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A. Partial Optimality
A.1. Compulsory Edges

In this section, we discuss another partial optimality condi-
tion. To this end, we call a cut B = (S1, S2) of G minimal
if both S1 and S2 induce connected components.

Definition 5. For any graph G = (V,E) and any c ∈ RE ,
an edge f ∈ E is called compulsory w.r.t. (G, c) iff, for
every minimal cut B of G with f ∈ EB , it holds that∑

e∈EB

ce > 0. (26)

Lemma 6. If f ∈ E is compulsory, then x∗f = 0 for any
optimal solution x∗ of PMC.

Proof. Suppose f = uv ∈ E is compulsory and x∗f = 1
in an optimal solution x∗ of PMC. The components of the
partition corresponding to x∗ can be divided into two groups
S ∪̇ T = Π such that

B =
( ⋃

S∈S
S,
⋃
T∈T

T
)

is a minimal cut and the nodes u and v belong to some
component S ∈ S, respectively T ∈ T . The edge set of B
can be written as

EB =
⋃

S∈S,T∈T
E(S, T ),

where E(S, T ) denotes the set of edges between compo-
nents S and T . Therefore, since f is compulsory, we have

0 <
∑
e∈EB

ce =
∑
S∈S

∑
T∈T

∑
e∈E(S,T )

ce.
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Figure 2. The figure shows a conflicted odd wheel of length 5. The
edges in the outer cycle are repulsive and the spokes are attractive.

This implies that there exist some S′ ∈ S and T ′ ∈ T such
that ∑

e∈E(S′,T ′)

ce > 0.

Hence, merging the clusters S and T strictly improves the
objective, which contradicts the optimality of x∗.

Unfortunately, finding compulsory edges is likely in-
tractable, as computing minimum st-cuts w.r.t. signed ca-
pacity functions is NP-hard (by reduction from MAX CUT)
on general graphs.

B. Dual Lower Bounds
B.1. Extension to Odd Wheels

In this section, we show that our dual heuristic algorithm
can be extended so as to take into account so-called odd
wheel inequalities.

A wheel is a graph W = (VW , EC ∪ Ew) with VW =
{v1, . . . , v|EC |}∪{w} such that ({v1, . . . , v|EC |}, EC) is a
cycle and Ew = {{vi, w} | 1 ≤ i ≤ k} is the set of spokes.
A wheel is called odd if |EC | = |Ew| is odd. With any
wheel W we associate the wheel inequality∑

e∈EC

xe −
∑
e∈Ew

xe ≤
⌊
|EC |

2

⌋
. (27)

Wheel inequalities are valid for the multicut polytope MC
and can be separated in polynomial time. A wheel inequality
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is facet-defining for MC iff the associated wheel is odd
(Chopra & Rao, 1993).

In analogy to conflicted cycles, we call a wheel W =
(VW , EC ∪ Ew) conflicted w.r.t. (G, c) if EC ⊂ E− and
Ew ⊂ E+. In other words, the cycle edges EC are all repul-
sive and the spokes are all attractive, cf. Figure 2. Now, for
any conflicted wheel W = (VW , EC ∪ Ew), the definition
x̂e := 1 − xe for all e ∈ E− transforms the associated
wheel inequality (27) to the covering inequality∑

e∈EC∪Ew

x̂e ≥
⌈
|EC |

2

⌉
. (28)

Therefore, the cycle covering relaxation (22) can be tight-
ened by including the conflicted (odd) wheel inequalities
(28). This correponds to introducing additional wheel vari-
ables yW with coefficients d|EC |/2e into the dual (24).
Note that in our heuristic approach we only increase dual
variables, but never decrease any. Thus, since any conflicted
odd wheel contains conflicted cycles, it only makes sense
to increase wheel variables yW before the main loop of ICP
(or in between). We search for conflicted odd wheels by,
for each center vertex w ∈ V , finding an odd cycle in the
subgraph (U,E−) with U = {u 6= w | uw ∈ E+}. Similar
to the cycle case, we iteratively pack conflicted odd wheels
until no more conflicted odd wheels are left. Afterwards,
we enter the main loop of ICP.

In Table 4 we empirically evaluate the effect of increasing
conflicted odd wheel variables as described above, both in
terms of runtime and obtained gaps. It can be seen that
the runtime generally increases, in particular on the larger
instances. However, the gaps are not improved with the
exception of the complete graphs from Modularity Cluster-
ing.

C. Experiments
C.1. Partial Optimality

In Table 5 we evaluate the effect of our partial optimality
reductions on the primal heuristics. We only apply the
local conditions that can be checked in linear time and omit
general uv-cuts. It can be observed that the differences in
runtime are insignificant for the small graphs, but substantial
for KLj on the instances Epinions and Slashdot.

C.2. Re-weighting

In Table 6 we provide a comparison between our heuristic
re-weighting of instances and the reparameterization with
MPC according to Swoboda & Andres (2017). It can be
seen that the solutions found by GAEC+KLj have slightly
lower optimality gaps when the instances were reparameter-
ized by MPC. An exception are the complete graphs from
Modularity Clustering.
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Table 4. Reported below are lower bounds found by iterative cycle packing (ICP) and ICP with added conflicted odd wheels (OW+ICP),
relative to the objective value of the best known feasible solution, as well as average total running times until convergence.

Image Seg. Knott-3D-150 Knott-3D-300 Knott-3D-450 Mod. Clust. Epinions Slashdot

t [s] Gap t [s] Gap t [s] Gap t [s] Gap t [s] Gap t [s] Gap t [s] Gap

ICP 0.10 0.21% 0.04 0.14% 0.54 0.16% 3.31 0.18% 0.03 11.08% 65 1.04% 24 8.60%
OW+ICP 0.10 0.20% 0.06 0.17% 0.77 0.17% 7.70 0.19% 0.03 9.51% 340 3.38% 63 8.51%

Table 5. Compared below are the average runtimes of the primal heuristics (no prefix) to the average runtimes of the reduction algorithm
with subsequent application of the primal heuristics (prefix RED).

Image Seg. Knott-3D-150 Knott-3D-300 Knott-3D-450 Mod. Clust. Epinions Slashdot

t [s] Gap t [s] Gap t [s] Gap t [s] Gap t [s] Gap t [s] Gap t [s] Gap

GAEC 0.01 0.53% 0.01 0.28% 0.06 0.47% 0.21 0.25% 0.01 8.09% 2.19 1.75% 1.52 7.76%
RED+GAEC 0.01 0.54% 0.01 0.26% 0.08 0.54% 0.23 0.33% 0.01 8.30% 2.04 1.60% 1.56 7.54%

GAEC+KLj 0.03 0.34% 0.02 0.11% 0.42 0.15% 6.46 0.07% 0.01 1.28% 8324 0.18% 9217 6.69%
RED+GAEC+KLj 0.03 0.29% 0.02 0.10% 0.36 0.15% 4.19 0.07% 0.01 1.40% 1168 0.18% 2306 6.55%

Table 6. The table provides a comparison between our heuristic re-weighting and a reparameterization with dual solutions obtained from
MPC. We report the gaps w.r.t. the original cost function obtained by relation to the objective value of the best known lower bound.

Image Seg. Knott-3D-150 Knott-3D-300 Knott-3D-450 Mod. Clust. Epinions Slashdot

GAEC+KLj 0.34% 0.11% 0.15% 0.07% 1.28% 0.18% 6.69%
ICP+GAEC+KLj 0.10% 0.00% 0.03% 0.05% 1.14% 0.12% 6.58%
MPC+GAEC+KLj 0.05% 0.01% 0.01% 0.01% 1.32% 0.09% 6.69%


