Trainable Calibration Measures For Neural Networks From
Kernel Mean Embeddings

Aviral Kumar ! Sunita Sarawagi

Abstract

Modern neural networks have recently been found
to be poorly calibrated, primarily in the direction
of over-confidence. Methods like entropy penalty
and temperature smoothing improve calibration
by clamping confidence, but in doing so compro-
mise the many legitimately confident predictions.
We propose a more principled fix that minimizes
an explicit calibration error during training. We
present MMCE, a RKHS kernel based measure of
calibration that is efficiently trainable alongside
the negative likelihood loss without careful hyper-
parameter tuning. Theoretically too, MMCE is a
sound measure of calibration that is minimized at
perfect calibration, and whose finite sample esti-
mates are consistent and enjoy fast convergence
rates. Extensive experiments on several network
architectures demonstrate that MMCE is a fast,
stable, and accurate method to minimize calibra-
tion error metrics while maximally preserving the
number of high confidence predictions.

1. Introduction

Recently, (Guo et al., 2017) made the surprising observa-
tion that highly accurate, negative log likelihood trained,
deep neural networks predict poorly calibrated confidence
probabilities unlike traditional models trained with the same
objective (Niculescu-Mizil & Caruana, 2005). Poor cali-
bration implies that if the network makes a prediction with
more than 0.99 confidence (which it often does!), the pre-
dicted label may be correct much less than 99% of the time.
Such lack of calibration is a serious problem in applications
like medical diagnosis (Caruana et al., 2015; Crowson et al.,
2016; Jiang et al., 2012), obstacle detection in self-driving
vehicles (Bojarski et al., 2016), and other applications where

"Department of Computer Science and Engineering, IIT Bom-
bay, Mumbai, India. Correspondence to: Aviral Kumar <aviralku-
mar2907 @gmail.com>>.

Proceedings of the 35" International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

' Ujjwal Jain

learned models feed into decision systems or are human in-
terpreted. Also calibration is useful for detecting out of
sample examples (Hendrycks & Gimpel, 2017; Lee et al.,
2018; Liang et al., 2018) and in fairness (Pleiss et al., 2017).

A primary reason for poor calibration of modern neural net-
works is that due to their high capacity, the negative log like-
lihood (NLL) overfits without overfitting 0/1 error (Zhang
et al., 2017). This manifests as overly confident predic-
tions. Recently (Guo et al., 2017) experimented with several
known calibration fixes applied post training, and found a
simple temperature scaling of logits to be most effective.
A second option is to plan for calibration during training.
Pereyra et al. (2017) proposes to add a entropy regularizer to
the NLL objective to clamp over-confidence. We show that
both temperature scaling and entropy regularization manage
to reduce aggregate calibration error but in the process need-
lessly clamp down legitimate high confidence predictions. A
third set of approaches model full prediction uncertainty via
variational Bayesian networks (Louizos & Welling, 2017),
or their committee counterparts (Lakshminarayanan et al.,
2017). But their training is too resource-intensive.

We propose a practical and principled fix by minimizing cal-
ibration error during training along with classification error.
We depend on the power of RKHS functions induced by a
universal kernel to express calibration error as a tractable in-
tegral probability measure, which we call Maximum Mean
Calibration Error (MMCE). This is analogous to the way
MMD over RKHS kernels expresses the distance between
two probability distributions (Muandet et al., 2017; Li et al.,
2015). We show that MMCE is a consistent estimator of cal-
ibration and converges at rate 1/4/m to its expected value.
Furthermore, MMCE is easy to optimize in the existing
mini-batch gradient descent framework.

Our experiments spanning seven datasets show that train-
ing with MMCE achieves significant reduction in calibra-
tion error while also providing a modest accuracy increase.
MMCE achieves this without throttling high confidence
predictions. For example on CIFAR-10, MMCE makes
72% predictions at 99.7% confidence, whereas temperature
scaling predicts only 40% at 99.6% and entropy scaling
only 7% at 96.9%. This is important in applications like
medical diagnosis where only highly confident predictions

Trainable Calibration Measures from Kernel Mean Embeddings

result in saving the cost of manual screening. This study
demonstrates that well-designed training methods can simul-
taneously improve calibration and accuracy without severely
reducing the number of high-confidence predictions.

2. Problem Setup

Our focus is improving the calibration of multi-class clas-
sification models. Let Y = {1,2, ..., K} denote the set of
class labels and X’ denote a space of inputs. Let Ny (y|x) de-
note the probability distribution the neural network predicts
on an input x € X and 6 denote the network parameters.
For an instance x; with correct label y;, the network pre-
dicts label §; = argmax, Ny (y|z;). The prediction gets
correctness score ¢; = 1 if §; = y; and 0 otherwise and a
confidence score r; = Ny(g;|x;). The model Ny(y|x) is
well-calibrated over a data distribution D, when over all
(z4,9;) € D and r; = « the probability that ¢; = 1 is .
For example, out of a sample from D if 100 examples are
predicted with confidence 0.7, then we expect 70 of these
to be correct when Ny(y|x) is well-calibrated on D. More
formally, we use Py p(r,) to denote the distribution over
r and c values of the predictions of Ny(y|x) on D. When
Ny(y|x) is well calibrated on data distribution D,

Pyplc=1r=1,)=a Yaecl0,1] (1)

where I, denotes a small non-zero interval around «. Using
this we can define an expected calibration error (ECE) as

ECE(P9,D) = EP@,D(T') [|EP9,D(C|"') [c} - TH 2)

To estimate ECE on a data sample D ~ Py p we partition
the [0,1] range of r into B equal bins. We then sum up
over each bin B; = [4, Zt!] the difference between the
correctness and confidence scores over examples in that bin:

B—-1
ECE(D):D%'Z\ > =Y il
j=0

ieD; i€D; 3)
‘ J J+1
st. Dj={ieD,r; € [Ev 7]}

We are interested in models with low ECE and high accuracy.
Note a model that minimizes ECE may not necessarily have
high accuracy. For example, a model that always predicts
the majority class with confidence equal to the class’s prior
probability will have ECE 0 but is not accurate.

Fortunately, the negative log-likelihood loss
(NLL=—}_, ,yoplog No(y|z)) used for training
neural networks optimizes for accuracy and calibration
indirectly. NLL is minimized when Np(y|x) matches
the true data distribution D, and is therefore trivially
well-calibrated (Hastie et al., 2001). Popular classifiers
like linear logistic regression and calibration methods

like Platt scaling that optimize the NLL objective lead to
well-calibrated models (Niculescu-Mizil & Caruana, 2005).
Unfortunately on high capacity neural networks, NLL fails
to minimize calibration error because of over-fitting.

We explore ways of training so as to directly optimize for
calibration alongside NLL. We need to choose a trainable
function CE(D, 6) to measure calibration error for joint
optimization with NLL as follows:

mainNLL(D, 0) + ACE(D,) 4)

We cannot use ECE(D) here because it is highly discontin-
uous in 7 and consequently on 6. In the next section we
propose a new calibration measure called MMCE that is
trainable and satisfies other properties of sound measures
that we will discuss next in Section 4.

3. A Trainable Calibration Measure from
Kernel Embeddings

Our goal is to design a function to serve as an optimizable
surrogate for the calibration error. In this section we propose
such a measure that is zero if and only if the model is cali-
brated and whose finite sample estimates are consistent and
enjoy fast convergence rates. Further, we show empirically
that it can be optimized over the network parameters 6 using
existing batch stochastic gradient algorithms.

Our approach is based on defining an integral probability
measure over functions from a reproducing kernel Hilbert
space (RKHS). Such approaches have emerged as a pow-
erful tool in machine learning and have been successfully
used in tasks like comparing two distributions (Gretton et al.,
2012), (Li et al., 2015), goodness of fit tests, and class ratio
estimation (Iyer et al., 2014) (see (Muandet et al., 2017) for
a survey). In this paper, we show their usage in defining a
tractable measure of calibration error.

Let H to denote a reproducible kernel Hilbert space (RKHS)
induced by a universal kernel k(., .) and canonical feature
map ¢ : [0, 1] — H. We define a measure called maximum
mean calibration error (MMCE) over Py p(r, ¢) as:

MMCE(P(r,¢)) = | Eo~pllc =)o), ©)

where ||.||3; denotes norm in the Hilbert space H. For ease
of notation, we use P(r,c) for Py p(r,c). Theorem 1 in
Section 4 shows that MMCE is zero if and only if P(r, ¢) is
calibrated over D provided kernel k(., .) is universal. The
finite sample estimate over a sample D ~ P with D =
{(r1,¢1)s ... (Tm, Ccm)} becomes:

m
(ri,ci)€D H

Trainable Calibration Measures from Kernel Mean Embeddings

In Theorem 2 in Section 4 we show that the above estimate is
consistent and converges at rate 1//m to MMCE(P(r, ¢)).

The above can be rewritten in terms of kernels as:

MMCEZ, (D) = Y (Ciiri)(cjn;rj)km’rj) (7)

i,j€D

3.1. Minimizing MMCE during training

When training 6 on a dataset D we minimize a weighted
combination of NLL to reduce classification errors and
MMCE to reduce calibration errors. Training is done over
mini batches of examples D;. We found that D, of size
= 100 suffices.

N

. . 2
memz log Ng(yi|zi) + M (MMCEm(Db, 9))
(zi,yi)EDy

®)

MMCE is differentiable in r but not strictly in 6 due to
the argmax step for computing the predicted label. During
backpropagation we pass the gradient through the r terms
but not through the prediction step.

One issue with MMCE during training is that the number
of incorrect samples (i.e., ¢ = 0) is generally smaller than
on test data. We obtained better results by re-weighting
examples so that correct and incorrect samples have equal
weights. If m denotes the number of correct examples in a
batch of size n, we assign a weight of “* to correct and ™

m—-n

to incorrect examples. The weighted estimate becomes

MMCE? ririk(ri, r;)

w (D) = Z

Wyl (m—n)(m—mn)

S (1_Ti)(1;7"j)]€(Ti’Tj>

2 ©))
Ci:C_jzl
S (L —ri)rjk(ri,r;)
(m —n)n
Cizl,CjZO

In Section 6 we present an empirical comparison of these
two forms of MMCE.

3.2. Why Does MMCE work?

Theoretically, MMCE goes to perfect 0 only at perfect cali-
bration, and minimizing it therefore is sensible. We further
try to explain why MMCE works in practice. Note from Eq 6
that MMCE attempts confidence calibration by comparing
pairs of instances whereas NLL works on instances individ-
ually. To understand why this could prevent overconfident
predictions, consider the last term in Eq 9. Now, consider a
simple example. Say, in a batch we have an instance x that
is misclassified with a high confidence 0.99 and all other
correctly classified examples X with confidence ~ 1. The

third term in Eq 9 will pair up = with these high confidence
correctly classified examples X'. This will exert a downward
pressure on X's confidence to make it less than 1. In contrast,
NLL will continue to push the confidence of X" up towards
1 to the point of over-fitting. We present empirical evidence
to support that MMCE does indeed prevent overfitting of
NLL. We show test-NLL for MMCE and the baseline with
increasing training epochs in Figure 1. The baseline model
overfits on test NLL more easily than the MMCE trained
model. MMCE is most effective when a batch has a mix
of correct and incorrectly classified examples. If training
accuracy is 100%, MMCE aligns perfectly with NLL and
cannot prevent over-fitting.

4. Analyzing Properties of MMCE

In this section, we prove theoretical properties of MMCE
and its finite sample estimate. First, we show that
MMCE(P) is a faithful measure of calibration error that
is zero if and only if P is perfectly calibrated. Next, we
present large deviation bounds of MMCE with finite sam-
ples. Finally, we relate the MMCE to ECE.

4.1. MMCE and Perfect Calibration

Theorem 1. Let P(r,c) be a probability measure defined
on the space X = ([0,1] x {0,1}) such that P(r|c = 1)
and P(r|c = 0) are Borel probability measures. Let k be
a universal kernel The MM CE measure (Equation 5) is 0
if and only if P is perfectly calibrated. This implies that
MMCE is a proper scoring rule (Parry et al., 2011).

Proof. We start by defining an intractable integral probabil-
ity measure for calibration that is more general than MMCE.
Let C(r) denote the space of all continuous bounded func-
tions over r € [0, 1]. The measure is defined as

M(Ca P) = sup E('r,c)NP(T,C) [(C - T’)f('f’)} (10)
fec

We first show that for calibrated P, M(C, P) is zero.
RHS of above equation is f::o f(M[A = r)dP(r,c =
1) — rdP(r,c = 0)]. This is zero because Eq 1 implies
that P(l,,c = 1)- (1 —r) = r - P(I,,c = 0) and the
integration is just a continuous form of this equality.

We prove the converse to show that when P is not calibrated
M is non-zero. For uncalibrated P, Eq 1 will not hold
on at least one interval / C R of non-zero measure, call
it Iy = [ro,70 + 0] (6 > 0). Further, since P(r|c) are
Borel measures, we can assume that the function P ([, c =
1) - (1 —rg) — 7o - P(In,c = 0) is right continuous and
converges to a sg # 0 as 6 — 0. We can then choose a
fo(r) € C(r) to be a positive ramp function that is peaked
at the center of I and drops to zero outside it. For this
choice Ep((c — 1) fo(r)) is guaranteed to be non-zero.

Trainable Calibration Measures from Kernel Mean Embeddings

Test NLL (20 Newsgroups) Test NLL (SST Binary) Test NLL (IMDB)
25 T T 065 T T T T T T T
— MMCE 0.6 || — MMCE |
2 | — Baseline] " || = Baseline -
0.55 =
1.5
0.5 = 0.4 s
1
0.45 s 0.35
0.5 1 0.4 ' AN
| | | | | . | | | | 03 | I | | |
00 5 10 15 20 25 30 0350 5 10 15 20 25 0 1 2 3 4 5 6 7

Train epochs

Train epochs

Train epochs

Figure 1. Plots of Test-NLL as the training progresses for 3 datasets/models with MMCE and baseline approaches. Note that the baseline
tends to overfit on the train data, whereas MMCE is stable and overfits much less compared to the baseline.

We next proceed to replace the impractical function class
C with functions F defined over the unit ball in a RKHS
space H with the kernel k(.,.). If k is universal, for every
f € Cand € > 0, there exists a function f’ € F such that
max, | f(r) — f'(r)| < e. This property can be combined
with above claims to show that M (F, P) is zero if and only
if P is calibrated provided k(., .) is universal.

Finally we show that M (F, P) = MMCE(P)
M(fv P) = sup EP(T‘,C)[(C - T)f(?")}
fer

= sup E(.e)np(re)l(c —7)(0(r), f)]
fer

= [|Erc~pllc = 7)(r)]ll = MMCE(P)
(1

The first and second equalities in the above are due to the
feature mapping properties of RKHS functions. O

4.2. Large Deviation Bounds of MMCE

Theorem 2. Let K = max,.c(o,1] k(7,7) and m be size of
sample D. With probability more than 1 — §

\MMCE, (D) — MMCE(P)| < \/5 (4 + \/Tog5>

Proof in Section 1 of the supplementary material.

4.3. Relationship with ECE

Theorem 3. MMCE(P(r,c)) < K2ECE(P(r,c)) where
K = max, k(r,r)

Proof in Section 2 of the supplementary material.

5. Related Work

In classical decision theory, calibration of probabilistic pre-
dictions has long been studied under the topic of scoring

rules (Parry et al., 2011). In machine learning, many differ-
ent methods have been proposed for enhancing calibration
of classifiers including Platt’s scaling (Platt, 1999), Isotonic
regression (Zadrozny & Elkan, 2002), and Bayesian bin-
ning (Naeini et al., 2015), to name a few. A systematic
study in (Niculescu-Mizil & Caruana, 2005) found logis-
tic regression classifier and neural networks (of 2005) to
be well-calibrated, and the ones that were not calibrated
(e.g. SVMs) were best fixed via Platt scaling. Candela et al.
(2005) discusses ways of measuring calibration error and
highlights the potential of over-fitting of NLL. Kuleshov &
Liang (2015) studied calibration for structured prediction
and Kuleshov & Ermon (2017) shows how to calibrate in an
online adversarial setting.

For modern neural networks, a recent systematic study (Guo
et al., 2017) finds them to be surprisingly poorly calibrated.
They compare several conventional post-facto fixes and find
temperature scaling to provide the best calibration. Another
recent work proposes an entropy regularizer during training
to penalize over-confident predictions (Pereyra et al., 2017).
A shortcoming of both methods is that they indiscriminately
clamp the confidence of all predictions, robbing an end
application of the benefit of high confidence predictions.
Bayesian inference is a principled approach to get better pre-
diction uncertainties (Louizos & Welling, 2017) but incurs
significantly higher training cost. Lakshminarayanan et al.
(2017) proposes to average predictions from a committee of
models but this is resource-intensive.

Our use of kernel embeddings to measure calibration error
is similar to their use in MMD to measure distance between
distributions (Gretton et al., 2012). MMD has recently been
used for training various types of neural networks, including
generative models in (Li et al., 2015) and unsupervised
domain-adaptation models in (Yan et al., 2017). For other
measures defined on kernel embeddings see (Muandet et al.,
2017). We are aware of no prior work on defining calibration
errors using kernel embeddings.

Trainable Calibration Measures from Kernel Mean Embeddings

6. Experiments

We compare our method of calibrating using MMCE with
existing calibration methods on seven datasets spanning
image, NLP, and time-series and 6 network architectures.
We establish that a model trained with MMCE not only
makes better calibrated and accurate predictions but does
so at higher confidence level than existing approaches. We
also evaluate the computational overhead of training with
the quadratic MMCE loss, and show that the increase in
running time is no more than 10%."

Datasets

1. CIFAR-10 (Krizhevsky et al., a): Color images
(32x32) from 10 classes. 45,000/5,000/10,000 images for
train/validation/test.

2. CIFAR-100 (Krizhevsky et al., b): Same as above but
with 100 classes.

3. Caltech Birds 200 (Welinder et al., 2010): Images of 200
bird species drawn from Imagenet. 5994/2897/2897 images
for train/validation/test sets.

The datasets used in our experiments are:

4. 20 Newsgroups: News articles partitioned into 20
categories by content. 15098/900/3999 documents for
train/validation/test.

5. IMDB reviews (Maas et al., 2011): Polar movie reviews
for sentiment classification 25000/5000/20000 for train/ val-
idation/ test.

6. UC Irvine Human Activity Recognition(HAR) (Anguita
etal., 2013): Time series from phones corresponding to 6 hu-
man actions. 6653/699/2947 instances for train/ validation/
test.

7. Stanford Sentiment Treebank (SST) (Socher et al., 2012):
Movie reviews, represented as parse trees that are annotated
by sentiment. Each sample includes a binary label and a fine
grained 5-class label. We used the binary version. Train-
ing/validation/test sets contain 6920/872/1821 documents.

Models For the first three image datasets we used state-of-
the-art convolutional networks like Resnet (He et al., 2016),
Wide Resnet (Zagoruyko & Komodakis, 2016) and Incep-
tion v3 (Krause et al., 2016). We use different sizes (in
terms of depths/ number of layers) for each of the models.
On 20 Newsgroups, we train a global pooling Convolutional
Network (Lin et al., 2013). On IMDB reviews, we use a ver-
sion of hierarchical attention networks (Yang et al., 2016).
On UCI HAR, we use a LSTM. We used the TreeLSTM
model for SST binary (Tai et al., 2015). We used publicly
available models: CIFAR 10 Resnet: (Tensorflow, 2018),

!Code is partially available and will be made fully available at
https://github.com/aviralkumar2907/MMCE.

CIFAR 10 wide resnet, CIFAR 100 all models: (Xin Pan,
2018), Birds CUB dataset: (Vispedia, 2018), IMDB dataset:
(Ilya Ivanov, 2018), 20 Newsgroups: (Keras Team, 2018),
HAR dataset: (Guillaume Chevalier, 2017) and SST TreeL-
STM : (Nicolas Pinchaud, 2017).

Experiment setup The A for weighting MMCE wrt NLL
is chosen via cross-validation. The same kernel k(r,r’)
was used for all since r, 7’ are probabilities. We chose the

Laplacian Kernel k(r,r') = exp (7|6_74T/‘) , a universal
kernel, with a width of 0.4. For measuring calibration error
we use ECE with 20 bins, each of size 0.05. We use a batch
size of 128, except when the default batch size in the code
base was higher. For example, in the IMDB HAN codebase,
the default batch size was 256 and for UCI HAR the batch
size was 1500. Other details about optimizer and hyper-
parameters were kept unchanged from the base models from
the downloaded source. As an exception, the batch size for
SST was kept fixed to 25 (the default value).

Methods Compared We compare the following methods:

Baseline The baseline models in all tasks were trained using
negative log likelihood. All baseline models were down-
loaded from public sources and came with their best per-
forming regularizers like dropout and weight penalty.

Baseline+T Guo et al. (2017) compared six methods of cali-
brating a baseline model using a validation dataset. Of these
temperature scaling was found to be the best in terms of
ECE and the only method to not drop baseline accuracy. We
compare with this approach and use Baseline+T to denote a
temperature calibrated baseline model.

MMCE, MMCE,,,, MMCE+T These are variants of our
MMCE-based approach. MMCE refers to the weighted ver-
sion MMCE,, in Eq 9 and MMCE,,, to unweighted version
in Eq 7. Temperature scaling can also be applied on models
trained using MMCE. We call this the MMCE+T method.

Entropy penalty We also compare with (Pereyra et al.,
2017) that adds an entropy penalty as a regularizer to re-
duce over-confidence, a primary cause of poor calibration
in modern NN.

Kernel regression MMCE uses kernels to measure cali-
bration. Another conventional kernel-based measure is the
Nardaya-Watson kernel regressor. We use this to get a
smoothed estimate of P(c = 1|r) and then minimize their
distance from r to achieve calibration as per Eq 1. This
gives us a trainable measure of calibration error as

> jep k(ri;ri)ejy2
- = . 12
7‘%:3 (r ZjeD k(ri,ry)) (12)

that we use as CE(D, 6) in Equation 4.

https://github.com/aviralkumar2907/MMCE

Trainable Calibration Measures from Kernel Mean Embeddings

CIFAR 10 - Resnet 50 CIFAR 100 - Resnet 32 20 Newsgroups 1o IMDB Reviews
B Baseline Bmm Baseline 1 B Baseline ' B Baseline
0.8 == MMCE+T ... /] 0.8 1 == MMCE+T .. . 0.8 4 == MMCE+T | 084 == MMCE+T ...
’ mmm Baseline+T : mmm Baseline+T ’ mmm Baseline+T ’ mmm Baseline+T
L;,‘ 06' ; 0.6 1 :
5
§ 0.4 T S 0.4 qoeeeeeerrenens
02 4. st 02 4
0¥ 045 0.0 £ 0+ ;
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Confidence Confidence Confidence Confidence

Figure 2. Reliability diagram to show calibration of Baseline, MMCE+T, and Baseline+T. The x-axis is prediction confidence in ten bins
of equal size and y-axis is accuracy at that bin’s confidence. Perfect measure should touch the line. While plotting, we dropped bins with

less than 0.5% of the total data points falling into them.

Evaluation Metrics We compare the methods on three
different measures of calibration error (Candela et al., 2005)
- Expected Calibration Error (ECE) (as described in Sec-
tion 2), Brier Score (ﬁ Z(%yi)ND > (Ciw— ri’v)2), and
NLL. We also measure the fraction of highly-confident cali-
brated predictions to reward methods that achieve calibra-
tion without throttling correct high confidence scores.

6.1. Results

MMCE gains over baseline We first evaluate the efficacy
of MMCE in reducing calibration errors over the baseline
without dropping accuracy. Tables 1 and Table 2 summa-
rizes the results over different dataset architecture combi-
nations. From columns 3 and 4 of Table 1 we observe
that MMCE training consistently gives lower ECE values.
For example, on CIFAR-10 all three models get almost a
factor of 4 reduction in ECE. The reduction in calibration
error is also evident when measured on Brier score and
NLL(Table 2). MMCE also boosts baseline accuracy show-
ing that accuracy (as optimized by NLL) is not orthogonal
to calibration (as optimized by MMCE).

All the models here were trained from scratch with MMCE.
But we show that MMCE can be used also for fine-tuning
a pre-trained model. Table 1 in the supplementary material
shows the ECE and accuracy comparisons with a baseline
model fine-tuned using our NLL+AMMCE objective. We
find that fine-tuning with MMCE helps improve calibration,
although not as much as training from scratch.

Comparison with temperature scaling In the last two
columns of Table 1 we compare the effect on ECE of temper-
ature scaling (TS) on both the baseline and MMCE trained
model. Accuracy stays unchanged with TS. We find that
both models get an improvement in calibration (drop in
ECE) with TS. Calibration is best overall with MMCE+T.
On 20newsgroup, MMCE+T provides a particularly big im-

provement over Baseline+T. From Table 2 we observe that
on Brier and NLL too, MMCE (even without TS) provides
greater reduction in calibration error over baseline+TS. One
natural question is why should temperature scaling improve
MMCE? The reason we suspect is the injection of a differ-
ent validation dataset. TS using MMCE (instead of NLL)
on the validation dataset gives similar drops in ECE. But,
MMCE gives a much greater fraction of the increase beyond
baseline than TS. 70% of the ECE reduction of MMCE+T
is due to MMCE training and only additional 30% with TS
on the validation dataset.

We zoom beyond aggregated ECE values and compare Base-
line, Baseline+T, and MMCE+T on reliability plots in Fig-
ure 2. In a reliability plot, the perfectly calibrated model
should touch the diagonal, models below the diagonal are
over-confident and above it are under-estimating confidence.
The Baseline is overly confident and temperature scaling
(TS) corrects that significantly. But, on 20newsgroup, TS
causes the Baseline model to swing in the opposite direction
of under confidence!

We further show that TS incurs confidence loss on several
other datasets but the loss happens at the very high end and
does not get reflected in aggregate ECE numbers. Since
over-confidence is the problem, we focus on the subset of
predictions made with very high confidence, specifically
0.99. For each method, we define a confident set (CS99)
consisting of predictions with confidence above 0.99. We
desire the largest possible set CS99 as long as accuracy in
CS99 is above 99%. We show the result in Table 4. The over-
confident baseline, of course, gets the largest size of CS99
but its accuracy is below the contract of 99% on all five cases.
Temperature scaling on the baseline does correct accuracy
but the size of the confident set is much smaller now. In
contrast MMCE (both with and without TS) provides much
larger number of confident predictions. For example, on
CIFAR 10 (Resnet 110), temperature scaling reduced the
size of CS99 from 89% to 40% whereas MMCE lifted it to

Trainable Calibration Measures from Kernel Mean Embeddings

E# | Dataset Model ECE Accuracy ECE with Temperature
Baseline MMCE | Baseline MMCE | Baseline+T MMCE+T

1 | MNIST LeNet 5 0.5% 02% | 99.24% 99.26% — —
2 | CIFAR 10 Resnet 50 4.3% 1.2% 93.1% 93.4% 0.9% 1.1%
3 | CIFAR 10 Resnet 110 4.6% 1.1% 93.7% 94.0% 1.21% 1.19%
4 | CIFAR 10 Wide Resnet 28-10 4.5% 1.6% 94.1% 94.2% 1.0% 1.1%
5 | CIFAR 100 Resnet 32 19.6% 6.9% 67.0% 67.7% 2.5% 1.4%
6 | CIFAR 100 Wide Resnet 28-10 15.0% 8.9% 74.0% 76.6% 2.5% 2.3%
7 | Birds CUB 200 | Inception-v3 2.6% 2.3% 782% T7.9% 2.0% 1.4%
8 | 20 Newsgroups | Global Pooling CNN 16.5% 6.5% 742% 73.9% 15.8% 6.2 %
9 | IMDB Reviews | HAN 4.9% 0.4% 86.8% 86.3% 1.0% 0.2%
10 | SST Binary Tree LSTM 7.4% 5.9% 88.6% 88.7% 1.8% 3.6%
11 | HAR time series | LSTM 7.6% 5.9% 89.4% 90.3% 3.8% 3.7%

Table 1. ECE and Accuracy for Baseline and MMCE after training from scratch and after temperature scaling using a validation dataset.

Here a model is referenced by the name and the size of its network.

E# Brier Score Test NLL

Base MMCE B+T | Base MMCE B+T
2 0.121 0.090 0.111 | 0.31 0.21 023
4 0.087 0.085 0.082 | 0.24 0.18 0.18
5 0.522 0.445 0467 | 1.74 1.24 1.26
6 0.340 0.338 0.338 | 0.96 0.94 0.93
7 0.318 0.312 0.317 | 0.87 0.86 0.86
8 0.401 0.365 0.380 | 1.34 097 1.02
9 0.197 0.189 0.190 | 0.33 0.30 0.31
10 | 0.220 0.209 0.218 | 042 0.40 041
11 | 0.183 0.172 0.178 | 0.49 0.34 0.38

Table 2. Brier Score and NLL Values for Baseline, MMCE and
Baseline+T (B+T) after training from scratch and after temperature
scaling using a validation dataset. Experiment numbers (E#) can
be looked up from Table 1

72% without dropping accuracy. As pointed out earlier, less
(or no) highly confident predictions is not good from the
perspective of practical deployment of neural networks.

Some applications rely on highly confident predictions, for
example, applications of neural networks in medicine and
healthcare. The ideal goal of confidence calibration must be
to find not only accurate but highly confident predictions.
Clamping down large confidence values is not the best way
to tap the potential of modern high capacity networks and
we need training time methods like MMCE to wean out
incorrect confident predictions.

Comparison with Alternative Regularizers We next
compare MMCE with Entropy penalty and find that indeed
this method reduces ECE significantly even though the goal
was to fix over-confidence and not calibration. However, the
method suffers from the same flaw as temperature scaling of

SST Binary

— Entropy
— MMCE

IMDB

30 — Entropy
— MMCE 25

20 Newsgroups

30
— Entropy
— MMCE

20

ECE (%age)
-
5
-
o
.
5

5 10 15 20 0 5 10 15 20 0 5 10 15 20
A A A

Figure 3. Variation of ECE with regularizer weight A with Entropy
penalty and MMCE as regularizers. Observe the sharp peaks of
Entropy penalty as against the stable trends of MMCE. The values
on the y-axis were clipped to ~ 30 for visual clarity.

indiscriminately clamping confidence leading to only a few
confident predictions as seen in Table 4. For example, on
CIFAR 10 with a threshold of 0.99 on confidence, MMCE
predicts 72% instances at accuracy 99.7% but with Entropy
penalty we get only 7% and that too at 97% accuracy indi-
cating miscalibration in the above 0.99 bucket.

The Kernel regression regularizer (Eq 12) was not effective
in improving calibration. This was surprising because the
Nardaya-Watson regressor has a better convergence rate
m~% than ours m~z. A possible reason could be that the
gradient with respect to 6 is not conducive to optimizing the
objective, perhaps because of kernels in the denominator.
In contrast, MMCE with kernels only in the numerator is
conducive to gradient-based optimization.

MMCE: weighted vs unweighted In Section 3, Equation 7
we motivated the design of the weighted MMCE estimator
to surmount natural high accuracy bias in the training data.
In Table 3 we observe that this version (last column) indeed
provides a significant boost in accuracy over the original
MMCE version on most cases.

Trainable Calibration Measures from Kernel Mean Embeddings

Dataset Model MMCE,, Kernel Regression | Entropy penalty MMCE
ECE Acc% ECE Acc% | ECE Acc% | ECE Acc%
CIFAR 10 Resnet 50 32% 93.2% 4.9% 93.1% | 1.8% 93.0% | 1.2% 93.4%
CIFAR 10 Resnet 110 41% 93.6% 4.5% 93.6% | 2.1% 93.8% | 1.2% 94.0%
CIFAR 10 Wide Resnet 28-10 3.0% 95.0% 3.1% 95.1% | 2.8% 94.7% | 1.6% 94.2%
CIFAR 100 Wide Resnet 28-10 | 104% 77.1% | 12.2% 78.6% | 9.3% 779% | 89% 76.6%
HAR time series | LSTM 5.5% 89.8% 7.0% 90.2% | 2.7% 91.8% | 59% 90.3%
20 Newsgroups | Global Pool CNN 158% 75.1% | 18.8% 751% | 2.3% 742% | 6.5% 73.9%
IMDB Reviews | HAN 3.6% 86.6% 3.2% 85.7% | 0.6% 86.6% | 0.4% 86.3%

Table 3. ECE and accuracy over different methods that train using NLL+A CE. Observe that entropy penalty reduces ECE without
dropping accuracy. Kernel regression helps only in some cases and weighted MMCE is much better than the unweighted one (MMCE,,,).

Dataset Model Baseline Baseline + T MMCE MMCE + T Entropy
[CS99] Acc. | [CS99] Acc. | |CS99| Acc. | |[CS99| Acc. | |CS99| Acc.
CIFAR 10 | Resnet 110 89 97.65 40 99.57 72 99.69 68 99.79 7 96.96
CIFAR 10 | Resnet 50 86 98.04 51 99.68 67 99.68 66 99.71 26 98.04
IMDB HAN 48 98.28 12 99.48 193 99.40 19.1 99.24 18.6 99.20
20 NewsG | Global Pool 61 92.07 0 — 45 96.26 42 96.73 7 97.14
Birds Inception v3 55 98.68 40 99.31 48 99.34 41 99.40 37 99.01

Table 4. The fraction of test examples predicted with a confidence more than 99% and their accuracy. Observe that fixes like temperature
scaling and entropy penalty move many more points out of the high confidence zone than MMCE.

Tuning Calibration Weight A In Figure 3 we show the
effect on ECE for different values of A in the NLL+A CE
training objective for MMCE and Entropy regularizer as
CE. We find that compared to Entropy, MMCE is signifi-
cantly more stable with changing lambda. For example for
20Newsgroup, the entropy regularizer has a minima at 6 and
rises sharply on both sides whereas MMCE moves gradually
towards its flat minima. The accuracy values too (not shown
in Figure) do not change much with A for MMCE.

Computational Efficiency We compared the running
times per epoch of the baseline and the MMCE trained
model (on a NVIDIA Titan X GPU) (In Table 2 of supple-
mentary). Although, MMCE scales quadratically with the
number of examples we found that the wall-clock running
time per epoch for the MMCE algorithm was no more than
10% over the baseline. This is because the MMCE is re-
liably estimated even on ~ 100 examples that comprise a
batch because of its fast convergence properties.

In summary, our experiments demonstrate that training with
MMCE is a fast, stable, and accurate method to minimize
calibration error while maximally preserving high confi-
dence predictions.

7. Conclusion

We proposed MMCE a new measure of calibration error in
terms of universal kernels from a RKHS space. We ana-

lyzed MMCE theoretically and showed that it is minimized
only when the model is calibrated and its finite sample
estimate is consistent and converges at rate 1/v/m. The
measure can be used to jointly train the network parameters
to minimize both accuracy and calibration error. The joint
objective is easy to train and does not require very careful
hyper-parameter tuning unlike other similar regularizers e.g.
the entropy regularizer. Also, the running time overhead
is minimal unlike methods like Bayesian networks which
model prediction uncertainty at huge performance penalty.
Our model not only provides low ECE and high accuracy,
but also produces more predictions at high confidence levels
unlike previous smoothing approaches that indiscriminately
clamp large confidence scores. Our experiments showed
that modern neural networks suffer more from poor cali-
bration than over-confidence. Careful training objectives,
like MMCE, can fix poor calibration without reducing con-
fidence.

In future, we plan to apply MMCE to calibrate structured
prediction tasks, for example, the sequence to sequence
models used for translation.

Acknowledgements We thank all anonymous reviewers
for their comments and for pointing to the work on scoring
rules in statistics. We thank members of our group at IIT
Bombay, specifically Shiv Shankar, for discussions. We
gratefully acknowledge the support of NVIDIA corporation
for Titan X GPUs.

Trainable Calibration Measures from Kernel Mean Embeddings

References

Anguita, D., Ghio, A., Oneto, L., Parra, X., and L Reyes-
Ortiz, J. A public domain dataset for human activity
recognition using smartphones, 01 2013.

Bojarski, M., Testa, D. D., Dworakowski, D., Firner,
B., Flepp, B., Goyal, P, Jackel, L. D., Monfort, M.,
Muller, U., Zhang, J., Zhang, X., Zhao, J., and Zieba,
K. End to end learning for self-driving cars. CoRR,
abs/1604.07316, 2016. URL http://arxiv.org/
abs/1604.07316.

Candela, J. Q., Rasmussen, C. E., Sinz, F. H., Bousquet,
0., and Scholkopf, B. Evaluating predictive uncertainty
challenge. In Machine Learning Challenges, Evaluating
Predictive Uncertainty, Visual Object Classification and
Recognizing Textual Entailment, First PASCAL Machine
Learning Challenges Workshop, MLCW 2005, Southamp-
ton, UK, April 11-13, 2005, Revised Selected Papers, pp.
1-27, 2005.

Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., and
Elhadad, N. Intelligible models for healthcare: Predict-
ing pneumonia risk and hospital 30-day readmission. In
Proceedings of the 21th KDD 2015, KDD 15, pp. 1721-
1730, New York, NY, USA, 2015. ACM. ISBN 978-1-
4503-3664-2. doi: 10.1145/2783258.2788613.

Crowson, C. S., Atkinson, E. J., and Therneau, T. M. As-
sessing calibration of prognostic risk scores. Statistical
Methods in Medical Research, 25(4):1692—1706, 2016.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Scholkopf, B.,
and Smola, A. J. A kernel two-sample test. Journal of
Machine Learning Research, 13:723-773, 2012.

Guillaume Chevalier. LSTMs for Hu-
man Activity = Recognition. https://
github.com/guillaume-chevalier/
LSTM-Human—-Activity—-Recognition,
Online; accessed 27 January 2018.

2017.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
calibration of modern neural networks. In Proceedings of
the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
pp- 1321-1330, 2017.

Hastie, T., Tibshirani, R., and Friedman, J. The Elements
of Statistical Learning. Springer Series in Statistics.
Springer New York Inc., New York, NY, USA, 2001.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. CVPR, 2016.

Hendrycks, D. and Gimpel, K. A baseline for detecting
misclassified and out-of-distribution examples in neural
networks. In ICLR, 2017.

Ilya Ivanov. IMDB HAN model. https://github.
com/ilivans/tf-rnn—-attention, 2018. On-
line; accessed 27 January 2018.

Iyer, A., Nath, S., and Sarawagi, S. Maximum mean dis-
crepancy for class ratio estimation: Convergence bounds
and kernel selection. In ICML, 2014.

Jiang, X., Osl, M., Kim, J., and Ohno-Machado, L. Cal-
ibrating predictive model estimates to support person-
alized medicine. Journal of the American Medical
Informatics Association, 19(2):263-274, 2012. doi:
10.1136/amiajnl-2011-000291.

Keras Team. Keras pre-trained word embeddings example.
https://github.com/keras—-team/keras/
blob/master/examples/pretrained_word_
embeddings.py, 2018. Online; accessed 24 January
2018.

Krause, J., Sapp, B., Howard, A., Zhou, H., Toshev, A.,
Duerig, T., Philbin, J., and Fei-Fei, L. The unreasonable
effectiveness of noisy data for fine-grained recognition.
In Leibe, B., Matas, J., Sebe, N., and Welling, M. (eds.),
Computer Vision — ECCV 2016, pp. 301-320, Cham,
2016. Springer International Publishing.

Krizhevsky, A., Nair, V., and Hinton, G. Cifar-10 (canadian
institute for advanced research). a. URL http://www.
cs.toronto.edu/~kriz/cifar.html.

Krizhevsky, A., Nair, V., and Hinton, G. Cifar-100 (canadian
institute for advanced research). b. URL http://www.
cs.toronto.edu/~kriz/cifar.html.

Kuleshov, V. and Ermon, S. Estimating uncertainty online
against an adversary. In AAAI 2017.

Kuleshov, V. and Liang, P. S. Calibrated structured pre-
diction. In Cortes, C., Lawrence, N. D., Lee, D. D.,
Sugiyama, M., and Garnett, R. (eds.), NIPS, pp. 3474—
3482. 2015.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and scalable predictive uncertainty estimation using deep
ensembles. In NIPS, pp. 6405-6416. 2017.

Lee, K., Lee, H., Lee, K., and Shin, J. Training confidence-
calibrated classifiers for detecting out-of-distribution sam-
ples. In ICLR, 2018.

Li, Y., Swersky, K., and Zemel, R. Generative moment
matching networks. In Bach, F. and Blei, D. (eds.), ICML,
volume 37 of PMLR, pp. 1718-1727, Lille, France, 07-09
Jul 2015. PMLR.

Liang, S., Li, Y., and Srikant, R. Enhancing the reliability
of out-of-distribution image detection in neural networks.
ICLR, 2018.

http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
 https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition
 https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition
 https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition
https://github.com/ilivans/tf-rnn-attention
https://github.com/ilivans/tf-rnn-attention
https://github.com/keras-team/keras/blob/master/examples/pretrained_word_embeddings.py
https://github.com/keras-team/keras/blob/master/examples/pretrained_word_embeddings.py
https://github.com/keras-team/keras/blob/master/examples/pretrained_word_embeddings.py
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

Trainable Calibration Measures from Kernel Mean Embeddings

Lin, M., Chen, Q., and Yan, S. Network in network. CoRR,
abs/1312.4400, 2013.

Louizos, C. and Welling, M. Multiplicative normalizing
flows for variational Bayesian neural networks. In ICML,
volume 70, pp. 2218-2227, 2017.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y.,
and Potts, C. Learning word vectors for sentiment analy-
sis. In Proceedings of ACL: HLT, June 2011.

Muandet, K., Fukumizu, K., Sriperumbudur, B. K., and
Scholkopf, B. Kernel mean embedding of distributions: A
review and beyond. Foundations and Trends in Machine
Learning, 10(1-2):1-141, 2017.

Naeini, M. P., Cooper, G. F., and Hauskrecht, M. Obtaining
well calibrated probabilities using bayesian binning. In
AAAI 2015.

Nicolas Pinchaud. Fast Minibatch version of Tree
LSTM. https://github.com/nicolaspi/
treelstm, 2017. Online; accessed 31 January 2018.

Niculescu-Mizil, A. and Caruana, R. Predicting good prob-
abilities with supervised learning. In ICML, 2005.

Parry, M., Dawid, A. P., and Lauritzen, S. Proper local
scoring rules. ArXiv e-prints, January 2011.

Pereyra, G., Tucker, G., Chorowski, J., Kaiser, L., and
Hinton, G. E. Regularizing neural networks by penalizing
confident output distributions. /CLR workshop, 2017.

Platt, J. C. Probabilistic outputs for support vector machines
and comparisons to regularized likelihood methods. In
ADVANCES IN LARGE MARGIN CLASSIFIERS, pp. 61—
74. MIT Press, 1999.

Pleiss, G., Raghavan, M., Wu, F.,, Kleinberg, J. M., and
Weinberger, K. Q. On fairness and calibration. In NIPS,
pp- 5684-5693, 2017.

Socher, R., Huval, B., Manning, C. D., and Ng, A. Y. Seman-
tic Compositionality Through Recursive Matrix-Vector
Spaces. In EMNLP, 2012.

Tai, K. S., Socher, R., and Manning, C. D. Improved seman-
tic representations from tree-structured long short-term
memory networks. In ACL, 2015.

Tensorflow. CIFAR 10 model.
com/tensorflow/models/tree/master/
official/resnet, 2018. Online; accessed 21
January 2018.

Classification - Birds CUB 200 dataset
https://github.com/visipedia/tf_
classification,2018. Online; accessed 26 January
2018.

Vispedia.

https://github.

Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F.,
Belongie, S., and Perona, P. Caltech-UCSD Birds 200.
Technical Report CNS-TR-2010-001, California Institute
of Technology, 2010.

Xin Pan. CIFAR 100 model. https://github.
com/tensorflow/models/tree/master/
research/resnet, 2018. Online; accessed 21
January 2018.

Yan, H., Ding, Y., Li, P, Wang, Q., Xu, Y., and Zuo, W.
Mind the class weight bias: Weighted maximum mean
discrepancy for unsupervised domain adaptation. In 2017
IEEE CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,
pp. 945-954, 2017.

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A. J., and
Hovy, E. H. Hierarchical attention networks for document
classification. In HLT-NAACL, 2016.

Zadrozny, B. and Elkan, C. Transforming classifier scores
into accurate multiclass probability estimates. In ACM
SIGKDD, 2002.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
CoRR, abs/1605.07146, 2016.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning requires rethinking general-
ization. ICLR, 2017.

https://github.com/nicolaspi/treelstm
https://github.com/nicolaspi/treelstm
https://github.com/tensorflow/models/tree/master/official/resnet
https://github.com/tensorflow/models/tree/master/official/resnet
https://github.com/tensorflow/models/tree/master/official/resnet
https://github.com/visipedia/tf_classification
https://github.com/visipedia/tf_classification
https://github.com/tensorflow/models/tree/master/research/resnet
https://github.com/tensorflow/models/tree/master/research/resnet
https://github.com/tensorflow/models/tree/master/research/resnet

