
Semiparametric Contextual Bandits

A. Using the OLS Estimator

Here we construct an example problem to demonstrate how using the standard OLS estimator can fail in the semiparametric
setting. While not a comprehensive proof against all asymptotically biased approaches, similar examples can be constructed
for related estimators.

Consider a two-dimensional problem with two actions and no stochastic noise, where ✓ = e2, the second standard basis
vector. On the even rounds, the actions are z1 = (1, 1), z2 = (1, 1/3) and the confounding term is f = �1. On the odd
rounds, the actions are z1 = z2 = (1, 0) and the confounding term is f = 1. For any policy for selecting actions, the OLS
estimator before round t (for even t) is the solution to the following optimization problem:

minimizew2R2 ↵(w1 + w2)
2 + (1� ↵)(w1 + w2/3 + 2/3)2 + (w1 � 1)2 = L(w)

where ↵ 2 [0, 1] corresponds to the fraction of the even rounds (up to round t) where the policy chose z1. We will argue
that, for any ↵, the solution to this problem ŵ has ŵ2 < 0. Since there is no stochastic noise, there is no need for confidence
bounds once the covariance is full rank, which happens after the second round. Together, this implies that any sensible
policy based on ŵ will prefer z2 to z1 on the even rounds, but z1 yields higher reward by a fixed constant. Thus using OLS
in a confidence-based approach leads to linear regret.

We now show that ŵ2 is strictly negative. We have

@L(w)

@w1
= 2↵(w1 + w2) + 2(1� ↵)(w1 + w2/3 + 2/3) + 2(w1 � 1),

@L(w)

@w2
= 2↵(w1 + w2) +

2

3
(1� ↵)(w1 + w2/3 + 2/3).

Setting both equations equal to zero yields the following system:

4w1 + (2/3 + 4↵/3)w2 = 2/3 + 4↵/3, (2/3 + 4↵/3)w1 + (2/9 + 16↵/9)w2 = 4↵/9� 4/9.

The solution to this system is

w1 =
(2↵+ 1)2

�4↵2 + 12↵+ 1
, w2 =

4↵2 + 5

4↵2 � 12↵� 1
,

provided that 4↵2 6= 12↵+ 1, which is not possible with ↵ 2 [0, 1]. In the interval [0, 1] we have that 4↵2 � 12↵� 1 < 0,
and hence w2 < 0. Thus, the OLS estimator incorrectly predicts that z2 receives higher reward than z1 on the even rounds.
Since confidence intervals are not needed, the algorithm suffers linear reget.

B. Proof of Proposition 3

We consider two possible values for the true parameter: ✓1 = e1 2 R2, ✓2 = e2 2 R2. At all rounds, the context
xt = {e1, e2} contains just two actions, and we further assume that the noise term ⇠t = 0 almost surely. Since the action at
is a deterministic function of the history, it can also be computed by the adaptive adversary at the beginning of the round,
and the adversary chooses

ft(xt) = �1{at = argmax
a

h✓, zt,ai}.

We show that rt(at) = 0 for all rounds t. Assume the parameter is ✓1 so the optimal action is a?t = e1 and the suboptimal
action e2 has h✓, e2i = 0. If the learner chooses action e2, then the adversary sets ft(xt) = 0, so rt(at) = 0. On the other
hand, if the learner chooses action e1, then the adversary sets ft(xt) = �1 so the reward is also zero. Similarly, if ✓ = ✓2,
the observed reward is always zero. Since the algorithm is deterministic, it behaves identically regardless of whether the
parameter is ✓1 or ✓2. In one of these instances the algorithm must choose the suboptimal action at least T/2 times, leading
to the lower bound.

C. Proof for the Two-Action Case

We first focus on the simpler two action case. Before turning to the main analysis, we prove two supporting lemmas. The
first is an algebraic inequality relating matrix determinants to traces. This inequality also appears in Abbasi-Yadkori et al.
(2011).
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Lemma 9. Let X1, . . . , Xn denote vectors in Rd with kXik2  L for all i 2 [n]. Define � , �I +
Pn

i=1 XiX>
i . Then

det(�)  (�+ nL2/d)d.

Proof. We will apply the following standard argument:

det(�)1/d  1

d
tr(�) =

1

d
tr(�I) +

1

d

nX

i=1

tr(XiX
>
i ) = �+

1

d

nX

i=1

kXik22  �+ nL2/d.

The first step is a spectral version of the AM-GM inequality and the remaining steps use linearity of the trace operator and
the boundedness conditions.

The second lemma is a new self-normalized concentration inequality for vector valued martingales.
Lemma 10 (Symmetric self-normalized inequality). Let {Ft}Tt=1 be a filtration and let {(Zt, ⇣t)}Tt=1 be a stochastic
process with Zt 2 Rd and ⇣t 2 R such that (1) (Zt, ⇣t) is Ft measurable, (2) |⇣t|  M for all t 2 [T ], (3) Zt ?? ⇣t|Ft, (4)
E[Zt|Ft] = 0, and (5) for all x 2 Rd, L(hx, Zti | Ft) = L(�hx, Zti | Ft) where L denotes the probability law, so that Zt

is conditionally symmetric. Let ⌃ ,PT
t=1 ZtZ>

t . Then for any positive definite matrix Q we have

P

2

4
�����

TX

t=1

Zt⇣t

�����

2

(Q+M2⌃)�1

� 2 log

 
1

�

s
det(Q+M2⌃)

det(Q)

!3

5  �.

Proof. The proof follows the recipe in de la Peña et al. (2009) (See also de la Peña et al. (2008) for a more comprehensive
treatment including the univariate case). We start by applying the Chernoff method. Let ⌃̄ , Q+M2⌃. We can write

P

2

4
�����

TX

t=1

Zt⇣t

�����

2

⌃̄�1

� 2 log

 
1

�

s
det(⌃̄)

det(Q)

!3

5 = P

2

4exp

0

@1

2

�����

TX

t=1

Zt⇣t

�����

2

⌃̄�1

1

A � 1

�

s
det(⌃̄)

det(Q)

3

5

 �E

2

4
s

det(Q)

det(⌃̄)
exp

0

@1

2

�����

TX

t=1

Zt⇣t

�����

2

⌃̄�1

1

A

3

5 .

Therefore, if we prove that this latter expectation is at most one, we will arrive at the conclusion. A similar statement appears
in Theorem 1 of de la Peña et al. (2009), but our process is slightly different due to the presence of ⇣t. To bound this latter
expectation, fix some � 2 Rd and consider an exponentiated process with the increments

D�
t , exp

✓
h�, Zt⇣ti �

M2h�, Zti2

2

◆
.

Observe that E[D�
t |Ft]  1 since by the conditional symmetry of Zt, we have

E[D�
t |Ft] = E

⇥
E
⇥
D�

t | Ft, ⇣t
⇤
| Ft

⇤

= E

E

exp

✓
�M2h�, Zti2

2

◆
⇥ 1

2
(exp(h�, Zt⇣ti) + exp(�h�, Zt⇣ti) | Ft, ⇣t

�
| Ft

�

= E

E

exp

✓
�M2h�, Zti2

2

◆
⇥ cosh(h�, Zt⇣t) | Ft, ⇣t

�
| Ft

�

 E

E

exp

✓
�M2h�, Zti2

2
+

h�, Zt⇣ti2

2

◆
| Ft, ⇣t

�
| Ft

�
 1.

This argument first uses the conditional symmetry of Zt and the conditional independence of Zt, ⇣t, then the identity
(ex + e�x)/2 = cosh(x) and finally the analytical inequality cosh(x)  ex

2/2. Finally in the last step we use the bound
|⇣t|  M . This implies that the martingale U�

t , Qt
⌧=1 D

�
⌧ is a super-martingale with E[U�

t ]  1 for all t, since by
induction

E[U�
t ] = E[U�

t�1E[D�
t |Ft]]  E[U�

t�1]  . . .  1. (6)
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Now we apply the method of mixtures. In a standard application of the Chernoff method, we would choose � to maximize
E[U�

T ], but since we still have an expectation, we cannot swap expectation and maximum. Instead, we integrate the inequality
E[U�

T ]  1, which holds for any �, against � drawn from a Gaussian distribution with covariance Q�1. By Fubini’s theorem,
we can swap the expectations to obtain

1 � E�⇠N (0,Q�1)E[U�
T ] = E

Z
U�
T (2⇡)

�d/2
p
det(Q) exp(��>Q�/2)d�

= E
Z
(2⇡)�d/2

p
det(Q) exp

 
TX

t=1

h�, Zt⇣ti �
M2�>(

PT
t=1 ZtZ>

t )�+ �>Q�

2

!
d�

= E
Z
(2⇡)�d/2

p
det(Q) exp

✓
h�, Si � M2�>⌃�+ �>Q�

2

◆
d�,

where S , PT
t=1 Zt⇣t and recall that ⌃ , PT

t=1 ZtZ>
t . By completing the square, the term in the exponent can be

rewritten as

h�, Si � M2�>⌃�+ �>Q�

2
=

1

2

�
�(�� ⌃̄�1S)>⌃̄(�� ⌃̄�1S) + S>⌃̄�1S

�
,

where recall that ⌃̄ , M2⌃+Q. As such we obtain

1 � E

exp

�
S>⌃̄�1S/2

�
⇥
Z
(2⇡)�d/2

p
det(Q) exp

✓
�(�� ⌃̄�1S)>⌃̄(�� ⌃̄�1S)

2

◆�
d�

= E

s
det(Q)

det(⌃̄)
exp

�
S>⌃̄�1S

�
.

This proves the lemma.

Equipped with the two lemmas, we can now turn to the analysis of the influence-adjusted estimator.
Lemma 11 (Restatement of Lemma 5). Under Assumption 1 and Assumption 2, with probability at least 1� �, the following
holds simultaneously for all t 2 [T ]:

k✓̂t � ✓k�t 
p
�+

p
9d log(1 + T/(d�)) + 18 log(T/�).

Proof. Recall that we define ✓̂t,�t to be the estimator and matrix used in round t, based on t� 1 examples. Fixing a round
t, we start by expanding the definition of ✓̂t. We use the shorthand z⌧ , z⌧,a⌧ , µ⌧ , Eb⇠⇡⌧ [z⌧,b], and r⌧ , r⌧ (a⌧ ).

✓̂t = ��1
t

t�1X

⌧=1

(z⌧ � µ⌧ )r⌧ = ��1
t

t�1X

⌧=1

(z⌧ � µ⌧ )(h✓, z⌧ i+ f⌧ (x⌧ ) + ⇠⌧ )

= ��1
t

t�1X

⌧=1

(z⌧ � µ⌧ )(h✓, z⌧ � µ⌧ i+ h✓, µ⌧ i+ f⌧ (x⌧ ) + ⇠⌧ )

= (�t)
�1(�t � �I)✓ + ��1

t

t�1X

⌧=1

(z⌧ � µ⌧ )(h✓, µ⌧ i+ f⌧ (x⌧ ) + ⇠⌧ ).

Let Z⌧ , z⌧ � µ⌧ and ⇣⌧ , h✓, µ⌧ i+ f⌧ (x⌧ ) + ⇠⌧ . With this expansion, we can write

k✓̂t � ✓k�t = k � ���1
t ✓ + ��1

t

t�1X

⌧=1

Z⌧ ⇣⌧k�t  k�✓k��1
t

+

�����

t�1X

⌧=1

Z⌧ ⇣⌧

�����
��1
t


p
�+

�����

t�1X

⌧=1

Z⌧ ⇣⌧

�����
��1
t

.

To finish the proof, we apply Lemma 10 to this last term. To verify the preconditions of the lemma, let F⌧ ,
�(x1, . . . , x⌧ , a1, . . . , a⌧�1, ⇠1, . . . , ⇠⌧�1) denote the �-algebra corresponding to the ⌧ th round, after observing the con-
text x⌧ . Then the policy ⇡⌧ and hence the action a⌧ are F⌧ measurable and so is the noise term ⇠⌧ . Therefore,
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Z⌧ = z⌧,a⌧ �Ea⇠⇡⌧ [z⌧,a] is measurable, which verifies the first precondition. Using the boundedness properties in Assump-
tion 2, we know that |⇣⌧ |  3 , M , and by construction of the random variables, we have Z⌧ ?? ⇣⌧ |F⌧ and E [Z⌧ |F⌧ ] = 0.
Finally, for the symmetry property, either Z⌧ |F⌧ ⌘ 0 if one action is eliminated, or otherwise we have µ⌧ = 1

2 (z⌧,1 + z⌧,2)
since there are only two actions. In this case the random variable Z⌧ |F⌧ = ✏⌧ (z⌧,1 � z⌧2)/2 where ✏⌧ is a Rademacher
random variable. By inspection this is clearly conditionally symmetric. As such, we may apply Lemma 10, which reveals
that with probability at least 1� �,

�����

t�1X

⌧=1

Z⌧ ⇣⌧

�����

2

��1
t

= M2

�����

t�1X

⌧=1

Z⌧ ⇣⌧

�����

2

(M2�t)�1

 2M2 log

 
1

�

s
det(M2�t)

det(M2�I)

!

= 18 log

✓q
��d det(�t)/�

◆
.

The inequality here is Lemma 10 with Q = M2�I , and for the last equality we use that det(cQ) = cd det(Q) for a d⇥ d
positive semidefinite matrix Q. As two final steps, we apply Lemma 9 and take a union bound over all rounds T . Combining
these, we get that for all T ,

k✓̂t � ✓k�t 
p
�+

�����

t�1X

⌧=1

Z⌧ ⇣⌧

�����
��1
t


p
�+

s

18

✓
log(

q
��d det(�t)) + log(T/�)

◆


p
�+

p
9d log(1 + T/(d�)) + 18 log(T/�).

Therefore, with �(T ) ,
p
�+

p
9d log(1 + T/(d�)) + 18 log(T/�) we can apply Lemma 6 to bound the regret by

Reg(T ) 
p
2T log(1/�) + 2�(T )

TX

t=1

r
tr(��1

t Cov
b⇠⇡t

(zt,b)).

Via a union bound, this inequality holds with probability at least 1� 2�. To finish the proof we need to analyze this latter
term. This is the contents of the following lemma. A related statement, with a similar proof, appears in Abbasi-Yadkori et al.
(2011).
Lemma 12. Let X1, . . . , XT be a sequence of vectors in Rd with kXtk2  1 and define �1 , �I , �t , �t�1+Xt�1X>

t�1.
Then

TX

t=1

q
tr(��1

t XtX>
t ) 

p
Td(1 + 1/�) log(1 + T/(d�)).

Proof. First, apply the Cauchy-Schwarz inequality to the left hand side to obtain

TX

t=1

q
tr(��1

t XtX>
t ) 

p
T

vuut
TX

T=1

tr(��1
t XtX>

t ).

For the remainder of the proof we work only with the second term. Let us start by analyzing a slightly different quantity,
tr(��1

t+1XtX>
t ). By concavity of log det(M), we have

log det(�t)  log det(�t+1) + tr(��1
t+1(�t � �t+1)),

which implies

tr(��1
t+1XtX

>
t ) = tr(��1

t+1(�t+1 � �t))  log det(�t+1)� log det(�t)

As such, we obtain a telescoping sum

TX

t=1

tr(��1
t+1XtX

>
t )  log det(�T+1)� log det(�1)  d log(�+ T/d)� d log � = d log(1 + T/(d�))
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The first inequality here uses the concavity argument and the second uses Lemma 9. To finish the proof, we must translate
back to ��1

t . For this, we use the Sherman-Morrison-Woodbury identity, which reveals that

X>
t ��1

t+1Xt = X>
t (�t +XtX

>
t )�1Xt = X>

t

 
��1
t � ��1

t XtX>
t ��1

t

1 + kXtk2��1
t

!
Xt

=
kXtk2��1

t

1 + kXtk2��1
t

� (1 + 1/�)�1kXtk2��1
t
.

Here in the last step we use that kXtk2��1
t

 kXtk2(�I)�1  1/�. Overall, we obtain

TX

t=1

tr(��1
t XtX

>
t )  (1 + 1/�)d log(1 + T/(d�)),

and combined with the first application of Cauchy-Schwarz, this proves the lemma.

Combining the lemmas, we have that with probability at least 1� 2�, the regret is at most

Reg(T ) 
p
2T log(1/�) + 2�(T )

p
Td(1 + 1/�) log(1 + T/(d�))

=
p
2T log(1/�) + 2

p
Td(1 + 1/�) log(1 + T/(d�))

⇣p
�+

p
9d log(1 + T/(d�)) + 18 log(T/�)

⌘
.

With � = 1, this bound is O
⇣p

Td log(T/�) log(T/d) + d
p
T log(T/d)

⌘
.

D. Proof for the General Case

We now turn to the more general case. We need several additional lemmas.

Lemma 13 (Restatement of Lemma 8). Problem (3) is convex and always has a feasible solution. Specifically, for any vectors
z1, . . . , zn 2 Rd and any positive definite matrix M , there exists a distribution w 2 �([n]) with mean µw = Eb⇠w[zb] such
that

8i 2 [n], kzi � µwk2M  tr(M Cov
b⇠w

(zb)).

Proof. We analyze the minimax program

min
w2�([n])

max
i2[n]

kzi � µwk2M � tr(M Cov
w

(z)).

The goal is to show that the value of this program is non-negative, which will prove the result. Expanding the definitions, we
have

min
w2�([n])

max
i2[n]

kzi � µwk2M � tr(M Cov
w

(z))

= min
w2�([n])

max
v2�([n])

X

i

vi

0

@kzi � µwk2M + µ>
wMµw �

X

j

wjz
>
j Mzj

1

A

= min
v2�([n])

max
w2�([n])

X

i

vi

0

@kzi � µwk2M + µ>
wMµw �

X

j

wjz
>
j Mzj

1

A .

The last equivalence here is Sion’s Minimax Theorem (Sion, 1958), which is justified since both domains are compact convex
subsets of Rn and since the objective is linear in the maximizing variable v, and convex in the minimizing variable w. This
convexity is clear since µw is a linear in w, and hence the first two terms are convex quadratics (since M is positive definite),
while the third term is linear in w. Thus Sion’s theorem lets us swap the order of the minimization and maximization.
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Now we upper bound the solution by setting w = v. This gives

 max
v2�([n])

X

i

vi

0

@kzi � µvk2M + µ>
v Mµv �

X

j

vjz
>
j Mzj

1

A

= max
v2�([n])

X

i

vi

0

@(zi � µv)
>M(zi � µv) + µ>

v Mµv �
X

j

vjz
>
j Mzj

1

A = 0.

To prove the analog of Lemma 10, we need several additional tools. First, we use Freedman’s inequality to derive a
positive-semidefinite inequality relating the sample covariance matrix to the population matrix.
Lemma 14. Let X1, . . . , Xn be conditionally centered random vectors in Rd adapted to a filtration {Ft}nt=1 with kXik2  1
almost surely. Define ⌃̂ ,Pn

i=1 XiX>
i and ⌃ ,Pn

i=1 E[XiX>
i | Fi]. Then, with probability at least 1� �, the following

holds simultaneously for all unit vectors v 2 Rd:

v>⌃v  2v>⌃̂v + 9d log(9n) + 8 log(2/�).

This lemma is related to the Matrix Bernstein inequality, which can be used to control k⌃� ⌃̂k2, a quantity that is quite
similar to what we are controlling here. The Matrix Bernstein inequality can be used to derive a high probability bound of
the form

8v 2 Rd, kvk2 = 1, v>(⌃� ⌃̂)v  1

2
k⌃k2 + c log(dn/�),

for a constant c > 0. On one hand, this bound is stronger than ours since the deviation term depends only logarithmically on
the dimension. However, the variance term involves the spectral norm rather than a quantity that depends on v as in our
bound. Thus, Matrix Bernstein is worse when ⌃ is highly ill-conditioned, and since we have essentially no guarantees on
the spectrum of ⌃, our specialized inequality, which is more adaptive to the specific direction v, is crucial. Moreover, the
worse dependence on d is inconsequential, since the error will only appear in a lower order term.

Proof. First consider a single unit vector v 2 Rd, we will apply a covering argument at the end of the proof. By
assumption, the sequence of sums {

P⌧
i=1 v

>(XiX>
i �E[XiX>

i | Fi])v}n⌧=1 is a martingale, so we may apply Freedman’s
inequality (Freedman, 1975; Beygelzimer et al., 2011), which states that with probability at least 1� �

|v>(⌃̂� ⌃)v|  2

vuut
nX

i=1

Var(v>(XiX>
i � E[XiX>

i | Fi])v | Fi) log(2/�) + 2 log(2/�).

Let us now upper bound the variance term: for each i,

Var(v>(XiX
>
i � E[XiX

>
i | Fi])v | Fi)  E[(v>(XiX

>
i � E[XiX

>
i | Fi] | Fi)v)

2 | Fi]

 E[(v>Xi)
4 | Fi]  v>E[XiX

>
i | Fi]v,

where the last inequality follows from the fact that kXik2  1 and kvk2  1. Therefore, the cumulative conditional variance
is at most v>⌃v. Plugging this into Freedman’s inequality gives us

|v>(⌃̂� ⌃)v|  2
q
v>⌃v log(2/�) + 2 log(2/�).

Now, using the fact that 2
p
ab  ↵a+ b/↵ for any ↵ > 0, with the choice ↵ = 1/2, we get

|v>(⌃̂� ⌃)v|  v>⌃v/2 + 4 log(2/�).

Re-arranging, this implies

v>⌃v  2v>⌃̂v + 8 log(2/�), (7)
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which is what we would like to prove, but we need it to hold simultaneously for all unit vectors v.

To do so, we now apply a covering argument. Let N be an ✏-covering of the unit sphere in the projection pseudo-metric
d(u, v) = kuu> � vv>k2, with covering number N (✏). Then via a union bound, a version of (7) holds simultaneously for
all v 2 N , where we rescale � ! �/N (✏).

Consider another unit vector u and let v be the covering element. We have

u>⌃u = tr(⌃(uu> � vv>)) + v>⌃v  tr(⌃(uu> � vv>)) + 2v>⌃̂v + 8 log(2N (✏)/�)

= tr((⌃� 2⌃̂)(uu> � vv>)) + 2u>⌃̂u+ 8 log(2N (✏)/�)

 k⌃� 2⌃̂k?✏+ 2u>⌃̂u+ 8 log(2N (✏)/�).

Here k · k? denotes the nuclear norm, which is dual to the spectral norm k · k2. Since all vectors are bounded by 1, we obtain

k⌃� 2⌃̂k?  d�max(⌃� 2⌃̂)  3dn.

Overall, the following bound holds simultaneously for all unit vectors v 2 Rd, except with probability at most �:

v>⌃v  3dn✏+ 2v>⌃̂v + 8 log(2N (✏)/�).

The last step of the proof is to bound the covering number N (✏). For this, we argue that a covering of the unit sphere
in the Euclidean norm suffices, and by standard volumetric arguments, this set has covering number at most (3/✏)d. To
see why this suffices, let u be a unit vector and let v be the covering element in the Euclidean norm, which implies that
ku� vk2  ✏. Further assume that hu, vi > 0, which imposes no restriction since the projection pseudo-metric is invariant
to multiplying by �1. By definition we also have hu, vi  1. Note that the projection norm is equivalent to the sine of the
principal angle between the two subspaces, which once we restrict to vectors with non-negative inner product means that
kuu> � vv>k2 = sin\(u, v). Now

sin\(u, v) =
p
1� hu, vi2 =

p
(1 + hu, vi)(1� hu, vi)


p
2(1� hu, vi) =

q
kuk22 + kvk22 � 2hu, vi = ku� vk2  ✏.

Using the standard covering number bound, we now have

v>⌃v  3dn✏+ 2v>⌃̂v + 8d log(3/✏) + 8 log(2/�).

Setting ✏ = 1/(3n) gives

v>⌃v  d+ 2v>⌃̂v + 8d log(9n) + 8 log(2/�)  2v>⌃̂v + 9d log(9n) + 8 log(2/�).

With the positive semidefinite inequality, we can work towards a self-normalized martingale concentration bound. The
following is a restatement of Lemma 7 from de la Peña et al. (2009).
Lemma 15 (Lemma 7 of de la Peña et al. (2009)). Let {Xi}ni=1 be a sequence of conditionally centered vector-valued
random variables adapted to the filtration {Fi}ni=1 and such that kXik2  B for some constant B. Then

Un(�) = exp

 
�>

nX

i=1

Xi � �>

 
nX

i=1

XiX
>
i + E[XiX

>
i |Fi]

!
�/2

!

is a supermartingale with E[Un(�)]  1 for all � 2 Rd.

The lemma is related to (6), but does not require that conditional probability law for Xi is symmetric, which we used
previously. To remove the symmetry requirement, it is crucial that the quadratic self-normalization has both empirical and
population terms. With this lemma, the same argument as in the proof of Lemma 10, yields a self-normalized tail bound.
Lemma 16. Let {Ft}Tt=1 be a filtration and let {(Zt, ⇣t)}Tt=1 be a stochastic process with Zt 2 Rd and ⇣t 2 R such that
(1) (Zt, ⇣t) is Ft measurable, (2) |⇣t|  M for all t 2 [T ], (3) Zt ?? ⇣t|Ft, and (4) E[Zt|Ft] = 0. Let ⌃̂ ,PT

t=1 ZtZ>
t

and ⌃ ,PT
t=1 E[ZtZ>

T |Ft]. Then for any positive definite matrix Q we have

P

2

4
�����

TX

t=1

Zt⇣t

�����

2

(Q+M2(⌃̂+⌃))�1

� 2 log

0

@1

�

s
det(Q+M2(⌃̂+ ⌃))

det(Q)

1

A

3

5  �.
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Proof. The proof is identical to Lemma 10, but uses Lemma 15 in lieu of (6).

We can now analyze the influence-adjusted estimator.
Lemma 17. Under Assumption 1 and Assumption 2 and assuming that � � 4d log(9T ) + 8 log(4T/�), with probability at
least 1� �, the following holds simultaneously for all t 2 [T ]:

k✓̂t � ✓k�t 
p
�+

p
27d log(1 + 2T/d) + 54 log(4T/�).

Proof. Using the same argument as in the proof of Lemma 5, we get

k✓̂t � ✓k�t 
p
�+

�����

t�1X

⌧=1

Z⌧ ⇣⌧

�����
��1
t

,

where Z⌧ , z⌧ � µ⌧ and ⇣⌧ , h✓, µ⌧ i + f⌧ (x⌧ ) + ⇠⌧ , just as before. Now we must control this error term, for
which we need both Lemma 14 and Lemma 16. Apply Lemma 14 to the vectors Z⌧ , setting ⌃̂t , Pt�1

⌧=1 Z⌧Z>
⌧ and

⌃t ,
Pt�1

⌧=1 E[Z⌧Z⌧ | F⌧ ]. With probability at least 1� �/(2T ), we have that for all unit vectors v 2 Rd

v>⌃tv  2v>⌃̂tv + 9d log(9t) + 8 log(4T/�)  2v>⌃̂tv + 9d log(9T ) + 8 log(4T/�).

This implies a lower bound on all quadratic forms involving ⌃̂t, which leads to positive semidefinite inequality

�I + ⌃̂t ⌫ (�� 3d log(9T )� 8/3 log(4T/�))I + (⌃̂t + ⌃t)/3.

This means that for any vector v, we have

kvk2
(�I+⌃̂t)�1  kvk2

((��3d log(9T )�8/3 log(4T/�))I+(⌃̂t+⌃t)/3)�1

 3kvk2
((3��9d log(9T )�8 log(4T/�))I+⌃̂t+⌃t)�1 .

Before we apply Lemma 16, we must introduce the range parameter M . Fix a round t and let A , ((3�� 9d log(9T )�
8 log(4T/�))I + ⌃̂t + ⌃t) denote the matrix in the Mahalanobis norm. Then,

�����

t�1X

⌧=1

Z⌧ ⇣⌧

�����

2

A�1

= M2

�����

t�1X

⌧=1

Z⌧ ⇣⌧

�����

2

(M2A)�1

.

Now apply Lemma 16 with Q , M2(3� � 9d log(9T ) � 8 log(4T/�))I . Since we require Q � 0, this requires � >
3d log(9T )� 8/3 log(4T/�), which is satisfied under the preconditions for the lemma. Under this assumption, we get

k
t�1X

⌧=1

Z⌧ ⇣⌧k2(�I+⌃̂t)�1  3M2k
t�1X

⌧=1

Z⌧ ⇣⌧k2(Q+M2(⌃̂t+⌃t))�1

 6M2 log

0

@4T

�

s
det(Q+M2(⌃̂t + ⌃t))

det(Q)

1

A ,

with probability at least 1� �/(2T ). With a union bound, the inequality holds simultaneously for all T , with probability at
least 1� �.

The last step is to analyze the determinant. Using the same argument as in the proof of Lemma 9, it is not hard to show that
 
det(Q+M2(⌃̂t + ⌃t))

det(Q)

!1/d

 1 +
2(t� 1)

d(3�� 9d log(9T )� 8 log(4T/�))
.

If we impose the slightly stronger condition that � � 4d log(9T ) + 8 log(4T/�), then the term in the denominator is at least
1, and then we have that

k✓̂t � ✓k�t 
p
�+

p
6M2 log(4T/�) + 3dM2 log(1 + 2T/d).

Finally, as in the two-action case, we use the fact that |⇣t|  3 , M .
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Recall the setting of �(T ) ,
p
� +

p
27d log(1 + 2T/d) + 54 log(4T/�) and the definition of � , 4d log(9T ) +

8 log(4T/�). For the remainder of the proof, condition on the probability 1� � event that Lemma 17 holds. We now turn to
analyzing the regret.
Lemma 18. Let µt , Ea⇠⇡tzt,a where ⇡t is the solution to (3) and assume the conclusion of Lemma 17 holds. Then with
probability at least 1� �

Reg(T )  (1 + 6�(T ))
p
2T log(2/�) + 3�(T )

vuutT
TX

t=1

tr(��1
t (zt,at � µt)(zt,at � µt)>).

This lemma is slightly more complicated than Lemma 6.

Proof. First, using the same application of Azuma’s inequality as in the proof of Lemma 6, with probability 1� �/2, we
have

Reg(T ) 
p
2T log(2/�) +

TX

t=1

Ea⇠⇡t [h✓, zt,a?
t
� zt,ai | Ft].

Now we work with this latter expected regret
TX

t=1

Ea⇠⇡t [h✓, zt,a?
t
� zt,ai | Ft] =

TX

t=1

h✓, zt,a?
t
� µti 

TX

t=1

h✓̂, zt,a?
t
� µti+ �(T )kzt,a?

t
� µtk��1

t
.

For the first term, we use the filtration condition (2)

h✓̂, zt,a?
t
� µti =

X

a2At

⇡t(a)h✓̂, zt,a?
t
� zt,ai  �(T )

X

a2At

⇡t(a)kzt,a?
t
� zt,ak��1

t

 �(T )kzt,a?
t
� µtk��1

t
+ �(T )

X

a2At

⇡t(a)kzt,a � µtk��1
t
.

Applying the feasibility condition in (3), we can bound the expected regret by

TX

t=1

Ea⇠⇡t [h✓, zt,a?
t
� zt,ai | Ft]  3�(T )

TX

t=1

r
tr(��1

t Cov
a⇠⇡t

(zt,a))  3�(T )

vuutT
TX

t=1

tr(��1
t Cov

a⇠⇡t

(zt,a)).

To complete the proof, we need to relate the covariance, which takes expectation over the random action, with the particular
realization in the algorithm, since this realization affects the term �t+1. Let Zt , zt,at � µt denote the centered realization,
then the covariance term is

Cov
a⇠⇡t

(zt,a) = E[ZtZ
>
t | Ft]

In order to derive a bound on
PT

t=1 tr(�
�1
t Cova⇠⇡t(zt,a)), we first consider the following
TX

t=1

tr(��1
t E[ZtZ

>
t | Ft])� tr(��1

t ZtZ
>
t ).

Observe that sequence of sums {
P⌧

t=1 tr(�
�1
t E[ZtZ>

t | Ft]) � tr(��1
t ZtZ>

t )}T⌧=1 is a martingale. Also, each term
tr(��1

t E[ZtZ>
t | Ft])� tr(��1

t ZtZ>
t ) is bounded by 1 because �1 = �I and � > 1. Applying the Freedman’s inequality

reveals that with probability at least 1� �/2

TX

t=1

tr(��1
t E[ZtZ

>
t | Ft])� tr(��1

t ZtZ
>
t )  2

vuut
TX

t=1

E[(Z>
t ��1

t Zt)2 | Ft] log(2/�) + 2 log(2/�)

 2

vuut
TX

t=1

tr(��1
t E[ZtZ>

t | Ft]) log(2/�) + 2 log(2/�)

 1

2

TX

t=1

tr(��1
t E[ZtZ

>
t | Ft]) + 4 log(2/�).
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Then rearranging and plugging back into our regret bound, we have

Reg(T ) 
p
2T log(2/�) + 3�(T )

vuut2T

 
TX

t=1

tr(��1
t ZtZ>

t ) + 4 log(2/�)

!

 (1 + 6�(T ))
p
2T log(2/�) + 3�(T )

vuut2T
TX

t=1

tr(��1
t ZtZ>

t ).

To conclude the proof of the theorem, apply Lemma 7, which applies on the last term on the RHS of Lemma 18. Overall,
with probability at least 1� 2�, we get

Reg(T )  (1 + 6�(T ))
p
2T log(2/�) + 3�(T )

p
2Td(1 + 1/�) log(1 + T/(d�)).

Since � = ⇥(d log(T/�)) and �(T ) = O(
p
d log(T ) +

p
log(T/�)), we get with probability 1� �,

Reg(T )  O
⇣
d
p
T log(T ) +

p
dT log(T ) log(T/�) +

p
T log(T/�) log(1/�)

⌘
.


