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Abstract
Weighted correlation clustering is hard to solve
and hard to approximate for general graphs. Its
applications in network analysis and computer vi-
sion call for efficient algorithms. To this end, we
make three contributions: We establish partial op-
timality conditions that can be checked efficiently,
and doing so recursively solves the problem for
series-parallel graphs to optimality, in linear time.
We exploit the packing dual of the problem to
compute a heuristic, but non-trivial lower bound
faster than that of a canonical linear program re-
laxation. We introduce a re-weighting with the
dual solution by which efficient local search algo-
rithms converge to better feasible solutions. The
effectiveness of our methods is demonstrated em-
pirically on a number of benchmark instances.

1. Introduction
This paper is about weighted correlation clustering (Bansal
et al., 2004), a combinatorial optimization problem whose
feasible solutions are all clusterings of a graph, and whose
objective function is a sum of weights w0, w1 : E → R+

0

defined on the edgesE of the graph. The weightw0
e is added

to the sum if the nodes {u, v} = e ∈ E are in the same
cluster, and the weight w1

e is added to the sum if these nodes
are in distinct clusters. The problem consists in finding a
clustering of minimum weight.

Weighted correlation clustering has found applications in
the fields of network analysis (Cesa-Bianchi et al., 2012)
and, more recently, computer vision (Kappes et al., 2011;
Keuper et al., 2015; Insafutdinov et al., 2016; Beier et al.,
2017; Tang et al., 2017), partly due to its key property that
the number of clusters is not fixed, constrained or penalized
in the problem statement but is instead defined by the (any)
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solution. Weighted correlation clustering in general graphs
is hard to solve exactly and hard to approximate (Demaine
et al., 2006). Remarkable progress has been made toward
algorithms that find feasible solutions by approximations
or heuristics (cf. Section 2). Yet, the computation of lower
bounds remains challenging for large instances (Swoboda
& Andres, 2017).

We make the following contributions: Firstly, in order to
reduce instances in size, we establish partial optimality con-
ditions on the graph and weights that can be checked com-
binatorially in polynomial time and determine the values of
some variables in an optimal solution. By applying these
conditions recursively, we reduce an instance in size with-
out restricting the quality of solutions. For series-parallel
graphs, our algorithm solves weighted correlation clustering
exactly and in linear time, as we show. For general graphs,
we demonstrate its effectiveness empirically.

Secondly, in order to compute lower bounds to the opti-
mal objective value efficiently, we define an algorithm that
outputs a heuristic solution to a packing problem that is
the dual of a reformulation of weighted correlation clus-
tering. Empirically, this algorithm is shown to exhibit a
run-time/tightness trade-off that is different from both the
cutting plane algorithm of Kappes et al. (2015) and the
message passing algorithm of Swoboda & Andres (2017),
both of which solve a canonical linear program relaxation
of weighted correlation clustering.

Thirdly, toward the goal of obtaining primal feasible solu-
tions, we define a transformation of the weights w.r.t. our
heuristic solution to the dual problem. This transforma-
tion is again a heuristic and is motivated by complementary
slackness. Empirically, local search algorithms are shown
to find feasible solutions of lower original weight when
applied to instances with transformed weights.

In the supplementary material, we provide additional results
that were omitted from the main paper for the sake of space.
Implementations of our algorithms are provided on GitHub.

2. Related Work
Weighted correlation clustering has a long history in the field
of combinatorial optimization. Grötschel & Wakabayashi
(1989) state an equivalent problem for complete graphs and

http://github.com/bjoern-andres/graph
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devise a branch-and-cut algorithm for solving this prob-
lem exactly. The polyhedral geometry of its feasible set
is studied by Grötschel & Wakabayashi (1990); Deza et al.
(1990; 1992), in the case of general graphs by Chopra &
Rao (1993); Chopra (1994) and, for a more general problem,
by Horňáková et al. (2017). For uniform absolute edge costs,
Bansal et al. (2004) coined the name correlation clustering,
established NP-hardness and the first approximation results.
The connection between correlation clustering in general
weighted graphs and weighted multicuts was made by De-
maine et al. (2006) who thus established APX-hardness
and obtained anO(log|V |) approximation algorithm for the
problem. Further hardness results and improved approxi-
mation algorithms for particular classes of graphs are due
to Charikar et al. (2005); Chawla et al. (2006; 2015); Ailon
et al. (2012); Klein et al. (2015).

Approximation algorithms are typically based on rounding
the solution of a linear or semi-definite program relaxation.
Due to its importance, tailored algorithms for solving the
linear program relaxation more efficiently than standard
methods have been proposed by Yarkony et al. (2012; 2015);
Swoboda & Andres (2017). Complementary to these lower
bounds, a variety of fast primal heuristics have been devel-
oped to tackle large instances (Beier et al., 2014; Pan et al.,
2015; Levinkov et al., 2017). Although it has been observed
that, in practice, heuristic solutions are often good, it re-
mains difficult for large instances to determine non-trivial
bounds on their optimality gap.

Partial optimality concepts have been developed and
exploited successfully for node labeling problems that
arise from pseudo-Boolean optimization and from maxi-
mum a-posteriori inference in Markov Random Fields, cf.
(Shekhovtsov, 2014; Swoboda et al., 2016). Transferring
this knowledge to weighted correlation clustering is non-
trivial, due to the different nature of the problem. Two
partial optimality conditions for weighted correlation clus-
tering are established by Alush & Goldberger (2012) and
are here generalized.

3. Problem Formulations
3.1. Weighted Correlation Clustering

Weighted correlation clustering is a combinatorial optimiza-
tion problem whose feasible solutions are all clusterings of
a graph.

Let G = (V,E) be a simple graph. We call a partition Π of
V a clustering if every S ∈ Π induces a connected subgraph
(cluster) of G. For any clustering Π of G, we denote by E0

Π

the set of those edges whose nodes are in the same cluster,
and by E1

Π the (complementary) set of those edges whose

nodes are in distinct clusters:

E0
Π = {uv ∈ E | ∃S ∈ Π : u ∈ S and v ∈ S}, (1)

E1
Π = E \ E0

Π. (2)

The set of edges E1
Π is known as the multicut of G that

corresponds to the clustering Π.

Definition 1. For any graph G = (V,E) and any w0, w1 :
E → R+

0 , the instance of weighted correlation clustering
w.r.t. G, w0 and w1 is the optimization problem

min
Π

∑
e∈E0

Π

w0
e +

∑
e∈E1

Π

w1
e . (3)

3.2. Minimum Cost Multicut

Weighted correlation clustering is commonly stated in the
form of a binary program whose feasible solutions are the
incidence vectors of the multicuts of the graph. The inci-
dence vector xΠ ∈ {0, 1}E corresponding to the multicut
induced by Π is defined as

xΠ
e =

{
1 if e ∈ E1

Π

0 else.
(4)

Definition 2. For any graph G = (V,E) and any c : E →
R, the instance of the minimum cost multicut problem
w.r.t. G and c is the binary program

min
Π

∑
e∈E

ce x
Π
e . (5)

The minimizers of an instance of weighted correlation clus-
tering (Def. 1) coincide with the minimizers of the instance
of minimum cost multicut (Def. 2) with c = w1−w0, since

min
Π

∑
e∈E0

Π

w0
e +

∑
e∈E1

Π

w1
e (6)

= min
Π

∑
e∈E

(
w0

e (1− xΠ
e ) + w1

e x
Π
e

)
(7)

=
∑
e∈E

w0
e︸ ︷︷ ︸

const.

+ min
Π

∑
e∈E

(w1
e − w0

e)︸ ︷︷ ︸
ce

xΠ
e . (8)

3.3. Linear Program Relaxation

By taking the convex hull of multicut incidence vectors

MC(G) := conv{xΠ | Π clustering of G}, (9)

the minimum cost multicut problem (Def. 2) can be written
as the integer linear programming problem

min
x∈MC(G)

∑
e∈E

ce xe. (PMC)
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The set MC(G) is called multicut polytope of G (Chopra
& Rao, 1993). As the minimum cost multicut problem is
NP-hard, a full description of the multicut polytope in terms
of its facets is impractical. For practical purposes a linear
programming (LP) relaxation of PMC is derived as follows.

Denote by C(G) the set of all simple cycles of G. For any
cycle C ∈ C(G), we write EC for the edge set of C. It is
straight-forward to check the fact that any multicut incidence
vector xΠ satisfies the system of linear inequalities

∀C ∈ C(G) ∀f ∈ EC : xf ≤
∑

e∈EC\{f}

xe , (10)

the so-called cycle inequalities (Chopra & Rao, 1993).
Therefore, the standard linear programming relaxation is
given by the program

min
x∈CYC(G)

∑
e∈E

ce xe (PCYC)

whose feasible set

CYC(G) :=
{
x ∈ [0, 1]E

∣∣x satisfies (10)
}

(11)

is also known as the cycle relaxation of MC(G). The prob-
lem PCYC is practical, because the cycle inequalities in (10)
can be separated in polynomial time. The lower bounds thus
obtained can serve to solve (small) instances of the mini-
mum cost multicut problem by branch-and-cut because the
cycle relaxation has no integer vertices except the incidence
vectors of multicuts, according to Lemma 1.

Lemma 1 (Chopra & Rao (1993)). For any graph G =
(V,E), it holds that MC(G) = CYC(G) ∩ ZE .

A reference algorithm that we use for the experiments in
Section 7 further exploits the fact that a cycle inequality
in (10) defines a facet of MC(G) iff the associated cycle is
chordless.

3.4. Cycle Covering Formulation

For the presentation of this paper, we employ an alterna-
tive (integer) linear programming formulation in terms of
covering cycles, which was similarly considered, e.g., by
Demaine et al. (2006) for the combinatorial problem and by
Charikar et al. (2005) in connection with the LP relaxation
for complete graphs. We rewrite the feasible set of the gen-
eral LP relaxation relative to the cost vector c. Therefore,
let G and c be fixed.

We call an edge e ∈ E repulsive if ce < 0 and we call it
attractive if ce > 0. Note that we may w.l.o.g. remove all
edges e ∈ E with ce = 0, since the choice of xe is irrelevant
to the objective. We write E = E+ ∪ E− where E+, E−

collect all attractive and repulsive edges, respectively.

We call a cycle of G conflicted w.r.t. (G, c) if it contains
precisely one repulsive edge. We denote by C−(G, c) ⊆
C(G) the set of all such cycles.

We consider the relaxation of CYC(G) that is constrained
only by conflicted cycles. More specifically, we consider
the system

∀C ∈ C−(G, c), f ∈ EC ∩ E− : xf ≤
∑

e∈EC\{f}

xe

(12)

of only those linear inequalities of (10) for which the edge
on the left-hand side is repulsive and all other edges are
attractive. Defining

CYC−(G, c) :=
{
x ∈ [0, 1]E

∣∣ x satisfies (12)
}

(13)

and replacing CYC(G) by CYC−(G, c) in PCYC has no ef-
fect on the solutions, due to the following lemma, a weaker
form of which was also given by Yarkony et al. (2015).
Lemma 2. For any c : E → R it holds that

min
x∈CYC(G)

c>x = min
x∈CYC−(G,c)

c>x (14)

and

min
x∈MC(G)

c>x = min
x∈CYC−(G,c)∩ZE

c>x. (15)

Proof. Let x∗ be an optimal solution to the right-hand side
of (14). We show that x∗ satisfies all cycle inequalities (10)
by contradiction. To this end, suppose there exists a cycle
C ∈ C(G) and f ∈ EC such that

x∗f >
∑

e∈EC\{f}

x∗e.

If any edge g ∈ EC \ {f} is repulsive, then increasing
x∗g would lower the objective. Since x∗ is optimal, there
must be a conflicted cycle C ′ with g ∈ EC′ such that
x∗g =

∑
e∈EC′\{g}

x∗e . Note that this means f /∈ EC′ .
We write C4C ′ for the cycle obtained from the symmetric
difference of EC and EC′ . Apparently, the cycle C4C ′
has one repulsive edge less and f ∈ EC4C′ . Therefore,
by repeating the argument, we may w.l.o.g. assume that all
edges in EC \ {f} are attractive.
Now assume that f is attractive as well, then decreasing
x∗f would lower the objective. Therefore, since x∗ is op-
timal, there is a conflicted cycle C ′ with f ∈ EC′ and
g ∈ EC′ ∩ E− such that

x∗g = x∗f +
∑

e∈EC′\{f,g}

x∗e

>
∑

e∈EC\{f}

x∗e +
∑

e∈EC′\{f,g}

x∗e

≥
∑

e∈EC4C′\{g}

x∗e.
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Note that C4C ′ is a conflicted cycle. Thus, we conclude
that x∗ violates an inequality of (12) and hence cannot be
feasible. This concludes the proof of (14), the argument for
(15) is analogous.

With the help of Lemma 2, we formulate PMC as a set
covering problem:
Definition 3. For any graph G = (V,E) and any c ∈ RE ,
we call

min
x̂∈SC(G,c)

∑
e∈E
|ce| x̂e (PSC)

with SC(G, c) the convex hull of all x̂ ∈ ZE that satisfy the
system

∀C ∈ C−(G, c) :
∑
e∈EC

x̂e ≥ 1 (16)

∀e ∈ E : x̂e ≥ 0 (17)

the set covering problem w.r.t. conflicted cycles, and we
call SC(G, c) the set covering polyhedron w.r.t. conflicted
cycles.
Lemma 3. For any graph G = (V,E) and any c ∈ RE , we
have

min
x∈CYC−(G,c)∩ZE

∑
e∈E

ce xe

= Ltriv + min
x̂∈SC(G,c)

∑
e∈E
|ce| x̂e (18)

with

Ltriv =
∑
e∈E−

ce (19)

the sum of negative edge costs (a trivial lower bound to the
optimal value of PMC).

Proof. We define x̂ via x̂e := xe for any attractive edge
e ∈ E+ and x̂e := 1− xe for any repulsive edge e ∈ E−.
Since any conflicted cycle C ∈ C−(G, c) has precisely one
repulsive edge, all conflicted cycle inequalities (12) become
covering inequalities.

4. Partial Optimality
In this section, we study partial optimality for PMC. More
precisely, we establish conditions on an edge e ∈ E which
guarantee that xe assumes one particular value, either 0 or 1,
in at least one optimal solution (weak persistency). Fixations
to 0 are of particular interest as they can be implemented
as edge contractions (with subsequent merging of parallel
edges), which effectively reduce the size of a given instance
of the problem. As a corollary, we obtain an algorithm that
solves weighted correlation clustering problems on series-
parallel graphs in linear time.

4.1. Basic Conditions

A direct consequence from Lemma 3 is that we may dis-
regard all edges that are not contained in any conflicted
cycle. There are (at least) two ways this can happen: 1.
An edge e ∈ E is not contained in any cycle at all, that
is, e is a bridge. 2. The endpoints of a repulsive edge
e = {u, v} ∈ E− belong to different components of
G+ = (V,E+). In both cases, for any optimal solution
x∗ of PMC, it holds that x∗e = 0 if e is attractive, and x∗e = 1
if e is repulsive. Thus, we can restrict the instance of the
problem to the maximal components ofG that are connected
in G+ and biconnected in G. This was also observed by
Alush & Goldberger (2012).

Below, we establish more general partial optimality con-
ditions. To this end, we need the following notation. A
cut of G is a bipartition B = (S1, S2) of the nodes V , i.e.
V = S1 ∪̇S2. The edge set of the cut B is denoted by
EB = {uv ∈ E | u ∈ S1, v ∈ S2}.

4.2. Dominant Edges

Definition 4. Let G = (V,E) be any graph and let c ∈ RE .
An edge f ∈ E is called dominant attractive iff cf > 0 and
there exists a cut B with f ∈ EB such that

cf ≥
∑

e∈EB\{f}

|ce| . (20)

An edge f ∈ E− is called dominant repulsive iff cf < 0
and there exists a cut B with f ∈ EB such that

|cf | ≥
∑

e∈EB∩E+

ce. (21)

An edge is called dominant iff it is dominant attractive or
dominant repulsive.

Lemma 4. Let G = (V,E) be any graph and let c ∈ RE .

(i) If f ∈ E is dominant attractive, then x∗f = 0 in at least
one optimal solution x∗ of PMC.

(ii) If f ∈ E is dominant repulsive, then x∗f = 1 in at least
one optimal solution x∗ of PMC.

Proof. (i) We use the set covering formulation of PMC. Sup-
pose f ∈ E+ is dominant and x̂∗f = 1 in an optimal solution
x̂∗ of PSC. Every conflicted cycle that contains f also con-
tains some edge e ∈ EB , since B is a cut. Therefore, the
vector x̂ ∈ {0, 1}E defined by

x̂e =


0 if e = f

1 if e ∈ EB , e 6= f

x̂∗e else
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is a feasible solution to PSC. It has the same objective value
as x̂∗, since f is dominant and x̂∗ is optimal.

(ii) Suppose f ∈ E− is dominant and x̂∗f = 1 in an optimal
solution x̂∗ of PSC. Every conflicted cycle that contains f
also contains some edge e ∈ EB ∩ E+, since B is a cut
and every conflicted cycle contains only one repulsive edge.
Then the vector x̂ ∈ {0, 1}E defined by x̂f = 0, x̂e = 1
for all e ∈ EB ∩ E+ and x̂e = x̂∗e elsewhere is a feasible
solution to PSC. It has the same objective value as x̂∗, since
f is dominant and x̂∗ is optimal.

Lemma 4 generalizes the basic conditions discussed in Sec-
tion 4.1, since each edge f ∈ E that is not contained in
any conflicted cycle is also dominant. Dominance of edges
can be decided in polynomial time, by computing minimum
st-cuts in G for a suitable choice of capacities. In prac-
tice, the required computational effort may be mitigated by
constructing a cut tree of G (Gomory & Hu, 1961). The
practically most relevant cuts can even be checked in linear
time, which we discuss in the following section.

4.3. Two-Edge Cuts & Single-Node Cuts

In practice, it is expected that dominant edges are more
likely to be found in cuts that are relatively sparse. We
discuss two special cases of sparse cuts that are of particular
interest, due to the following reasons. First, they can be
checked in linear time, which gives rise to a fast preprocess-
ing algorithm. Second, we show that our techniques solve
PMC to optimality if G is series-parallel.

Two-edge cuts. Suppose B is a two-edge cut of G, i.e.
EB = {e, f} for two edges e, f ∈ E. Apparently, accord-
ing to (20) and (21), at least one of them must be dominant.
Further, it is guaranteed that we can simplify the instance
by edge deletions or contractions. To see this, distinguish
the following cases. If both e and f are repulsive, then
both of them are dominant and we can delete them, as they
are not contained in any conflicted cycle. If f is dominant
attractive, we can contract f . Finally, if f is dominant re-
pulsive and e is attractive, then we can switch the signs
of their coefficients and redefine xf := 1 − xf as well as
xe := 1 − xe. Since |EB | = 2, this operation does not
change the set of conflicted cycles of G and thus is valid
(while only adding a constant to the objective). Afterwards,
the edge f is dominant attractive and we can contract f . The
two-edge cuts of G can be found in linear time, by comput-
ing the 3-edge-connected components of G, cf. (Mehlhorn
et al., 2017).

Single-node cuts. For any v ∈ V , let Bv = ({v}, V \ {v})
denote the cut that is induced by v. Whether EBv

contains
a dominant edge is easily decided by considering all edges
incident to v. Moreover, if deg v = 2, then Bv is also a
two-edge cut and we can apply the operation described in

Algorithm 1 Single-Node Cut Preprocessing
input G = (V,E), c : E → R

1: Initialize objective value offset ∆ = 0.
2: Initialize a queue Q = V .
3: while Q 6= ∅ do
4: Extract a vertex v ∈ Q.
5: if deg v = 1 then
6: Get neighbor u ∈ V .
7: if cuv ≥ 0 then
8: Set xuv = 0 and contract uv ∈ E.
9: else

10: Set xuv = 1, ∆ = ∆ + cuv and delete uv ∈ E.
11: end if
12: else if deg v = 2 then
13: Get neighbors u,w ∈ V with |cuv| ≥ |cwv|.
14: if uv ∈ E+ then
15: Set xuv = 0 and contract uv ∈ E.
16: else if uv ∈ E− and wv ∈ E− then
17: Adjust offset ∆ = ∆ + cuv + cwv .
18: Set xuv = xwv = 1 and delete uv,wv ∈ E.
19: else if uv ∈ E− and wv ∈ E+ then
20: Adjust offset ∆ = ∆ + cuv + cwv .
21: Redefine xuv = 1− xuv , xwv = 1− xwv

and cuv = −cuv , cwv = −cwv .
22: Set xuv = 0 and contract uv ∈ E.
23: end if
24: else if ∃f ∈ Bv dominant attractive then
25: Set xf = 0 and contract f ∈ E.
26: end if
27: Add to Q all vertices u /∈ Q whose neighborhood

was changed.
28: end while
29: return (G, c), x,∆

the last paragraph. Updating the graph and applying these
techniques recursively as specified in Algorithm 1 takes
linear time. This has the following theoretical consequence.

Corollary 1. If G has treewidth at most 2, then Algorithm
1 can be implemented to solve PMC exactly in O(|V |) time.

Proof. Place the vertices of G into buckets of ascending
degree and always pick a vertex of minimal degree. Every
graph of treewidth 2 has a vertex v with deg v ≤ 2. Since
Algorithm 1 only contracts or deletes edges, fixing the vari-
ables according to Lemma 4, the updated graph still has
treewidth at most 2. The number of nodes decreases by 1
in every iteration, hence the algorithm terminates in time
O(|E|) = O(|V |) and outputs an optimal solution.

5. Dual Lower Bounds
In this section, we define an algorithm for computing lower
bounds for PMC. This algorithm exploits the structure of
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Algorithm 2 Iterative Cycle Packing (ICP)
input G = (V,E), c : E → R

1: Initialize we = |ce| for all e ∈ E and y = 0, L = Ltriv.
2: for ` = 3 . . . |E| do
3: while ∃C ∈ C−(G, c) : |EC | ≤ ` do
4: Pick C ∈ C−(G, c) such that |EC | ≤ `.
5: Compute yC = mine∈EC

we.

6: Redefine we =

{
we − yC if e ∈ EC

we else.
7: Increase lower bound L = L+ yC .
8: Remove all edges e ∈ E with we = 0 from G.
9: end while

10: if C−(G, c) = ∅ then
11: return y, L
12: end if
13: end for

the reformulation PSC. It computes a heuristic solution to
the dual of its LP relaxation.

The LP relaxation (up to the constant Ltriv) of problem PSC

is given by

min
∑
e∈E
|ce|x̂e (22)

subject to
∑
e∈EC

x̂e ≥ 1 ∀C ∈ C−(G, c) (23)

x̂e ≥ 0 ∀e ∈ E .

The corresponding dual program reads

max
∑

C∈C−(G,c)

yC (24)

subject to
∑

C: e∈EC

yC ≤ |ce| ∀e ∈ E (25)

yC ≥ 0 ∀C ∈ C−(G, c) .

A heuristic solution of (24), and thus a lower bound for (22),
is found by Algorithm 2 that we call Iterative Cycle Packing
(ICP). It works as follows: Firstly, it chooses a conflicted
cycle C and increases yC as much as possible. Secondly, it
decreases the weights we (initially |ce|) of all edges e ∈ EC

by yC and removes all edges of zero weight. These steps
are repeated until there are no conflicted cycles left.

Implementation details. The absolute running time of ICP
as well as the quality of the output lower bounds depends
on the choice of cycles C. We pursue the following strategy
that we found to perform well empirically in both aspects:
In each iteration of the main loop, we choose a repulsive
edge e = uv ∈ E− such that u and v are in the same
connected component of G+ = (V,E+). Then, we find a
conflicted cycle containing e by searching for a shortest path

Table 1. Shown below are reductions due to partial optimality, aver-
aged across the n instances of the respective collection. We report
the sizes of V and E after the reduction in terms of the original
size. The set E‡ ⊆ E includes all remaining non-persistent edges.
For comparison, the set E† collects all non-persistent edges after
exploiting only the criteria from Alush & Goldberger (2012).

n |V | |E| |E‡| |E†|
Image Seg. 100 63.7% 62.7% 53.5% 85.6%
Knott-3D-150 8 75.2% 88.3% 76.0% 92.7%
Knott-3D-300 8 76.7% 91.6% 82.7% 95.8%
Knott-3D-450 8 77.6% 92.4% 86.6% 96.7%
Mod. Clust. 6 92.0% 85.1% 85.1% 100%

Epinions 1 27.4% 83.2% 83.2% 86.8%
Slashdot 1 45.4% 88.9% 88.9% 92.2%

(in terms of hop distance) from u to v in G+. We apply this
search for conflicted cycles in rounds of increasing cycle
length, using breadth-first search with an early termination
criterion based on the hop distance. We also maintain and
periodically update a component labeling of G+ in order to
to reduce the number of redundant shortest path searches.

6. Re-weighting for Primal Algorithms
In this section, we exploit the dual solution in primal algo-
rithms. The motivation is due to complementary slackness,
which is made explicit in the following lemma.

Lemma 5. Assume the primal LP (22) is tight, i.e., its
optimal solution x̂∗ also solves PSC, and the solution output
by ICP solves the dual (24) optimally. Then, for every e ∈ E
with positive residual weight we > 0, it holds that x̂∗e = 0.

Proof. If we > 0, the constraint (25) at e ∈ E is inactive
at the optimal dual solution. Thus, x̂∗e = 0 in the optimal
primal solution, by complementary slackness.

Of course, the assumption of Lemma 5 is too strong for
practical purposes. However, the intuition is that if the
LP relaxation is fairly tight and the obtained dual solution
is close to optimal, it can still provide useful information
about the primal problem. More specifically, the weights
we output by ICP can be interpreted as an indication of how
likely the primal variable x̂e is zero in an optimal solution.
In order to make use of this information, we propose to shift
the weights of the primal problem to a convex combination
λ|ce|+ (1− λ)we of the original and residual weights, for
a suitable choice of λ ∈ (0, 1). Experiments in Section 7
show that this shift can guide primal heuristics toward better
feasible solutions to the original problem.

7. Experiments
In this section, we study partial optimality, dual lower
bounds and re-weightings empirically, for all instances of
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Table 2. Reported below are lower bounds found by linear programming (LP), message passing (MPC) and iterative cycle packing (ICP),
relative to the objective value of the best known feasible solution, as well as average total running times until convergence.

Image Seg. Knott-3D-150 Knott-3D-300 Knott-3D-450 Mod. Clust. Epinions Slashdot

t [s] Gap t [s] Gap t [s] Gap t [s] Gap t [s] Gap t [s] Gap t [s] Gap

LP 1.31 0.03% 1.16 0.01% 148.54 0.00% 2174.95 0.01% 0.98 5.59% – – – –
MPC 7.42 0.03% 0.38 0.01% 17.34 0.00% 1236.28 0.01% 1.13 9.52% 36012 0.10% 7419 7.54%
ICP 0.10 0.21% 0.04 0.14% 0.54 0.16% 3.31 0.18% 0.03 11.08% 65 1.04% 24 8.60%

the weighted correlation clustering problem from Kappes
et al. (2015) and Leskovec et al. (2010).

Instances. From Kappes et al. (2015), we consider all three
collections of instances: Image Segmentation contains in-
stances w.r.t. planar superpixel adjacency graphs of pho-
tographs. Knott-3D contains instances w.r.t. non-planar
supervoxel adjacency graphs of volume images taken by a
serial sectioning electron microscope. Modularity Cluster-
ing contains instances w.r.t. complete graphs. In all three
collections, the edge costs ce are fractional and non-uniform.
For all these instances, except one in the collection Modu-
larity Clustering, optimal solutions are accessible and are
computed here as a reference. From Leskovec et al. (2010),
we consider directed graphs of the social networks Epin-
ions and Slashdot, each with more than half a million edges
labeled either +1 or −1. Instances of the minimum cost
multicut problem are defined here by removing the orienta-
tion of edges, by deleting all self-loops, and by replacing
parallel edges by a single edge with the sum of their costs1.

7.1. Partial Optimality

In order to study the partial optimality conditions of Sec-
tion 4 empirically, we process the above instances as follows:
First, we remove all edges of cost 0, all bridges, as well as all
repulsive edges whose nodes belong to distinct connected
components of G+. Second, we check for every v ∈ V
whether the cut Bv = ({v}, V \ {v}) induces dominant
edges. If we find dominant attractive edges or vertices of
degree ≤ 2, we perform contractions and deletions accord-
ing to Alg. 1. Both steps are repeated until no further edges
can be removed or contracted.

After the main reduction step, which takes linear time and is
thus very fast, we further check all remaining edges uv ∈ E
for dominance in any (general) uv-cut. To this end, we con-
struct a cut tree of G with the help of Gusfield’s algorithm
(Gusfield, 1990), which takes |V | − 1 max-flow computa-
tions. Despite the increased computational effort, we only
found a small number of additional dominant attractive
edges and thus could only perform few further contractions.
However, we found a significant number of additional dom-

1This results in 2703 edges of cost 0 for Epinions, and 1949
such edges for Slashdot.

inant repulsive edges.

The effect of our method in the total number of nodes and
edges is shown in Table 1. We also report the number of
remaining edges that are not dominant repulsive. It can be
seen from this table that the numbers are effectively reduced.
This is explained, firstly, by the sparsity of the graphs and,
secondly, by the non-uniformity of the costs. From the com-
parison to the number of remaining non-persistent variables
when only the criteria of Alush & Goldberger (2012) are
applied, it can be seen that our more general criteria reveal
considerably more persistency.

It may be expected that optimization methods benefit in
terms of runtime from the reduced size of the instances.
On the instances of Kappes et al. (2015), we found the
effect to be insignificant due to their small original size. On
Epinions and Slashdot, however, the runtime of the local
search algorithm GAEC+KLj (cf. Section 7.3) decreased by
more than 70%. For completeness, we provide the numbers
in the supplements.

7.2. Dual Lower Bounds

In order to put into perspective the dual lower bounds output
by Iterative Cycle Packing (ICP) as described in Section
5, we compare this algorithm, firstly, to the cutting plane
algorithm for PCYC of Kappes et al. (2015), with Gurobi for
solving the LPs (denoted here by LP) and, secondly, to the
message passing algorithm of Swoboda & Andres (2017),
applied to PCYC, with code and parameter settings kindly
provided by the authors (denoted here by MPC).

Results are shown in Figure 1 and Table 2. It can be seen
from the figure and the table that, for the large and hard
instances Epinions and Slashdot, ICP converges at under
102 seconds, outputting lower bounds that are matched and
exceeded by MPC at around 103 seconds. It can be seen
from Table 2 that the situation is similar for the smaller
instances: The lower bounds output by ICP are a bit worse
than those output by LP or MPC (here compared to the best
optimal solution known) but are obtained faster (by as much
as three orders of magnitude for Knott-3D-450).

It is known from Kappes et al. (2015) that their instances
can be solved faster than their LP relaxations by means of
branch-and-cut, separating only integer infeasible points
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Figure 1. Shown above is the convergence of lower bounds found by linear programming (LP), message passing (MPC) and iterative
cycle packing (ICP), for the large and hard instances Epinions and Slashdot.

Table 3. Reported below is the effect of re-weighting instances of weighted correlation clustering by ICP. Feasible solutions found by
the heuristic algorithms GAEC and GAEC+KLj for original instances (no prefix) are compared to feasible solutions found by these
algorithms for reweighted instances (prefix ICP). All gaps are w.r.t. the original cost function obtained by relation to the objective value of
the best known lower bound.

Image Seg. Knott-3D-150 Knott-3D-300 Knott-3D-450 Mod. Clust. Epinions Slashdot

t [s] Gap t [s] Gap t [s] Gap t [s] Gap t [s] Gap t [s] Gap t [s] Gap

GAEC 0.01 0.53% 0.01 0.28% 0.06 0.47% 0.21 0.25% 0.01 8.09% 2.19 1.75% 1.52 7.76%
ICP+GAEC 0.09 0.14% 0.04 0.02% 0.55 0.24% 3.61 0.08% 0.03 3.80% 68.53 0.56% 25.82 7.06%

GAEC+KLj 0.03 0.34% 0.02 0.11% 0.42 0.15% 6.46 0.07% 0.01 1.28% 8324 0.18% 9217 6.69%
ICP+GAEC+KLj 0.11 0.10% 0.05 0.00% 0.81 0.03% 8.71 0.05% 0.04 1.14% 7336 0.12% 4451 6.58%

by cycle inequalities using BFS (instead of Dijkstra’s al-
gorithm), and resorting to the strong (undisclosed) cuts of
Gurobi for cutting off fractional solutions. We restrict our
comparison here to algorithms that seek to solve the LP
relaxation PCYC. This is justified by the fact that size ulti-
mately renders integer linear programming intractable. We
conclude that ICP is capable of computing non-trivial lower
bounds fast.

7.3. Re-weighting

In order to study the re-weighting described in Section 6, we
measure its effect on heuristic algorithms for finding feasible
solutions. To this end, we employ the implementations of
Levinkov et al. (2017) of Greedy Additive Edge Contraction
(GAEC), an algorithm that starts from singleton clusters
and greedily contracts attractive edges with maximum non-
negative cost, and of KLj, the well-known Kernighan-Lin
heuristic for graph partitioning that recursively improves an
initial clustering by splitting, merging or exchanging nodes
between neighboring clusters.

A comparison between the feasible solutions found by ap-
plying the heuristics GAEC and GAEC+KLj to original
instances, on the one hand, and to instances re-weighted by
ICP with λ = 1

2 , on the other hand, can be found in Table

3. Note that we only re-weight the input to GAEC and let
KLj run with original weights, starting from the solution
returned by GAEC, as we found this approach to be advan-
tageous. It can be seen from Table 3 that our re-weighting
consistently improves the gap. On average, it is slightly less
effective than the reparameterization with the more accurate
dual solutions obtained from MPC, as proposed by Swoboda
& Andres (2017). A more detailed comparison is provided
in the supplements.

8. Conclusion
We have established partial optimality conditions, a heuris-
tic lower bound and a heuristic re-weighting for instances
of the weighted correlation clustering problem. We have
shown advantages of each of these constructions empiri-
cally. Checking a subset of our partial optimality conditions
recursively gives a fast combinatorial algorithm that effi-
ciently reduces the size of problem instances. Conceptually,
it solves the problem for series-parallel graphs to optimality,
in linear time. Our dual heuristic algorithm provides non-
trivial lower bounds and valuable dual information fast. For
future work, it is relevant to examine if more sophisticated
dual solvers such as MPC benefit from a “warm-start” that
transforms and exploits the heuristic dual solution.
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precht, F. A. Cut, glue & cut: A fast, approximate solver
for multicut partitioning. In CVPR, 2014.

Beier, T., Pape, C., Rahaman, N., Prange, T., Berg, S., Bock,
D. D., Cardona, A., Knott, G. W., Plaza, S. M., Scheffer,
L. K., Koethe, U., Kreshuk, A., and Hamprecht, F. A.
Multicut brings automated neurite segmentation closer
to human performance. Nature Methods, 14(2):101–102,
2017. doi: 10.1038/nmeth.4151.

Cesa-Bianchi, N., Gentile, C., Vitale, F., and Zappella, G.
A correlation clustering approach to link classification in
signed networks. In COLT, 2012.

Charikar, M., Guruswami, V., and Wirth, A. Clustering with
qualitative information. Journal of Computer and System
Sciences, 71(3):360–383, 2005. doi: 10.1016/j.jcss.2004.
10.012.

Chawla, S., Krauthgamer, R., Kumar, R., Rabani, Y., and
Sivakumar, D. On the hardness of approximating multicut
and sparsest-cut. Computational Complexity, 15(2):94–
114, 2006. doi: 10.1007/s00037-006-0210-9.

Chawla, S., Makarychev, K., Schramm, T., and Yaroslavtsev,
G. Near optimal LP rounding algorithm for correlation
clustering on complete and complete k-partite graphs. In
STOC, 2015. doi: 10.1145/2746539.2746604.

Chopra, S. The graph partitioning polytope on series-
parallel and 4-wheel free graphs. SIAM Journal on Dis-
crete Mathematics, 7(1):16–31, 1994. doi: 10.1137/
S0895480191199415.

Chopra, S. and Rao, M. The partition problem. Math-
ematical Programming, 59(1–3):87–115, 1993. doi:
10.1007/BF01581239.

Demaine, E. D., Emanuel, D., Fiat, A., and Immorlica,
N. Correlation clustering in general weighted graphs.
Theoretical Computer Science, 361(2–3):172–187, 2006.
doi: 10.1016/j.tcs.2006.05.008.

Deza, M., Grötschel, M., and Laurent, M. Complete descrip-
tions of small multicut polytopes. In Applied Geometry
And Discrete Mathematics, Proceedings of a DIMACS
Workshop, pp. 221–252, 1990.

Deza, M. M., Grötschel, M., and Laurent, M. Clique-web
facets for multicut polytopes. Mathematics of Operations
Research, 17(4):981–1000, 1992. doi: 10.1287/moor.17.
4.981.

Gomory, R. E. and Hu, T. C. Multi-Terminal Network
Flows. Journal of the Society for Industrial and Applied
Mathematics, 9(4):551–570, 1961. ISSN 03684245. doi:
10.2307/2098881.

Grötschel, M. and Wakabayashi, Y. A cutting plane algo-
rithm for a clustering problem. Mathematical Program-
ming, 45(1):59–96, 1989. doi: 10.1007/BF01589097.

Grötschel, M. and Wakabayashi, Y. Facets of the clique
partitioning polytope. Mathematical Programming, 47:
367–387, 1990. doi: 10.1007/BF01580870.

Gusfield, D. Very simple methods for all pairs network flow
analysis. SIAM J. Comput., 19(1):143–155, 1990. doi:
10.1137/0219009.
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