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Abstract

The problem of splitting attributes is one of the main steps in the construction of decision trees.
In order to decide the best split, impurity measures such as Entropy and Gini are widely used.
In practice, Decision-tree inducers use heuristics for finding splits with small impurity when they
consider nominal attributes with a large number of distinct values. However, there are no known
guarantees for the quality of the splits obtained by these heuristics.

To fill this gap, we propose two new splitting procedures that provably achieve near-optimal
impurity. The first one, Hypercube Cover, is closely related with the well-established Twoing method
[Breiman et al. 84]. We prove that Hypercube Cover provides a 2-approximation of the minimum
impurity for a broad class of impurity measures that includes both Gini and Entropy. In addition, we
propose a very simple and efficient procedure that provides a constant approximation for the same
class of impurity measures.

We complement our study with a number of experiments that provide evidence that our methods
are interesting candidates to be employed in splitting nominal attributes with many values during
decision tree/random forest induction

1 Introduction

Decision Trees as well as ensemble methods that use them (e.g. Random Forests and Gradient Boosted
Trees) are among the most popular methods for classification tasks. It is widely known that deci-
sion trees, specially small ones, are easy to interpret while ensemble methods usually yield to more
stable/accurate classifications.

When building a decision tree, in each node, one needs to address two problems: which attribute shall
be used for branching, and how to split the chosen attribute, i.e., which values of the attribute go to
each branch. For the first problem we refer the reader to [10, 20]. Here we consider the latter, which is
a well-studied problem [2, 17, 4, 3, 6, 8]. More specifically, we focus on nominal attributes (i.e. finite
set of possible values with no additional structure such as order).

An important design choice is whether to use multiway splits or binary splits. One possibility is splitting
a nominal attribute with n distinct values into n branches, one for each value. When n is large, this
option may lead to a severe data fragmentation, which makes the classification task harder and increases
the risk of data overfit since we may have only a few examples associated with each branch. Note that
any decision tree obtained via multiway splits can be simulated by a decision tree that only uses binary
splits. Thus, we focus our study on binary splits.

The standard approach for deciding the split is to search for ‘pure’ partitions of the set of examples,
that is, partitions in which each branch is very homogeneous with respect to the class distribution of its
examples. To measure how impure each branch is impurity measures are often employed. An impurity
measure maps a vector u = (u1, . . . , uk), counting how many examples of each class we have in a node
(branch), into a non-negative scalar 1. Arguably, two of the most classical impurity measures are the

1In the original definition an impurity measure maps a vector of probabilities into a non-negative scalar.
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Gini impurity

iGini(u) =
k∑

i=1

ui
‖u‖1

(
1− ui
‖u‖1

)
,

which is used in the CART package [2], and the Entropy impurity

iEntr(u) = −
k∑

i=1

ui
‖u‖1

log

(
ui
‖u‖1

)
,

that along with its variants is used in the C4.5 decision tree inducer [22]. Given an attribute and an
impurity measure, the goal is then to find a binary split (L∗, R∗) for the attribute values that induces a
binary partition of the set of examples with minimum weighted impurity, where the weights are given
by the number of examples that lie into each of the two branches.

For classification tasks with only two classes, Breiman et al. [2] proposed an algorithm that finds a
partition with minimum weighted impurity in O(n log n) time for a family of impurity measures that
include both Gini and Entropy. For nominal attributes with a small number of distinct values n, the
best partition can be found in O(2n) time by an exhaustive search. However, when k > 2 and n is large
(e.g. states of a country, letters of the alphabet, breed of an animal), these methods are not effective.
Thus, heuristics are commonly used [17, 4, 16, 6, 15]. Despite the importance of this problem, little is
known about its computational complexity and the quality (approximation guarantee) of its heuristics.
Therefore, our goal here is contributing to fill this gap.

1.1 Problem Description

Given an impurity measure i (e.g. iGini), define I as I(v) = ‖v‖1 · i(v) for all vectors v. This scaled
impurity I is called frequency-weighted impurity measure in [6] and will be used to formalize our problem.

Consider a nominal attribute A that may take n possible values a1, . . . , an. The `-ary Partition with
Minimum Weighted Impurity Problem (`-PMWIP) can be described abstractly as follows. We are
given a collection of n vectors V ⊂ Rk, where the ith coordinate of the jth vector counts the number of
examples in class i for which the attribute A has value aj . We are also given a scaled impurity measure
I. The goal is to partition V into ` disjoint groups of vectors V1, . . . , V` so as to minimize the sum of
the weighted impurities ∑̀

m=1

I

( ∑
v∈Vm

v

)
.

We focus on binary partitions (2-PMWIP) and on a broad class of impurity measures that includes
both Gini and Entropy. These impurities have the form

I(v) = ‖v‖1

(
k∑

i=1

f

(
vi
‖v‖1

))
,

where f is a strictly concave function that satisfies a certain property that has to do with its curvature.
The formal definition of this class is postponed to Section 2.2.

1.2 Our Results

In this paper we propose new splitting procedures that provably achieve near-optimal impurity. Our
starting point is one of the results presented in [3, 6] that states that for every instance of 2-PMWIP,
where the impurity I satisfies certain conditions, there exists an optimal binary partition that is induced
by a homogeneous hyperplane in Rk. Building upon this result we prove that an optimal binary partition
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can be obtained by a non-homogenoeus hyperplane whose normal direction belongs to the box [0, 1]k.
Then, motivated by this observation, we propose and analyze two methods that belong to a family of
algorithms that search for binary partitions with reduced impurity by considering hyperplanes in Rk

whose normal lie in the hypercube {0, 1}k.

Our first algorithm, the Hypercube Cover (HcC for short), is closely related with the well established
Twoing method proposed in [2]. We prove that HcC has a 2-approximation for every impurity measure
in our class. A drawback of this method, however, is its running time proportional to 2k. Given this
limitation, we present LargestClassAlone (LCA for short), a simple algorithm that runs in O(nk +
n log n) time and provides a (3 +

√
3)-approximation for every impurity measure in our class. This

material is covered in Section 3. Furthermore, in Section 4, we show that the approximation ratio of
LCA for Gini and Entropy impurities is indeed much better, being at most 2 for the former and at most
3 for the latter. We also show that unless P = NP it is not possible to find the partition with minimum
impurity in polynomial time, even for the Entropy impurity.

To complement our theoretical findings, in Section 5 we present a set of experiments where we compare
the proposed methods with PCext and SLIQext, the two splitting methods that obtained the best results
in the study reported in [6]. Our experiments provide evidence that both methods proposed in this
paper are interesting candidates to be used in splitting nominal attributes with many values during
decision tree/random forest induction: HcC is preferable when the number of classes is small and LCA

is a good alternative when speed is an issue.

We believe that our set of results contributes to improving the current knowledge on a classical and still
relevant problem for both the Machine Learning and Data Mining communities.

1.3 Related Work

There have been theoretical investigations on methods to compute the best split efficiently [2, 4, 3, 6, 12].
As mentioned above, for the 2-class problem, Breiman et. al. [2] presented a simple algorithm that
finds the best binary partition in O(n log n) time for impurity measures in a certain class that includes
both Gini and Entropy. The correctness of this algorithm relies on a theorem, also proved in [2],
which is generalized for k > 2 classes and multiway partitions in [4, 3, 6]. Basically, these theorems
provide necessary conditions for partitions with minimum impurity and can be used to restrict the set
of partitions that need to be considered, as in the family of algorithms we study here. However, despite
their usefulness, these conditions do not yield a method that has running time polynomial on n and k.

Some heuristics for computing suboptimal partitions are available in the literature [2, 17, 16, 6, 15]. For
none of them approximation guarantees are available. The conclusion of the experiments reported in
[6] is that PCext, one of the methods proposed in that paper, overcomes Flip Flop [17] and SLIQ [16]
in terms of running time and the impurity of the partitions found.

Recently, motivated by applications on signal processing (e.g. construction of polar codes [24]), the
problem of computing the quantization of the output of a Discrete Memoryless Channel (DMC) that
provides the maximum mutual information with the DMC’s input has attracted a considerable attention
in the Information Theory community [24, 12, 11, 21, 19]. Kurkoski and Yagi [12] observed that this
problem is equivalent to `-PMWIP when the impurity measure is the Entropy, and proved that it can
be solved in polynomial time when k = 2. In [9, 19, 21, 11], upper and lower bounds on the difference
between the entropy impurity of the n-ary partition and the optimal `-ary partition are proved. These
bounds do not imply constant approximations for the problem we consider here.
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2 Preliminaries

We start defining some notations employed throughout the paper. An input for 2-PMWIP is a pair
(V, I), where V is a collection of non-null vectors in Rk with non-negative integer coordinates and I is
a scaled impurity measure. We assume that the vector

∑
v∈V v has no zero coordinates for otherwise

we would have an instance with less than k classes. For a set of vectors L, the impurity I(L) of L is
given by I(

∑
v∈L v). The impurity of a binary partition (L,R) of the set V is then I(L) + I(R). We

use optI(V ) to denote the minimum possible impurity for a binary partition of V and, whenever the
context is clear, we omit I from optI(V ). We say that a partition (L∗, R∗) is optimal for input (V, I) iff
I(L∗) + I(R∗) = optI(V ).

We use bold face to denote vectors. Given two vectors u = (u1, . . . , uk) and v = (v1, . . . , vk) we use u ·v
to denote their inner product and u ◦v = (u1v1, . . . , ukvk) to denote their component-wise (Hadamard)
product. We use 0 and 1 to denote the vectors in Rk with all coordinates equal to 0 and 1, respectively.
For a non-null vector v ∈ Rk

+ we use π(v) = v/‖v‖1 to denote the vector obtained by normalizing v
w.r.t. to the `1 norm. We use [m] to denote the set of the first m positive integers.

2.1 Concave Functions

We will need the following properties of one-dimensional concave functions.

Lemma 2.1. Let f : [0, 1]→ R be a continuous and concave function with f(0) = 0. Then:

1. (Subadditivity) For all x, y ≥ 0 we have f(x+ y) ≤ f(x) + f(y).

2. (Sublinearity) For all x ≥ 0 and α ≥ 1, f(αx) ≤ αf(x). In particular, for 0 < x ≤ y we have
f(x)
x ≥ f(y)

y (just set α = y
x)

3. If f(1) = 0, then for all 0 ≤ x ≤ y < 1

f(x)

1− x
≤ f(y)

1− y
.

Proof. The definition of concave functions assures

x

x+ y
f(x+ y) +

y

x+ y
f(0) =

x

x+ y
f(x+ y) ≤ f(x)

and
y

x+ y
f(x+ y) +

x

x+ y
f(0) =

y

x+ y
f(x+ y) ≤ f(y).

By adding the inequalities we establish the first item. The second item follows because the definition
of concave functions assures that f(x) ≥ (1/α)f(αx) + (1− 1/α)f(0) = (1/α)f(αx). For the third one,
we can apply the result given by the second item to the function g(x) = f(1 − x) (which is concave

and has g(0) = 0), obtaining that g(x)
x = f(1−x)

x is non-increasing in (0, 1], or equivalently, that f(x)
1−x is

non-decreasing in (0,1]. This concludes the proof.

The following inequality will be useful to simplify our calculations.

Corollary 2.2. Let f : [0, 1] → R be a concave function with f(0) = f(1) = 0 and let xn, xd, yn, yd be
such that 0 ≤ xn < xd and 0 < yn < yd. Then, we have

xdf(xn/xd) ≤ C ydf(yn/yd),

where

C = max

{
xd − xn
yd − yn

,
xn
yn

}
.

Proof. If xn/xd ≤ yn/yd we use item 3 of Lemma 2.1, otherwise we use item 2.
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2.2 Impurity Measures

We are interested in the class C of scaled impurity measures I that satisfy

I(u) = ‖u‖1
dim(u)∑
i=1

f

(
ui
‖u‖1

)
, (P0)

where dim(u) is the dimension of vector u and f : R→ R is a function satisfying the following conditions:

1. f(0) = f(1) = 0 (P1)

2. f is strictly concave in the interval [0,1] (P2)

3. For all 0 < p ≤ q ≤ 1

f(p) ≤ p

q
· f(q) + q · f

(
p

q

)
. (P3)

Impurity measures satisfying the conditions (P0)-(P2) are called frequency-weighted impurity measures
with concave functions [6]. These impurities measures are superadditive, as shown in [6].

Lemma 2.3 (Lemma 1 in [6]). If I satisfies (P0)-(P2) then for every vectors uL and uR in Rk
+, we

have I(uL + uR) ≥ I(uL) + I(uR).

Although property (P3) is not particularly intuitive it can be shown that if a simple constraint (xf ′′(x)
is non-increasing in the interval [0,1]) is imposed on the second derivative f ′′ of f then (P3) is also
satisfied. This result can be found in the appendix. Another interesting observation is that f(x) =
x(ln2(x)− 2 ln(x)) is an example of a function that satisfies both (P1) and (P2) but it does not satisfy
(P3).

The next lemma shows that both Gini and Entropy belong to the class C.

Lemma 2.4. The Gini measure IGini and the Entropy measure IEntr belong to C.

Proof. The measure IGini is obtained using the function fGini(x) = x(1−x), and IEntr is obtained using
the function fEntr(x) = x log 1

x . Clearly both functions satisfy property (P1), and it is known they also
satisfy (P2) [6]. So it remains to be shown that they satisfy property (P3).

For fGini, (P3) becomes

p(1− p) ≤ p(1− q) + p

(
1− p

q

)
∀q ∈ [p, 1]

which after canceling the p’s out and rearranging, is equivalent to p ≥ q + p
q − 1 for all q ∈ [p, 1], or

p ≥ maxq∈[p,1](q+ p
q −1). But the function in the max is convex in q, and hence its maximum is attained

at one of the endpoints q = p and q = 1; for these endpoints the inequality holds at equality, which
then proves the desired property.

For fEntr, a simple inspection shows that (P3) holds at equality.

The last lemma of this subsection shows that the impurity measures of our class satisfy a subsystem
property. It will be used in our analysis to relate the impurity of partitions for instances with k classes
with the impurity of partitions for instances with 2 classes.
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Lemma 2.5 (Subsystem Property). Let I be an impurity measure in C. Then, for every u ∈ Rk
+ and

every d ∈ [0, 1]k,

I(u) ≤ I
(

(u · d,u · (1− d))

)
+ I(u ◦ d) + I(u ◦ (1− d)) (2.1)

Proof. When u ·d = 0 or u · (1−d) = 0, the result trivially holds. Thus, we assume that both u ·d 6= 0
and u · (1 − d) 6= 0. Note that by the definition of I, inequality (2.1) is invariant to scaling u; thus,
to simplify the notation, we assume without loss of generality that ‖u‖1 = 1. The left-hand side of
inequality (2.1) is

∑
i f(ui), and the first term in the right-hand side is

f(d · u) + f((1− d) · u) =

k∑
i=1

(
uidi
d · u

)
f(d · u) +

k∑
i=1

(
ui(1− di)
(1− d) · u

)
f((1− d) · u).

Thus, we need to prove

k∑
i=1

f(ui) ≤
k∑

i=1

(
uidi
d · u

)
f(d · u) + (d · u)

k∑
i=1

f

(
uidi
d · u

)
+

k∑
i=1

(
ui(1− di)
(1− d) · u

)
f((1− d) · u) + ((1− d) · u)

k∑
i=1

f

(
ui(1− di)
(1− d) · u

)
Employing Property (P3) of f , with p = diui and q = d · u, we get

f(diui) ≤
diui
d · u

f(d · u) + (d · u)f

(
diui
d · u

)
Moreover, using property (P3) with p = (1− di)ui and q = (1− d) · u, we get

f(ui(1− di)) ≤
(

(1− di)ui
(1− d) · u

)
f((1− d) · u) + ((1− d) · u)f

(
(1− di)ui
(1− d) · u

)
The subadditivity of f implies f(ui) ≤ f(diui)+f((1−di)ui). Thus, by adding the previous inequalities
we obtain

f(ui) ≤ f(uidi) + f(ui(1− di)) ≤
diui
d · u

f(d · u) + (d · u)f

(
diui
d · u

)
+

(1− di)ui
(1− d) · u

f((1− d) · u) + ((1− d) · u)f

(
(1− di)ui
(1− d) · u

)
.

Adding the previous inequality over all i’s gives the result.

2.3 Necessary conditions for optimal partitions

We end this section presenting two results that give necessary conditions for optimal partitions. The
first one, proved in [2], yields to an O(n log n) time algorithm for 2-PMWIP when the number of classes
k is 2. The second one works for 2-PMWIP, with arbitrary k, and it is a reduced version of a more
general theorem that also works for `-ary partitions [3, 6]. Both results are stated using our notation.

Theorem 2.6 (Theorem 4.5 of [2]). Let I be an impurity measure satisfying properties (P0)-(P2) and
let V2 ⊆ R2

+. Moreover, for every v = (v1, v2) ∈ V2 let r(v) = v1/‖v‖1. Furthermore, let Pj be the set
containing the first j vectors of V2 when those are sorted with respect to r(). Then (Pj , V2 \ Pj), for
some j ∈ [n− 1], is an optimal partition for instance (V2, I).

Lemma 2.7 (Hyperplanes Lemma [3, 6]). Let I be an impurity measure satisfying properties (P0)-
(P2). If (L∗, R∗) is an optimal partition for an instance (V, I), then there is a vector d∗ ∈ Rk such that
d∗ · π(v) < 0 for every v ∈ L∗ and d∗ · π(v) > 0 for every v ∈ R∗.
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3 Constant Approximations for Impurity Measures in C
In this section we present approximation algorithms for finding binary partitions with reduced impu-
rity. We first analyze a general hyperplane-based procedure, and later specialize it to obtain different
approximation algorithms.

3.1 Analysis of a general hyperplane-based procedure

A direct consequence of the Hyperplanes Lemma (Lemma 2.7) above is that the search of the optimal
partition can be reduced to the search of a direction in Rk. In fact, it is easy to see that we can normalize
these directions to be in [0, 1]k, at the expense of working with non-homogeneous hyperplanes, as it is
shown in the next proposition.

Proposition 3.1. Let (L∗, R∗) be an optimal partition for input (V, I) and let d∗ ∈ Rk be such that
d∗ · π(v) < 0 for every v in L∗ and d∗ · π(v) > 0 for every v in R∗.

Then, there is a direction d ∈ [0, 1]k and a constant C such that d · π(v) < C for every v in L∗ and
d · π(v) > C for every v in R∗.

Proof. Let α = maxi |d∗i |. Define

d =
1− (d∗/α)

‖1− (d∗/α)‖∞
and

C =
1

‖1− (d∗/α)‖∞

To verify that d ∈ [0, 1]k, it is enough to observe that d∗/α lies in [−1, 1]k and (1− (d∗/α)) lies in Rk
+.

If d∗ · π(u) > 0 then

d · π(u) =
(1− (d∗/α)) · π(u)

‖1− (d∗/α))‖∞
=

1− (d∗π(u))/α

‖1− (d∗/α)‖∞
<

1

‖1− (d∗/α)‖∞
= C

On the other hand, if d∗ · π(u) < 0 then

d · π(u) =
(1− (d∗/α)) · π(u)

‖1− (d∗/α))‖∞
=

1− (d∗π(u))/α

‖1− (d∗/α)‖∞
>

1

‖1− (d∗/α)‖∞
= C

The previous observation motivates the definition of a family of algorithms indexed by a direction
d ∈ [0, 1]k. The algorithm Bd searches for a partition with reduced impurity by considering all the n−1
partitions of the input set V induced by the hyperplanes with normal d (Algorithm 1).

Algorithm 1 Bd (V : collection of vectors, I: impurity measure)

1: For each v in V let r(v) = (d · v)/‖v‖1
2: Rank the vectors in V according to r(v)
3: for j = 1, . . . , n− 1 do
4: Pj ← subset of V containing the j vectors with the largest value of r(·)
5: Evaluate the impurity of partition (Pj , V \ Pj)
6: end for
7: Return the partition (Pj∗ , V \ Pj∗) with the smallest impurity found in the loop

We present a general analysis of the quality of solution produced by algorithm Bd when d ∈ {0, 1}k.
More specifically, we prove the following theorem:
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Theorem 3.2. Let I(Bd) be the impurity of the partition returned by Bd for an instance (V, I). Then,
for every direction d ∈ {0, 1}k we have

I(Bd)

opt(V )
≤ 1 +

I(u ◦ d) + I(u ◦ (1− d))

mind′∈{0,1}k {I(u ◦ d′) + I(u ◦ (1− d′))}
(3.2)

The bound given by this theorem is the basis for the approximation algorithms obtained in the next
subsections since it motivates the use of a direction d such that I(u ◦ d) + I(u ◦ (1− d)) is minimized.
The remainder of this section is dedicated to prove Theorem 3.2.

One of the key ideas of the proof is to establish a relation between the impurity of the partition obtained
by Bd for the k-class instance (V, I) and the optimal impurity for the 2-class instance obtained by
collapsing all the classes corresponding to the coordinates of d with value 0 into one “super class”, and
all classes corresponding to the coordinates of d with value 1 into another super class. Recall that each
vector v ∈ V ⊆ Rk

+, which corresponds to an attribute value, counts in its coordinates the number
of examples of each of the k classes with the given attribute value. Then, in the collapsed 2-class
instance, this vector count becomes simply (

∑
i:di=1 vi,

∑
i:di=0 vi) = (v ·d,v · (1−d)). Thus, define the

operation collapsed : Rk
+ → R2

+ that maps v 7→ (v ·d,v ·(1−d)). Moreover, for a set of vectors S, define
collapsed(S) as the set obtained applying collapsed() to each vector of S. Therefore, from a k-class
instance (V, I) and a direction d ∈ {0, 1}k, we obtain the collapsed 2-class instance (collapsed(V ), I).

The main motivation for looking at 2-class instances is that we know from Theorem 2.6 that an optimal
partition can be obtained by sweeping the vectors according to some order, which is very similar to
what algorithm Bd is doing. To make this connection precise, let Ad be the algorithm obtained by
modifying Line 1 of Bd so that the impurity of the binary partition (collapsed(Pj), collapsed(V \Pj)) is
evaluated, rather than the impurity of (Pj , V \ Pj). The following proposition states that the impurity
Bd is at most that of Ad and that essentially the latter solves optimally the collapsed 2-class instance.

Proposition 3.3. Let (L,R) be the partition returned by Ad for the k-class instance (V, I) and let
I(Ad) be the impurity of (L,R). Then: (i) I(Bd) ≤ I(Ad) and (ii) (collapsed(L), collapsed(R)) is an
optimal partition for the 2-class instance (collapsed(V ), I).

Proof. The first item follows because both algorithms consider the same partitions and Bd returns the
one with minimum impurity.

The second item follows from Theorem 2.6 applied to the instance (collapsed(V ), I) because: (i) the
ranking function r(v) = (d · v)/‖v‖1 = collapsed(v)1/‖v‖1, used in algorithm Ad, is precisely the one
from Theorem 2.6. Hence, the n− 1 partitions considered in Theorem 2.6 match the collapsed version
of those considered in Line 1 of Ad and (ii) by construction Ad returns the partition (L,R) for which
its collapsed version (collapsed(L), collapsed(R)) has the smallest impurity.

Given the first item of the above proposition, it suffices to upper bound the impurity of the partition
(L,R) returned by Ad. To simplify the notation, let u =

∑
v∈V v, uL =

∑
v∈L v, and uR =

∑
v∈R v.

Also, for a direction d in {0, 1}k let d̄ = 1−d. The impurity of the partition (L,R) constructed by Ad

is
I(Ad) = I(uL) + I(uR).

From the Subsystem Property (Lemma 2.5) we get

I(Ad) ≤ I
(
(d · uL, d̄ · uL)

)
+ I(d ◦ uL) + I(d̄ ◦ uL) (3.3)

+ I
(
(d · uR, d̄ · uR)

)
+ I(d ◦ uR) + I(d̄ ◦ uR)
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= opt(collapsed(V )) + I(d ◦ uL) + I(d̄ ◦ uL) + I(d ◦ uR) + I(d̄ ◦ uR), (3.4)

where the last identity follows from the item (ii) of Proposition 3.3 because (d·uL, d̄·uL) =
∑

v∈collapsed(L) v

and (d · uR, d̄ · uR) =
∑

v∈collapsed(R) v.

Now we need to upper bound the last four terms in the RHS of the equation (3.4). Using the superad-
ditivity of I (Lemma 2.3) we have

I(Ad) ≤ opt(collapsed(V )) + I(d ◦ u) + I(d̄ ◦ u) (3.5)

Now we devise lower bounds on opt(V ). The first lower bound captures the intuitive fact that the
impurity in the multi-class problem is at least as large as that in the collapsed 2-class problem.

Lemma 3.4. For any input V and d ∈ {0, 1}k, we have opt(V ) ≥ opt(collapsed(V )).

Proof. For any u ∈ Rk
+ we have by definition

I(u) = ‖u‖1

 k∑
i|di=1

f

(
diui
‖u‖1

)
+

k∑
i|di=0

f

(
(1− di)ui
‖u‖1

) subadd.
≥

‖u‖1
(
f

(
u · d
‖u‖1

)
+ f

(
u · d̄
‖u‖1

))
= I(collapsed(u)), (3.6)

where the last identity follows from the definition of collapsed(u) and the fact ‖collapsed(u)‖1 = ‖u‖1.

Let (L∗, R∗) be an optimal partition of V . Moreover, let uL∗ =
∑

v∈L∗ v and uR∗ =
∑

v∈R∗ v. Thus,

opt(V ) = I(uL∗) + I(uR∗) ≥ I(collapsed(uL∗)) + I(collapsed(uR∗)) ≥ opt(collapsed(V )),

where the first inequality follows from inequality (3.6) and the last inequality follows because collapsed(L∗)
and collapsed(R∗)) form a partition for collapsed(V ).

For our second lower bound, we consider the relaxed problem where each example corresponds to a
distinct attribute value and the class distribution is equal to that of V . Formally, from the original
instance (V, I) we consider the instance (V ′, I), where V ′ contains ui copies of the standard basis vector
ei for i = 1, . . . , k.

Let opt(V ′) be the optimal solution to this relaxed problem. It is clear that opt(V ′) ≤ opt(V ), since
any partition for the collection V can be realized in the collection V ′.

It follows from Lemma 2.7 that, in the optimal partition, all vectors associated with the same class
(standard basis vectors) end up on the same side of the partition. Thus, the optimal solution for
instance (V ′, I) corresponds to a partition of the set of classes, and so

opt(V ) ≥ opt(V ′) = min
d′∈{0,1}k

{
I(u ◦ d′) + I(u ◦ (1− d′))

}
. (3.7)

Thus, by using the upper bound given by equation (3.5), the lower bound given by Lemma 3.4 and the
previous inequality we obtain that the RHS of inequality (3.2) is an upper bound on the approximation
ratio of algorithm Ad. This bound together with the first item of Proposition 3.3 establish Theorem
3.2.
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3.2 The Hypercube Cover procedure

The HcC method simply returns the best Bd among all possible directions d ∈ {0, 1}k, hence it equals
Bd′ for d′ satisfying

I(Bd′) = min
d∈{0,1}k

I(Bd).

To find d′, the algorithm examines all the 2k binary vectors in {0, 1}k.

Given the general analysis provided by Theorem 3.2, it is easy to obtain the following bound on the
approximation of HcC.

Theorem 3.5. HcC is a 2-approximation algorithm for every impurity measure in C. 2

Proof. Let d∗ ∈ {0, 1}k be such that

I(u ◦ d∗) + I(u ◦ (1− d∗)) = min
d∈{0,1}k

(I(u ◦ d) + I(u ◦ (1− d))) .

Moreover, let d′ be the direction employed by HcC.

Then,
I(Bd′)
opt(V )

≤ I(Bd∗)
opt(V )

≤ 1 +
I(u ◦ d∗) + I(u ◦ (1− d∗))

I(u ◦ d∗) + I(u ◦ (1− d∗))
= 2,

where the last inequality follows from Theorem 3.2

We shall mention that HcC is closely related with the Twoing method proposed in [2]. In fact, Twoing
considers all 2k possibilities of grouping the k classes into 2 super classes and, for each possibility,
optimally solves the 2-class problem; the best partition w.r.t. the 2-class problem is then returned. In
our notation, Twoing executes algorithm Ad, rather than Bd, for all directions d ∈ {0, 1}k and returns
the partition, among the 2k generated, with minimum impurity with respect to the collapsed problem.

It is also interesting to note that in [2] it was proved that if Twoing considers the Gini impurity for
solving its 2-class problems then it finds a partition of attribute values that optimizes a specific objective
function for the k-class problem that is significantly different from IGini.

3.3 LargestClassAlone: an O(nk + n log n)-time constant approximation

A limitation of HcC is its running time, which is exponential on the number of classes k. To address this
issue, we show that a simple algorithm with O(nk+n log n) running time has a constant approximation
for our class of impurity measures.

Recall that we are using u to denote
∑

v∈V v. In what follows we assume w.l.o.g. that class 1 is the
class with the largest number of examples, that is, u1 ≥ ui, for i = 2, . . . , k. Let e1 be the direction in
which the first coordinate, corresponding to class 1, has value 1 and the other coordinates have value
0. The next theorem shows that algorithm Be1 , denoted here by LargestClassAlone (LCA for short),
has a constant approximation for our class.

Theorem 3.6. LCA is an (3 +
√

3)−approximation for every impurity measure in the class C.

Proof. It follows from Theorem 3.2 that

I(LCA)

opt(V )
≤ I(Ae1)

opt(V )
≤ 1 +

I(u ◦ e1) + I(u ◦ (1− e1))

mind′∈{0,1}k {I(u ◦ d′) + I(u ◦ (1− d′))}
. (3.8)

2 The theorem holds under the weaker assumption that the subsystem property holds rather than property (P3).
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Thus, to establish the theorem it is enough to prove that, for every direction d in the hypercube {0, 1}k,

I(u ◦ e1) + I(u ◦ (1− e1))

I(u ◦ d) + I(u ◦ (1− d))
≤ (2 +

√
3). (3.9)

If either d = 0 or d = 1 the result follows from Lemma 2.3. Moreover, if either d = e1 or d = 1 − e1

the result trivially holds. Thus, we assume d /∈ {0,1, e1,1− e1}
In what follows, to simplify the notation we use S = u · d and T = u · (1 − d). Moreover, we use
S′ = S − u1d1 and T ′ = T − u1(1 − d1). We can assume w.l.o.g that S′ ≥ T ′ due to the symmetry of
the LHS of inequality (3.9) with respect to d. We split the proof into two cases according to whether
d1 = 1 or d1 = 0.

Case 1 d1 = 1. In this case T = T ′ and S′ = S − u1. The upper bound is given by

I(u ◦ e1) + I(u ◦ (1− e1)) = I(u ◦ (1− e1)) =
∑

i>1|di=1

(S′ + T )f

(
ui

S′ + T

)
+
∑
i|di=0

(S′ + T )f

(
ui

S′ + T

)
≤

∑
i>1|di=1

(S′ + T )f

(
ui

S′ + T

)
+ (S′ + T )f

(
T

S′ + T

)
+
∑
i|di=0

Tf
(ui
T

)
,

(3.10)

where the inequality follows from property (P3) of class of functions f(·), using p = ui/(S
′ + T ) and

q = ui/T . Note that T > 0 since T = u · (1− d) and d 6= 1.

Let B be a subset of [k] with the following properties: (i) B ⊆ {i|i > 1 and di = 1}; (ii)
∑

i∈B ui ≥ S′/2;
(iii) if a set B′ satisfies (i) and (ii) then

∑
i∈B ui ≤

∑
i∈B′ ui.

In addition, let B̄ = {i|i > 1 and di = 1} \B. We have that

I(u ◦ d) + I(u ◦ (1− d)) =
∑
i|di=1

(S′ + u1)f

(
ui

S′ + u1

)
+
∑
i|di=0

T · f
(ui
T

)
>

2

3

∑
i>1|di=1

(S′ + u1)f

(
ui

S′ + u1

)
+

1

3
(S′ + u1)

∑
i∈B∪B̄∪{1}

f

(
ui

S′ + u1

)
+
∑
i|di=0

T · f
(ui
T

)
≥

2

3

∑
i>1|di=1

(S′ + u1)f

(
ui

S′ + u1

)
+

1

3
(S′ + u1)

(
f

(∑
i∈B ui

S′ + u1

)
+ f

(
u1 +

∑
i∈B̄ ui

S′ + u1

))
+
∑
i|di=0

T · f
(ui
T

)
where the last inequality follows from the subadditivity of f .

Thus, putting together (3.10) and the previous inequality, we conclude that the left term of (3.9) is at
most

max


∑

i>1|di=1(S′ + T )f
(

ui
S′+T

)
2
3

∑
i>1|di=1(S′ + u1)f

(
ui

S′+u1

) , (S′ + T )f
(

T
S′+T

)
1
3(S′ + u1)

(
f
(∑

i∈B ui

S′+u1

)
+ f

(
u1+

∑
i∈B̄ ui

S′+u1

)) ,∑i|di=0 T · f
(
ui
T

)∑
i|di=0 T · f

(
ui
T

)
 ≤ 3,

where the inequality can be proved by applying Corollary 2.2 to the 2 first terms in the max expression
above. In fact, for the first term we have

∑
i>1|di=1(S′ + T )f

(
ui

S′+T

)
2
3

∑
i>1|di=1(S′ + u1)f

(
ui

S′+u1

) ≤ 3

2
max

i>1|di=1

{
S′ + T − ui
S′ + u1 − ui

}
≤ 3

2

(
S′ + T

S′

)
≤ 3,
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where the second inequality follows because u1 ≥ ui and the last one because S′ ≥ T . For the second
term we have

(S′ + T )f
(

T
S′+T

)
1
3(S′ + u1)

(
f
(∑

i∈B ui

S′+u1

)
+ f

(
u1+

∑
i∈B̄ ui

S′+u1

)) =

1
2(S′ + T )f

(
T

S′+T

)
+ 1

2(S′ + T )f
(

T
S′+T

)
1
3(S′ + u1)

(
f
(∑

i∈B ui

S′+u1

)
+ f

(
u1+

∑
i∈B̄ ui

S′+u1

)) ≤
3

2
max

{
T∑
i∈B ui

,
S′

S′ + u1 −
∑

i∈B ui
,

T

u1 +
∑

i∈B̄ ui
,

S′

S′ −
∑

i∈B̄ ui

}
=

3

2
max

{
T∑
i∈B ui

,
S′

S′ + u1 −
∑

i∈B ui
,

T

S′ + u1 −
∑

i∈B ui
,

S′∑
i∈B ui

}
≤ 3

where the last inequality holds because: (a) S′ ≥ T = T ′; (b) the choice of B assures that
∑

i∈B ui ≥
S′/2; (c) the minimality of B assures that

∑
i∈B ui − u1 ≤ S′/2 so that S′/2 ≤ S′ + u1 −

∑
i∈B ui

Case 2) d1 = 0.

In this case S = S′. Let c a constant larger than 1 that will be defined later in the analysis. In addition,
let D− = {i|di = 1 and ui < S/c} and D+ = {i|di = 1 and ui ≥ S/c}. We handle in different ways the
case where there is a large class and the case where there is not.

Subcase 2.1) u1 ≥ S/c
We have that

I(u◦e1)+I(u◦(1−e1)) =
∑
i∈D−

(S+T ′)f

(
ui

S + T ′

)
+
∑
i∈D+

(S+T ′)f

(
ui

S + T ′

)
+

∑
i>1|di=0

(S+T ′)f

(
ui

S + T ′

)
≤

∑
i∈D−

(S + T ′)f

(
ui

S + T ′

)
+
∑
i∈D+

S · f
(ui
S

)
+ (S + T ′)f

(
S

S + T ′

)
+

∑
i>1|di=0

(S + T ′)f

(
ui

S + T ′

)
,

where the inequality follows from property (P3) of the class of functions f , using p = ui/(S + T ′) and
q = ui/S. Note that S > 0 since S = u · d and d 6= 0.

On the other hand,

I(u◦d)+I(u◦(1−d)) =
∑
i∈D−

S·f
(ui
S

)
+
∑
i∈D+

S·f
(ui
S

)
+(u1+T ′)·f

(
u1

u1 + T ′

)
+

∑
i>1|di=0

(u1+T ′)·f
(

ui
u1 + T ′

)

Thus, by comparing the 4 summands in the upper bound with the 4 summands in the lower bound we
conclude that the left term of (3.9) is at most

max


∑

i∈D−(S + T ′)f
(

ui
S+T ′

)
∑

i∈D− S · f
(
ui
S

) ,

∑
i∈D+ S · f

(
ui
S

)∑
i∈D+ S · f

(
ui
S

) , (S + T ′)f
(

S
S+T ′

)
(u1 + T ′) · f

(
u1

u1+T ′

) , ∑
i>1|di=0(S + T ′)f

(
ui

S+T ′

)
∑

i>1|di=0(u1 + T ′) · f
(

ui
u1+T ′

)
 ≤

max

{
2− 1/c

1− 1/c
, c

}
, (3.11)
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where the inequality can be proved by applying Corollary 2.2 to the terms in the max expression above.
In fact, for the first term we have∑

i∈D−(S + T ′)f
(

ui
S+T ′

)
∑

i∈D− S · f
(
ui
S

) ≤ max
i∈D−

{
S + T ′ − ui
S − ui

}
≤ 2S − S/c

S − S/c
=

2− 1/c

1− 1/c
,

where the last inequality holds because ui < S/c since i ∈ D−.

The second term of the max expression is equal to 1. For the third term, we have

(S + T ′)f
(

S
S+T ′

)
(u1 + T ′) · f

(
u1

u1+T ′

) ≤ max

{
S

u1
, 1

}
≤ c

Finally, for the fourth term we have

∑
i>1|di=0(S + T ′)f

(
ui

S+T ′

)
∑

i>1|di=0(u1 + T ′) · f
(

ui
u1+T ′

) ≤ max
i>1|di=0

{
S + T ′ − ui
u1 + T ′ − ui

}
≤ max

{
S

u1
, 1

}
≤ c

Subcase 2.2) u1 < S/c

We have that

I(u ◦ e1) + I(u ◦ (1− e1)) =
∑
i|di=1

(S + T ′)f

(
ui

S + T ′

)
+

∑
i>1|di=0

(S + T ′)f

(
ui

S + T ′

)
≤

∑
i|di=1

(S + T ′)f

(
ui

S + T ′

)
+

∑
i>1|di=0

T ′ · f
(ui
T ′

)
+ (S + T ′)f

(
T ′

S + T ′

)
,

where the inequality follows from property (P3) of the class of functions f , using p = ui/(S + T ′) and
q = ui/T

′. Note that T ′ > 0 since T ′ = u · (1− d)− u1 and d 6= (1− e1).

Let B be a subset of {j|dj = 1} for which
∣∣∑

i∈B ui − S/2
∣∣ is minimum. It follows that

S/2− (S/2c) ≤
∑
i∈B

ui ≤ S/2 + (S/2c). (3.12)

Indeed, if
∑

i∈B ui > S/2 + (S/2c), then the subset B′ = B − {j}, where j is an arbitrary element in B
is such that

|S/2| <

∣∣∣∣∣∑
i∈B′

ui − S/2

∣∣∣∣∣ <
∣∣∣∣∣∑
i∈B

ui − S/2

∣∣∣∣∣ ,
which contradicts the minimality of B. If,

∑
i∈B ui < S/2 − (S/2c), we can reach a contradiction via

an analogous argument.

Let B̄ = {j|dj = 1} \B. Let α be a positive real number smaller than 1. We have that

I(u ◦d) + I(u ◦ (1−d)) = α
∑
i|di=1

S · f
(ui
S

)
+
∑
i|di=0

(T ′+u1) · f
(

ui
u1 + T ′

)
+ (1−α)

∑
i∈B∪B̄

S · f
(ui
S

)
≥
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α
∑
i|di=1

S · f
(ui
S

)
+

∑
i>1|di=0

(T ′ + u1) · f
(

ui
u1 + T ′

)
+ (1− α)S ·

(
f

(∑
i∈B ui

S

)
+ f

(∑
i∈B̄ ui

S

))
,

where the inequality follows from the subadditivity of f().

Thus, the left term of (3.9) is at most

max


∑

i|di=1(S + T ′)f
(

ui
S+T ′

)
α
∑

i|di=1 S · f
(
ui
S

) ,

∑
i>1|di=0 T

′ · f
(
ui
T ′

)
∑

i>1|di=0(T ′ + u1) · f
(

ui
u1+T ′

) , (S + T ′)f
(

T ′

S+T ′

)
(1− α)S ·

(
f
(∑

i∈B ui

S

)
+ f

(∑
i∈B̄ ui

S

))
 ≤

max

{
2− 1/c

(1− 1/c)α
,

c

(c− 1)(1− α)

}
, (3.13)

where, again, the inequality can be proved by applying Corollary 2.2 to the terms in the max expression
above. In fact, for the first term of max we have

∑
i|di=1(S + T ′)f

(
ui

S+T ′

)
α
∑

i|di=1 S · f
(
ui
S

) ≤
(

1

α

)
max
i|di=1

{
S + T ′ − ui
S − ui

}
≤ 2− 1/c

(1− 1/c)α
,

where the last inequality holds because T ′ ≤ S and ui ≤ S/c.
For the second term we have∑

i>1|di=0 T
′ · f

(
ui
T ′

)
∑

i>1|di=0(T ′ + u1) · f
(

ui
u1+T ′

) ≤ max

{
1,

T ′ − ui
T ′ + u1 − ui

}
= 1

Finally, for the last term we have

(S + T ′)f
(

T ′

S+T ′

)
(1− α)S ·

(
f
(∑

i∈B ui

S

)
+ f

(∑
i∈B̄ ui

S

)) =

S+T ′

2 f
(

T ′

S+T ′

)
+ S+T ′

2 f
(

T ′

S+T ′

)
(1− α)S ·

(
f
(∑

i∈B ui

S

)
+ f

(∑
i∈B̄ ui

S

)) ≤ (3.14)

1

2(1− α)
max

{
T ′∑
i∈B ui

,
S

S −
∑

i∈B ui

}
≤ c

(c− 1)(1− α)
, (3.15)

where the last inequality is a consequence of S ≥ T ′ and inequalities 3.12.

The ratio 3 +
√

3 is obtained by considering inequalities (3.11) and (3.13), setting c = 2 +
√

3 and
α = (3−

√
3)/2.

4 Improved Approximations for Gini and Entropy

Here we show that we can obtain better approximations, with polynomial running time on n and k,
when we focus on specific impurity measures. We consider both Gini and Entropy.

The key idea for the improvement is to characterize the direction that minimizes the denominator of the
upper bound on the approximation ration given by Theorem 3.2. It will be interesting to observe how
Gini and Entropy behave significantly different in this sense, with the latter favoring balanced partition.
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4.1 Gini

We prove that LCA is a 2-approximation algorithm for IGini. To achieve this goal we show that, when
I = IGini, e1 is a direction that minimizes the expression I(u ◦d′) + I(u ◦ (1−d′)) that appears on the
denominator of the righthand side of inequality (3.2).

Lemma 4.1. The direction e1 satisfies

IGini(u ◦ e1) + IGini(u ◦ (1− e1)) = min
d∈{0,1}k

{IGini(u ◦ d) + IGini(u ◦ (1− d))}.

Proof. We have to prove that

IGini(u ◦ e1) + IGini(u ◦ (1− e1)) ≤ IGini(u ◦ d) + IGini(u ◦ (1− d)),

for every d ∈ {0, 1}k. For d = 0 and d = 1 the inequality follows from Lemma 2.3. Thus, we assume
that both d 6= 0 and d 6= 1.

It follows from the definition of IGini(·) that

IGini(u◦d)+IGini(u◦(1−d)) = (u·d)

(
(u · d)2 −

∑
i|di=1(ui)

2

(ud)2

)
+(u(1−d))

(
(u(1− d))2 −

∑
i|di=0(ui)

2

(u(1− d))2

)
=

‖u‖1 −

(∑
i|di=1(ui)

2

u · d

)
−

(∑
i|di=0(ui)

2

u(1− d)

)

Define g(d) as the sum of two last terms of the above expression, that is,

g(d) =

(∑
i|di=1(ui)

2

u · d

)
+

(∑
i|di=0(ui)

2

u(1− d)

)

It is enough to prove that g(e1) ≥ g(d) for an arbitrary d. For that, we assume w.l.o.g. that d1 = 1
due to the symmetry of g(d) with respect to d.

Let

α =

∑
i>1|di=1(ui)

2∑
i>1|di=1 ui

and β =

∑
i|di=0(ui)

2∑
i|di=0 ui

Thus,

g(d) =
(u1)2 + α(u · d− u1)

u1 + (u · d− u1)
+ β

Moreover, we can write g(e1) as a function of d

g(e1) = u1 +
α(u · d− u1) + βu(1− d)

(u · d− u1) + u(1− d)

The following inequalities will be useful: α, β ≤ u1 since u1 ≥ ui for all i, (u · d − u1) ≥ α and
u(1− d) ≥ β.

We need to prove that

g(e1) = u1 +
α(u · d− u1) + β(u(1− d))

(u · d− u1) + u(1− d)
≥ (u1)2 + α(u · d− u1)

u1 + (u · d− u1)
+ β = g(d),
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or equivalently,

u1(u · d− u1)

u1 + (u · d− u1)
− α(u · d− u1)

u1 + (u · d− u1)
≥ β(u · d− u1)

u · (1− d) + (u · d− u1)
− α(u · d− u1)

u · (1− d) + (u · d− u1)

Simplifying the terms we need to prove

(β − α)[(u · d− u1) + u1] ≤ (u1 − α)[(u · d− u1) + u · (1− d)]

which is equivalent to

βu1 − αu1 ≤ (u1 − β)(u · d− u1) + (u1 − α)u · (1− d), (4.16)

However, because α, β ≤ u1, (u · d− u1) ≥ α and u · (1− d) ≥ β, we have

(u1 − β)α+ (u1 − α)β ≤ (u1 − β)(u · d− u1) + (u1 − α)u · (1− d).

Thus, to establish inequality (4.16), it is enough to prove that

βu1 − αu1 ≤ (u1 − β)α+ (u1 − α)β,

or, equivalently,
αβ ≤ αu1.

The last inequality holds because u1 ≥ β.

A direct consequence of the previous lemma and Theorem 3.2 is that LCA gives a 2-approximation for
IGini.

Theorem 4.2. LCA is a 2-approximation for the Gini impurity measure.

A natural question is whether the analysis is tight. The following example shows that this is the case
for algorithm Ae1 .

Let x > c > 0. We consider the instance V = {(x, 0, 0), (0, x, 0), (c, 0, c)}. Algorithm Ae1 solves the
2-class problem for collapse1(V ) = {(x, 0), (0, x), (c, c)}. One optimal solution for this problem is the
partition L = {(x, 0)} and R = {(0, x), (c, c)}. By evaluating the corresponding non-collapsed partition
L̃ = {(x, 0, 0)} and R̃ = {(0, x, 0), (c, 0, c)} for the original problem with 3 classes we obtain

IGini(L̃) + IGini(R̃) =
4xc+ 2c2

x+ 2c

On the other hand, consider the partition (L∗, R∗) of V , where L∗ = {(x, 0, 0), (c, 0, c)} and R∗ =
{(0, x, 0)}. We have

IGini(L
∗) + IGini(R

∗) =
2xc+ 2c2

x+ 2c

Thus, the ratio between the cost of the partition provided by Ae1 and the partition (L∗, R∗) is (2x +
c)/(x+ c), which goes to 2 when x/c goes to ∞.

For LCA (which is Be1) we are not aware whether the approximation is tight or not. The worst example
we know has impurity 4/3 larger than the optimal one.
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4.2 Entropy

In this section we show that, for the Entropy impurity, LCA achieves an approximation ratio better than
the one given by Theorem 3.6.

Let us define the balance of a direction d in {0, 1}k with respect to u as min{u · d,u · (1 − d)}. The
next lemma shows that the most balanced direction with respect to u is the one that minimizes the the
denominator in the upper bound on the approximation ratio given by inequality 3.2.

Lemma 4.3. Let d and d′ be directions in {0, 1}k. Then,

IEnt(u ◦ d) + IEnt(u ◦ (1− d)) < IEnt(u ◦ d′) + IEnt(u ◦ (1− d′))

if and only if d is more balanced than d′ with respect to u, that is, min{du, (1 − d) · u} > min{d′ ·
u, (1− d′) · u}.

Proof. We have that

IEnt(u ◦ d) + IEnt(u ◦ (1− d)) = u · d log(u · d) + u · (1− d) log(u · (1− d)) +

k∑
i=1

ui log(1/ui) =

u · d log(u · d) + (‖u‖1 − u · d) log(‖u‖1 − u · d) +
k∑

i=1

ui log(1/ui)

Let p = u · d/‖u‖1. The above expression can be rewritten as

‖u‖1(p log p+ (1− p) log(1− p)) + ‖u‖1 log ‖u‖1 +

k∑
i=1

ui log(1/ui)

The result follows because the above expression as a function of p is unimodal and symmetric around
p = 1/2, where it achieves its minimum value.

Let d∗ be the most balanced direction in {0, 1}k with respect to u. The previous result together with
Theorem 3.2 guarantee that algorithm Bd∗ is a 2-approximation for the Entropy impurity. The direction
d∗ can be constructed in O(k

∑
v∈V ‖v‖1) time using an algorithm for the subset sum problem [7].

Theorem 4.4. There exists a 2-approximation algorithm for the entropy impurity measure that runs
in O(k

∑
v∈V ‖v‖1) time.

The next theorem shows that the approximation of LCA is at most 3.

Theorem 4.5. LCA is a 3-approximation for the Entropy impurity measure.

Proof. It follows from Theorem 3.2 and Lemma 4.3 that

IEnt(LCA)

opt(V )
≤ 1 +

IEnt(u ◦ e1) + IEnt(u ◦ (1− e1))

IEnt(u ◦ d∗) + IEnt(u ◦ (1− d∗))
≤ 1 +

IEnt(u ◦ (1− e1))

IEnt(u ◦ d∗) + IEnt(u ◦ (1− d∗))
, (4.17)

where d∗ is the most balanced direction in {0, 1}k with respect to vector u.

We can assume w.l.o.g. that d∗1 = 0 due to the symmetry between d∗ and (1 − d∗) in the above
equation. We also assume d∗ 6= (1 − e1) for otherwise LCA has approximation ratio equals to 2. This
last assumption implies that d∗i = 0 for some i > 1. In addition, we have d∗i = 1 for some i for otherwise
d∗ is not the most balanced direction in {0, 1}k.
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To simplify the notation let S = u · d∗, T = u · (1− d∗) and T ′ = T − u1. Hence, we have

IEnt(LCA)

opt(V )
≤ 1 +

∑k
i=2 ui log

(
S+T ′

ui

)
∑

i|d∗i =1 ui log
(

S
ui

)
+
∑

i|d∗i =0 ui log
(
T ′+u1

ui

)

= 1 +

∑
i|d∗i =1 ui log

(
S+T ′

ui

)
+
∑

i>1|d∗i =0 ui log
(
S+T ′

ui

)
∑

i|d∗i =1 ui log
(

S
ui

)
+
∑

i|d∗i =0 ui log
(
T ′+u1

ui

) (4.18)

The following properties will be useful for the analysis:

(i) S ≥ T ′;

(ii) S ≥ u1;

(iii) S ≤ T ′ + 2u1.

If property (i) does not hold we would have a direction more balanced than d∗ by setting d∗1 = 1.
Similarly, if property (ii) does not hold we could obtain a direction more balanced than d∗ by setting
d∗i = 1 for some i > 1 such that d∗i = 0. To see that property (iii) holds, let i with d∗i = 1. We must have
S − ui ≤ T ′ + u1 for otherwise we could obtain a direction more balanced than d∗ by setting d∗i = 0.
Thus, S ≤ T ′ + u1 + ui ≤ T ′ + 2u1.

To obtain a bound on the rightmost side of inequality (4.18), we analyze separately each i > 1. For any
i with d∗i = 1 and ui ≤ S/2, we have that

ui log(S+T ′

ui
)

ui log( S
ui

)
≤
ui log(2S

ui
)

ui log( S
ui

)
=
ui

(
1 + log( S

ui
)
)

ui log( S
ui

)
≤ 2,

where the first inequality follows form property (i) and the last inequality holds because log(S/ui) > 1
since ui ≤ S/2.

For i with d∗i = 1 and ui > S/2 we have that

ui log(S+T ′

ui
)

u1 log(T
′+u1
u1

) + ui log( S
ui

)
≤

ui log(T
′+S
ui

)

ui log(T
′+u1
u1

) + ui log( S
ui

)
=

log(T
′+S
ui

)

log
(

(T ′+u1)S
u1ui

) ≤ 1

where the last inequality uses property (ii), S ≥ u1, to ensure that (T ′ + S)/ui ≤ (T ′ + u1)S/(u1ui).

For any i > 1, with d∗i = 0, we have that

ui log(S+T ′

ui
)

ui log(T
′+u1
ui

)
≤
ui log(2T ′+2u1

ui
)

ui log(T
′+u1
ui

)
=
ui

(
log(T

′+u1
ui

) + 1
)

ui log(T
′+u1
ui

)
≤ 2,

where the first inequality follows from property (iii) and the last inequality holds because T ′ + u1 ≥
2ui.

Given Lemma 4.3, a straightforward reduction from PARTITION problem shows that 2-PMWIP is
NP-hard even when I is the Entropy measure.
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Theorem 4.6. The 2-PMWIP for the Entropy impurity measure is NP-Hard.

Proof. The idea is to show a reduction from the NP-Complete problem Partition using the fact that
for some specific instances of our problem, the optimal partition is the most balanced one.

Consider an instance of Partition given by a multiset U = {u1, . . . , uk} of integers (recall in this
problem we want to decide whether this multiset can be partitioned in two sub-multisets with the same
sum of elements). Create an instance (V, IEntr) of our problem as follows: for each number ui ∈ U add
the scaled canonical vector vi = uiei to V .

Let (L,R) be a binary partition of V and let u =
∑

v∈V v = (u1, . . . , uk). If d ∈ {0, 1}k is the direction
corresponding to partition (L,R), that is, di = 1 iff vi ∈ L then the impurity of (L,R) is given by

IEntr(u ◦ d) + IEntr(u ◦ (1− d))

It follows from Lemma 4.3 that the above expression is minimized when

min{u · d,u · (1− d)} = min

 ∑
i|vi∈L

ui,
∑

i|vi∈R

ui


is maximized.

Thus, if we can find in polytime such minimizing partition for V , we can decide whether U can be
partitioned into multisets with the same sum. This concludes the reduction.

The complexity of the problem for the case where I is the scaled Gini impurity measure remains open.

5 Experiments

To complement our theoretical study we report a number of experiments with the methods pro-
posed/analyzed in the previous sections.

5.1 Evaluation of Splits Impurity

Our experiments are very similar to those in [6] except for a few details. All experiments are Monte
Carlo simulations with 10,000 runs, each using a randomly-generated contingency table for the given
number of values n and classes k. By a contingency table we mean a matrix where each row corresponds
to a distinct vector of the input V . Each table was created by uniformly picking a number in {0, . . . , 7}
for each entry. This guarantees a substantial probability of a row/column having some zero frequencies,
which is common in practice. Differing from [6], if all the entries corresponding to a value or a class are
zero, we re-generate the contingency table, otherwise the number of actual values and classes would not
match n and k.

We compared the following splitting methods: HcC, LCA, SLIQext and PCext. SLIQext is a variant,
presented in [6], of the SLIQ method proposed in [16]. It starts with the partition (V, ∅) and then
it greedily moves, from the ’left’ to the ’right’ partition, the vector that yields to the partition with
minimum impurity until the the partition (∅, V ) is reached; the best partition found in this process
is returned. PCext is a method proposed in [6] that defines the partition for the vectors in V by
using a hyperplane in Rk whose normal direction is the principal direction of a certain contingency
table associated with the instance. According to the experiments reported in [6] PCext and SLIQext

outperformed other available methods, such as the Flip Flop method [17], in terms of the impurity of
the partitions found.
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Table 1 and 2 show, for different values of n and k, the percentage of times each method is at least
as good as the other competitors for Gini and Entropy, respectively. We only show results for k ≤ 9
because, for larger values of k, HcC becomes non-practical due to its running time. Furthermore, we
do not present results for small values of n because, in this case, the optimal partition can be found
reasonably quick through an exhaustive search, hence there is no motivation for heuristics.

In general, we observe an advantage of HcC for both the impurity measures, being much more evident for
Entropy impurity. We also observe that LCA presents the worst results. Additional experiments where
we set the maximum possible value in the contingency table to 2 and 15, rather than to 7, presented
similar behavior.

Table 1: Percentage of wins for PCExt, HcC, SLIQext and LCA for Gini impurity. The best result for
each configuration is bold faced.

Methods
n

k
3 5 7 9

HcC 97.3 99.2 99.9 100.0
PCext 12 91.2 88.0 86.6 85.0
SliqExt 89.9 81.9 78.3 75.5
LCA 42.8 19.1 11.5 8.5
HcC 73.9 65.8 73.3 85.3

PCext 25 72.7 62.4 58.8 53.2
SliqExt 78.8 64.6 57.9 52.5
LCA 24.3 5.9 2.0 0.8
HcC 51.4 33.1 31.0 33.9

PCext 50 50.6 41.1 40.7 37.8
SliqExt 68.1 53.1 47.1 42.9
LCA 16.0 3.3 1.0 0.4

Table 2: Percentage of wins for PCExt, HcC, SLIQext and LCA for Entropy impurity. The best result
for each configuration is bold faced.

Methods
n

k
3 5 7 9

HcC 98.3 99.4 100 100
PCext 12 80.2 74.2 73.2 72.4
SliqExt 87.5 78.2 75.2 72.8
LCA 33.5 13.6 8.3 6.8
HcC 83.3 76.9 81.0 87.7

PCext 25 54.4 42.7 39.2 37.7
SliqExt 71.8 57.1 52.1 47.1
LCA 18.5 5.3 2 1.3
HcC 70.0 57.4 53.5 52.5

PCext 50 29.5 22.0 21.7 22.1
SLIQext 55.1 42.5 38.8 36.2
LCA 13.4 3.7 1.6 0.8

It is also interesting to observe how far the impurity of the partition generated by a splitting method
may be with respect to the best partition found by the other methods. To measure this distance, let us
define the relative excess (in percentage) of a partition P w.r.t. a partition Q as 100× (I(P )/I(Q)− 1).
The maximum relative excess observed for the partitions generated by HcC, with respect to the partitions
generated by the other methods, was 2% and 1.9% for Gini and Entropy, respectively. For SLIQext,
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Table 3: Each entry is the ratio between the average running time of the method and the average
running time of LCA, which is the fastest of them.

Methods
n

k
3 5 7 9

HcC 1.6 6.8 30.8 138.4
PCext 12 3.5 3.3 3.2 3.5

SliqExt 5.4 5.5 6.3 7.2
HcC 1.7 8.9 41.2 174.7

PCext 25 5.1 5.6 6 6.1
SliqExt 21.6 24.5 28 30

HcC 2.2 10.8 45.4 181.5
PCext 50 8.6 10.1 10 10.2

SLIQext 90.6 101.2 104.7 107.6

the maximum relative excess observed was 9.4% for Gini and 14% for Entropy. For PCext, we observed
3.7% for Gini and 21.6% for Entropy. Finally, for LCA, we had 22.3% for Gini and 43.6% for Entropy.
We note that most of these results were attained with n = 12 and k = 3.

These numbers suggest that the risk of finding a ‘bad’ partition is smaller when HcC is used, specially
for the Entropy impurity.

Table 3 presents a comparison between the running time of the 4 methods for each configuration of n
and k. The numbers are relative to the running time of LCA, which is the fastest. Among the other
three methods, PCext obtained the best results. As expected, HcC is very competitive for small val-
ues of k and it becomes less competitive when k grows. For the slowest configuration, n = 50 and
k = 9, HcC took, in average, 0.38 seconds. We can also observe that SLIQext becomes less compet-
itive as n grows. All the experiments were executed on a PC Intel i7-6500U CPU with 2.5GHz and
8GB of RAM. The algorithms were implemented in Python 3 using numpy. They are available in
https://github.com/felipeamp/icml-2018.

Although LCA does not seem to be competitive with the other heuristics in terms of the impurity of the
partitions generated, it might be used when both n and k are large and speed is an issue. In addition,
LCA could be used together with any method, incurring a negligible overhead, to guarantee that the
ratio between the impurity of the partition found and the optimal one is bounded.

5.2 Decision Tree Induction

We also carried out a set of experiments to evaluate how the methods behave when they are used in
decision tree induction.

We employed 11 datasets in total. Eight of them are from the UCI repository: Mushroom, KDD98,
Adult, Nursery, Covertype, Cars, Contraceptive and Poker [14]. Two others are available in Kaggle:
San Francisco Crime and Shelter Animal Outcome [23, 1]. The last dataset was created by translating
texts from the Reuters database [14] into phonemes, using the CMU pronouncing dictionary [5]. We
shall note that these datasets were also used in [13] where methods for splitting nominal attributes that
do not rely on impurity measures are proposed.

We chose these datasets because they have at least 1000 samples and they either contain multi-valued
attributes or attributes that can be naturally aggregated to produce multi-valued attributes. From the
KDD98 dataset we derived a new dataset KDD98-9 that contains only the positive samples (people
that donate money) of KDD98 and the target attribute, Target D, is split into 9 classes, where the i-th
class correspond to the i-th quantile in terms of amount of money donated. For the Reuters Phonemes
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Table 4: Information about the employed datasets after data cleaning and attributes aggregation.
Column k is the number of classes and Reg stands for Regression; columns mnom and mext

nom are the
number of nominal attributes in the original and extended datasets (those with the extra attributes),
respectively; column mnum is the number of numeric attributes.

Dataset Samples k mnom mext
nom mnum

Mushroom 5644 2 22 N/A 0
Adult 30162 2 8 N/A 6
KDD98 4843 Reg 65 N/A 314
Nursery 12960 5 8 11 0
CoverType 581012 7 44 46 10

Car 1728 4 6 8 0
Contracep 1473 3 7 9 2
Poker 25010 10 10 N/A 0
Shelter 26711 22 5 N/A 1

S.F. Crime 878049 39 3 N/A 2
Phonemes 10000 15 3 N/A 0

dataset, we extracted 10000 samples containing the 15 most common phonemes as class and tried to
predict when they are about to happen given the 3 preceding phonemes. This dataset is motivated by
Spoken Language Recognition problems, where phonotactic models are used as an important part of
the classification system [18]. For the San Francisco Crime dataset, we give the month, day of the week,
police department district and latitute/longitude and try to predict the crime category. Lastly, for the
Shelter Animal Outcomes dataset, we converted the age into a numeric field containing the number of
days old and separated the breed into two categorical fields, repeating the breed in both in case there
was only one originally. We also removed the AnimalID, Name and the DateTime. For this dataset we
try to predict the outcome type and subtype (concatenated into a single categorical field). For both San
Francisco Crime and Shelter Animal Outcomes datasets we created a version of them (S.F. Crime-15

and Shelter-15), containing only 15 classes, instead of the 39 and 22 original ones, respectively. This
was done by grouping the rarest classes into a single one.

For datasets Cars, CoverType, Nursery and Contraceptive we added new nominal attributes that
were obtained by aggregating some of the original ones as we describe below. The goal was to obtain
natural attributes with a larger number of values. In our experiments we consider the datasets with
these extra attributes rather then the original ones and we removed samples with missing values from
all datasets. Table 4 provides some statistics.

• Nursery-Ext. This dataset is obtained by adding three new attributes to dataset Nursery. The
first attribute has 15 distinct values and it is constructed through the aggregation of 2 attributes
from group EMPLOY, one with 5 values and the other with 3 values. The second attribute has
72 distinct values corresponding to the aggregation of attributes from the attributes in group
STRUCT FINAN. The third attribute, with 9 distinct values, is the combination of the attributes in
group SOC HEALTH.

• Covertype-Ext. We combined 40 binary attributes related with the soil type into a new attribute
with 40 distinct values. The same approach was employed to combine the 4 binary attributes
related with the wilderness area into a new attribute with 4 distinct values. This is an interesting
case because, apparently, the 40 (soil type) binary attributes as well as the 4 (wilderness area)
binary attributes were derived from a binarization of two attributes, one with 40 distinct value
and the other with 4 distinct values.
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Table 5: Average accuracy for Decision Trees built using Gini impurity over 20 3-fold stratified cross-
validations. The best results are bold faced.

SliqExt PCext HcC LCA

Adult 83.11 83.28 83.25 83.25
Mushroom 99.9 100 100 100
KDD98-9 37.92 39.88 38.96 38.8
Nursery-Ext 94.13 95.83 95.83 95.83
Cars-Ext 91.23 96.46 96.5 96.5
CoverType-Ext 88.31 88.32 89.39 88.72
Cotraceptive-Ext 48.86 48.52 49.31 48.97
PokerHand 52.54 52.09 52.09 51.97
San Francisco Crime 27.51 27.13 27.13 27.16
Shelter Animal 55.08 53.82 53.59 53.6
Reuters Phonemes 36.11 37.95 37.89 37.8

Average 64.97 65.75 65.81 65.69

• Cars-Ext. To obtain this dataset, the 2 attributes related with the concept PRICE, buying and
maint, were combined into an attribute with 16 distinct values. Moreover, the 3 attributes related
with concept CONFORT were combined into an an attribute with 36 distinct values.

• Contraceptive-Ext. The 2 attributes related with the couple’s education were combined into an
attribute with 16 distinct values. Moreover, the 3 attributes related with the couple’s occupations
and standard of living were aggregated into a new attribute with 32 distinct values.

In this second set of experiments we build decision trees with depth at most 16. To prevent the selection
of non-informative nominal attributes, we used a χ2-test for each attribute at every node of the tree:
if the χ2-test on the contingency table of attribute A has p-value larger than 10% at a node ν, then
A is not used in ν. Furthermore, attributes with less than 15 samples associated with its second most
frequent value are also not considered for splitting. This helps avoid data overfitting.

Table 5 and 6 present the average accuracy achieved over 20 3-fold stratified cross-validations using
Gini and Entropy impurities, respectively. Moreover, we used a 95% one-tailed paired t-student test to
compare the accuracy attained by the different methods. Tables 7 and 8 show, respectively, how LCA

and HcC compare with each of the other methods with regards to the number of datasets in which the
had statistically better/worse accuracy. As an example, the entry associated with Entropy/PCExt in
Table 7 shows that out of the 11 datasets, for the Entropy impurity, LCA was statistically better in 4
datasets while PCExt was better in none.

Given the results discussed in the previous section, we were not expecting a strong performance from
LCA. However, to our surprise, LCA was quite competitive, performing better than some of the other
methods in these datasets, specially for the Entropy impurity measure. HcC, as expected, had a good
performance.

6 Final Remarks

In this paper we proved that the 2-PMWIP is NP-Hard and we devised algorithms with constant
approximation guarantee for it. Furthermore, we reported experiments that suggest that the methods
proposed in this paper are good candidates to be used in splitting nominal attributes with many values
during decision tree/random forest induction. HcC has the advantage of generating partitions with lower
impurity than other available methods while LCA has the advantage of being very fast.
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Table 6: Average accuracy for Decision Trees built using Entropy impurity over 20 3-fold stratified
cross-validations. The best results are bold faced.

SliqExt PCext HcC LCA

Adult 83.6 83.74 83.74 83.74
Mushroom 99.99 100 100 100
KDD98-9 36.6 38.77 38.67 38.75
Nursery-Ext 94.13 95.88 95.88 95.88
Cars-Ext 92.42 96.3 96.28 96.54
Contraceptive-Ext 48.99 48.53 48.76 48.93
CoverType-Ext 88.26 88.35 88.83 88.98
Poker Hand 51.16 51.37 51.59 51.97
San Francisco Crime 27.56 27.31 27.31 27.33
Shelter Animal 55.12 54.18 54.2 54.17
Reuters Phonemes 35.27 37.25 36.91 37.48

Average 64.83 65.61 65.65 65.8

Table 7: Number of datasets in which LCA had statistically better/worse accuracy than the other
methods. In each entry they are represented by the numbers following the plus/minus signs, respectively.

PCExt HcC SliqExt

Gini +3 -3 +1 -3 +8 -3
Entropy +4 -0 +4 -0 +7 -2

Table 8: Number of datasets in which HcC had statistically better/worse accuracy than the other
methods. In each entry they are represented by the numbers following the plus/minus signs, respectively.

PCExt LCA SliqExt

Gini +2 -2 +3 -1 +8 -3
Entropy +2 -1 +0 -4 +7 -2
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Some interesting questions remain open. The main one concerns the existence of a FPTAS for 2-
PMWIP, that is, an algorithm that for every ε > 0 obtains an approximation (1 + ε) with running time
polynomial on n and 1/ε. We believe that an algorithm with the flavor of HcC might have this property.
The reason is that HcC considers a set of directions that covers the space where the optimal direction
lies, in the sense that for every direction in this space there exists one in the HcC’s set that is ‘close’ to
it. Thus, considering a ε-net of directions, one of them should generate a binary partition with impurity
similar to the optimal one.

Another interesting contribution would be an analysis of the approximation ratio of PCext since, ac-
cording to our experiments and those reported in [6], it provides a good trade-off between the running
time and the impurity of the generated partitions, specially for the Gini impurity.

Finally, another interesting question regards the existence of algorithms with provably approximation
for the L-PMWIP, the most general problem where the values of an attribute have to be partitioned
into at most L groups.
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A A result about property (P3)

Proposition A.1. If f satisfies properties P (1) and P (2) and f is a smooth function such that xf ′′(x)
is non-increasing in the interval [0,1] then f also satisfies property (P3).

Proof. Let f ′(x) be the derivative of f on point x. The proof consists of showing two steps

(i) if f ′(x)− f(x)/x is non-increasing in (0, 1] then f satisfies (P3).

(ii) if xf ′′(x) is non-increasing in [0, 1] then f ′(x)− f(x)/x is non-increasing in (0, 1].

We first show step (i). We can assume q < 1 because for q = 1 (P3) is trivial. The condition on f implies
f ′(p)− f(p)/p ≥ f ′(q)− f(q)/q for p < q, which is equivalent to g′(p)p ≥ g′(q)q, where g(x) = f(x)/x.
Thus, we make use of this alternative condition. We have that

g(p/q)− g(p) =

∫ p/q

p
g′(x)dx =

p

q

∫ 1

q
g′
(
px

q

)
dx ≥ p

q

∫ 1

q

(
q

p

)
g′(x)dx = −g(q),

where the last inequality follows from the condition on g. Thus, g(p) ≤ g(p/q) + g(q). Multiplying both
sides by p we get p · g(p) ≤ p · g(p/q) + p · g(q). By using g(p/q) = f(p/q)(q/p) and g(q) = f(q)/q we
get that

f(p) ≤ qf(p/q) + p/qf(q).

Now we prove step (ii). We have that f ′(x)−f(x)/x is not increasing in (0, 1] if and only if its derivative
is smaller than or equal to 0 in the interval (0,1]. Thus, we must have

x2f ′′(x)− xf ′(x) + f(x)

x2
≤ 0. (A.19)

First we note that

lim
x→0

x2f ′′(x)− xf ′(x) + f(x)

x2
≤ lim

x→0

x2f ′′(x)− xf ′(x) + xf ′(0)

x2
= f ′′(0)− f ′′(0) = 0

Hence, if the derivative of h(x) = x2f ′′(x) − xf ′(x) + f(x) is smaller than or equal to 0 in [0,1] then
inequality (A.19) holds. We have that h′(x) = x2f ′′′(x)+xf ′′(x). Thus, (A.19) holds if xf ′′′(x)+f ′′(x) ≤
0 for every x ∈ [0, 1]. Let m(x) = xf ′′(x). We have that m′(x) = xf ′′′(x) + f ′′(x). Since m(x) is non-
increasing in [0,1] it follows that m′(x) ≤ 0 for every x ∈ [0, 1], and thus inequality (A.19) holds.
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