Hutter Prize test set error in bits/char.
model parameters  test
Multiplicative RNN (Mikolov et al., 2012) M 1.54
Multiplicative integration LSTM (Wu et al., 2016)  4M 1.44
LSTM (Cooijmans et al., 2017) 1.43
Batch normalised LSTM (Cooijmans et al., 2017) 1.36
Hierarchical multiscale LSTM (Chung et al., 2017) 1.29
Recurrent highway networks (Zilly et al., 2017) 45M 1.27
mLSTM (Krause et al., 2016) 45M 1.27
mLSTM + dynamic eval 45M 1.19

Table 5. text8 (char-level) test set error in bits/char.

sequenced are given in Figure 2b.

Dynamic evaluation gave a very noticeable advantage after
a few hundred characters. For Spanish this advantage con-
tinued to grow as more of the sequence was processed. For
Hutter, this advantage was maximized after viewing around
2-3k characters, demonstrating that the adaptation effect
was local rather than global.

We drew 300 character conditional samples from the static
and dynamic models after viewing 10k characters of Span-
ish. For the dynamic model, we continued to apply dynamic
evaluation during sampling as well. The conditional sam-
ples are given in the appendix. The static samples quickly
switched to English that resembled Hutter Prize data. The
dynamic model generated data with some Spanish words
and a number of made up words with characteristics of
Spanish words for the entirety of the sample.

7.5. Generalizing to unseen words

Mikolov et al. (2010) hypothesized that dynamic evaluation
updates generalize not only to the direct re-occurrence of
words, but also to the re-occurrence of related words. The

change to probabilities of symbols other than the observed
symbols can be measured by doing a second forward pass af-
ter each dynamic evaluation update. We generally found that
dynamic evaluation can increase the probability of related
words, and we demonstrate this for a specific point in the
WikiText-2 test set. We analyse the output log probabilities
before and after applying dynamic evaluation to the word
“production”, which occurred in the following context:

“He appeared on a 2006 episode of the television series ,
Doctors, followed by a role in the 2007 theatre production”

After applying a dynamic evaluation update to the sequence
segment containing the word “production”, we recomputed
the output probabilities at this time step with the updated net-
work weights. We measure the change in log probabilities
to words with a similar word embedding to “production”.
The results of this experiment is given in Table 6. Updating
on the observation of the word “production” also increases
the log probability of words with similar word embeddings.
If a similar context were to occur again, the model would
likely assign a higher probability to the word “production’
as well the related words in Table 6. Words with a similar
(output) embedding to a target word would also result in

l
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Figure 2. Average losses in bits/char of dynamic and static evaluation plotted against number of characters processed; on sequences from
the Hutter Prize test set (left) and European Parliament dataset in Spanish (right), averaged over 500 trials for each. Losses at each data
point are averaged over sequence segments of length 100, and are not cumulative. Note the different y-axis scales in the two plots.

Word emb. cos distance A log prob
"production” 1.00 +2.42
"development”  0.55 +1.14
"construction"  0.53 +1.29
"filming" 0.52 +0.80
"recording" 0.50 +1.27
"photography"  0.46 +0.15
"release” 0.45 +1.25
"performance”  0.45 +1.01
"design" 0.44 +0.90
"work" 0.44 +1.23
"productions”  0.44 +0.50
median -0.02 -0.66

Table 6. Effect of dynamic evaluation on probabilities of related
words. We measure how updating on the target word “production”
changes the probabilities of words most related to production,
measured by cosine distance of word embeddings learned during
training time (note that input and output embeddings are tied). The
median values across the entire vocabulary are given in the bottom
entry.

similar hidden state gradients to the target word, so updating
on the target word also increases the probability of related
words. This gives dynamic evaluation a greater ability to
generalize to indirect repetitions in sequences.

8. Conclusion

This work explores and develops methodology for applying
dynamic evaluation to sequence modelling tasks. Experi-
ments show that the proposed dynamic evaluation method-
ology gives large test time improvements across character
and word level language modelling. Our improvements to
language modelling have applications to speech recognition

and machine translation over longer contexts, as past im-
provements in adaptive language modelling have lead to
improvements in these tasks (Jelinek et al., 1991; Tu et al.,
2017; Kuang et al., 2017). Overall, dynamic evaluation
is shown to be an effective method for exploiting pattern
re-occurrence in sequences.

A. Appendix

300 character samples generated from the static and
dynamic versions of the model trained on Hutter Prize,
conditioned on 10k of Spanish characters. The final
sentence fragment of the 10k conditioning characters is
given to the reader, with the generated text given in bold.

STATIC:

Tiene importancia este compromiso en la medida en que la
Comisién es un organismo que tiene el monde,
&lIt;br&gt;There is a secret act in the world except
Cape Town, seen in now flat comalo and ball market
and has seen the closure of the eagle as imprints in
a dallas within the country.&quot; Is a topic for an
increasingly small contract saying Allan Roth acquired
the government in [[1916]].

DYNAMIC:

Tiene importancia este compromiso en la medida en que
la Comisién es un organismo que tiene el montembre tas
procedins la conscriptione se ha Tesalo del Pomienda
que et hanemos que Pe la Siemina.

De la Pedrera Orden es Seiora Presidente civil, Orden
de siemin presente relevante fronmida que escul-
dad pludiore e formidad President de la Presidenta
Antidorne Adamirmidad i ciemano de el 200°. Fo
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