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Appendix: Proofs of Lemmas and Theorems

All numbering in the appendix (corollaries, lemmas, theorems and equations) begin at 100 to distinguish them from their
counterparts in the main text; any equation number or theorem number below 100 refers to a theorem or equation in the
main text.

Proofs of lemmas and theorems from section 2: Global Structure of the Loss
Lemma (Lemma 1 from the paper). For each u ∈ {−1, 1}ND the cell Ωu is an open set. If u 6= u′ then Ωu and Ωu′ are
disjoint. The set N is closed and has Lebesgue measure 0.

Proof. The features x(i,`) at each hidden layer depend in a Lipschitz fashion on parameters. Thus each Ωu defines an open
set in parameter space. Moreover, if u 6= ũ then Ωu and Ωũ are disjoint by definition. That N is closed follows from the
fact that it is the complement of an open set. If ω /∈ Ωu for all u ∈ {−1, 1}ND then at least one of the equalities

b
(`)
j = −〈w(`)

j ,x(i,`−1)〉 or cs = −
(
1 + 〈vs − vr,x

(i,L)〉
)
, (100)

must hold. In the above equation b
(`)
j and cj stands for the jth entry of the bias vectors b(`) and c appearing in equation (4),

whereas w(`)
j and vj stands for the jth row of the weight matrices W (`) and V . The set of parameters N ⊂ Ω where an

equality of the form (100) holds corresponds to a Lipschitz graph in Ω of the bias parameter for that equality. It therefore
follows that

N := Ω \

 ⋃
u∈{−1,1}ND

Ωu


defines a set contained in a finite union of Lipschitz graphs. Thus N is (np − 1)-rectifiable, where np := dim(Ω) denotes
the total number of parameters. This implies that N has Lebesgue measure zero.

Theorem (Theorem 1 from the paper). For each cell Ωu there exist multilinear forms φu0 , . . . , φ
u
L+1 and a constant φuL+2

such that

L|Ωu(ω(1), . . . , ω(L), V,b(1), . . . ,b(L), c) =

φu0 (ω(1), ω(2), ω(3), ω(4) . . . , ω(L), V )

+φu1 (b(1), ω(2), ω(3), ω(4) . . . , ω(L), V )

+φu2 (b(2), ω(3), ω(4) . . . , ω(L), V )

...

+φuL−1(b(L−1), ω(L), V )

+φuL(b(L), V )

+φuL+1(c)

+φuL+2.

Proof. Let us define the collection of functions

λ(i,`)(ω) := σ′α(W (`)x(i,`−1) + b`) for ` ∈ [L]

ε(i)(ω) := σ′
(

(Id− 1⊗ y(i)) ŷ(i) + 1
)
, (101)



Comparing these equations with the definition (6) of the signature functions s(i,`)(ω) it is obvious that λ(i,`)(ω) and ε(i)(ω)
remain constant on each cell Ωu. We may therefore refer unambiguously to these functions by referencing a given cell Ωu
instead of a point ω in parameter space. We shall therefore interchangably use the more convenient notation

λ(i,`,u) := λ(i,`)(ω) for all ω ∈ Ωu

ε(i,u) := ε(i)(ω) for all ω ∈ Ωu (102)

when referring to these constants.

For simplicity of the exposition let us temporarily assume that that the network has no bias, and let us ignore the vector 1
appearing in equation (5). Also let us define the matrix T (i) = Id− 1⊗ y(i). The loss (5) then becomes:

L(W (1), . . . ,W (L), V ) =
∑
i

1Tσ( T (i)V σα(W (L) . . . σα(W (2)σα(W (1)x(i)))))

Since inside a cell Ωu the activation pattern of the ReLU’s or leaky ReLUs does not change, each σ and σα in the above
equation can be replaced by a diagonal matrix with 0, α or ones in its diagonal. To be more precise, restricted to the cell Ωu,
the loss can be written:

L|Ωu(W (1), . . . ,W (L), V ) =
∑
i

1TE(i,u)T (i)V Λ(i,L,u)W (L) . . . Λ(i,2,u)W (2)Λ(i,1,u)W (1)x(i)

where E(i,u) = diag(ε(i,u)) and Λ(i,`,u) = diag(λ(i,`,u)). From the above equation it is clear that L|Ωu
is a multilinear form

of its arguments.

Going back to our case of interest, where we do have biases and where we do not ignore the vector 1, the picture becomes
slightly more complex: the loss restricted to a cell is now a sum of multilinear form rather than a single multilinear form.
The exact formula follows by carefully expanding

L|Ωu = −1 +
1

N

∑
i

1Tσ
(
T (i)(V σα(W (L)σα(. . .W (2)σα(W (1)x(i) + b1) + b2 . . .) + bL) + c) + 1

)
= −1 +

1

N

∑
i

1TE(i,u)
(
T (i)(V Λ(i,L,u)(W (L)Λ(i,L−1,u)(. . .W (2)Λ(i,1,u)(W (1)x(i) + b1) + b2 . . .) + bL) + c) + 1

)

Corollary (Corollary 2 from the paper). If ω ∈ Ω \ N and the Hessian matrix D2L(ω) does not vanish, then it must have
at least one strictly positive and one strictly negative eigenvalue.

Proof. it suffices to note that a multilinear form φ : Rd1 × . . .× Rdn → R can always be written as

φ(v1, . . . ,vn) =

d1∑
j1=1

. . .

dn∑
jn=1

Aj1,...,jnv1,j1 . . . vn,jn (103)

for some tensor {Aj1,...,jn : 1 ≤ jk ≤ dk}, with vk,j denoting the jth component of the vector vk. From (103) it is clear
that

∂2φ

∂v2
k,j

= 0

and therefore the trace of the Hessian matrix of φ vanishes. Thus the (real) eigenvalues of the (real, orthogonally
diagonalizable) Hessian sum to zero, and so if the Hessian is not the zero matrix then it has at least one strictly positive and
one strictly negative eigenvalue.

Corollary (Corollary 1 from the paper). Local minima and maxima of the loss occur only on the boundary set N or on
those cells Ωu where the loss is constant. In the latter case, L|Ωu(ω) = φuL+2.



Proof. The proof relies on the so called maximum principle for harmonic functions. We first recall that a real valued function
f : Rd → R is said to be harmonic at a point x if it twice differentiable at x and if its Laplacian vanishes at x, that is:

∆f(x) :=
∑d
i=1

∂2f
∂x2

i
(x) = 0 (104)

Note that (104) is equivalent to saying that the Hessian matrix D2f(x) has zero trace. A function is said to be harmonic on
an open set O if it harmonic at every points x ∈ O. In the proof of the previous corollary we have shown that the trace of
D2L(ω) is equal to zero if ω /∈ N , which exactly means that the loss is harmonic on the open set Ω\N .

The strong maximum principle states that a non-constant harmonic function cannot attain a local minimum or maximum at
an interior point of an open connected set. Therefore if ω̂ is a local minimum of L that occurs in a cell Ωu, then there exists
a small neighborhood

Bε(ω̂) := {ω ∈ Ω : ‖ω − ω̂‖ < ε} ⊂ Ωu

on which L|Ωu
(ω) is constant. Thus

L|Ωu
(ω̂ + δω) = L|Ωu

(ω̂) (105)

must hold for all ω and all δ small enough. Now use the multilinearity of L|Ωu
to expand the left-hand-side into powers of

δ:

L|Ωu
(ω̂ + δω) = L|Ωu

(ω̂) +

L∑
k=1

δkfk(ω̂;ω) + δL+1
(
φu0 + φu1

)
(ω). (106)

That
(
φu0 + φu1

)
(ω) is, in fact, the highest-order term come from the fact that, among all the multilinear forms appearing in

the statement of theorem 1, φu0 and φu1 are the only one having L+ 1 inputs. The terms of order k ≤ L appearing in the
expansion (106) depends both on the minimizer ω̂ and the perturbation ω, and we denote them by fk(ω̂;ω).

Combining (105) and (106) we have that

L∑
k=1

δkfk(ω̂;ω) + δL+1
(
φu0 + φu1

)
(ω) = 0. (107)

Since (107) must hold for all δ small enough, all like powers must vanish

fk(ω̂;ω) = 0 and φu0 (ω) + φu1 (ω) = 0.

The second equation can be written as

φu0 (ω(1), ω(2), ω(3), ω(4) . . . , ω(L), V ) = −φu1 (b(1), ω(2), ω(3), ω(4) . . . , ω(L), V )

Since φu0 depends linearly on ω(1) whereas φu0 does not depend on ω(1), and since φu1 depends linearly on b(1) whereas φu0
does not depend on b(1), the only way for the above equality to hold for all perturbation ω is that both functions are the zero
function. Thus φu0 + φu1 is the zero function, and so φu2 is the highest-order multilinear form in the decomposition from
theorem 1. This implies that

fL(ω̂;ω) = φu2 (b2, ω(3), . . . , ω(L), V ),

actually just depends on ω, and that fL must vanish by (107). Thus φu2 is the zero function as well. Continuing in this way
shows that each φu` is the zero function for 0 ≤ ` ≤ L+ 1, and so in fact

L|Ωu(ω) = φuL+2

as claimed.

Theorem (Theorem 2 from the paper). If ω is a type II local minimum then L(ω) > 0.

Proof. We will show the contrapositive: if L(ω) = 0, then ω is a type I local minimum. Given some λ > 1 and ε(`) > 0 put

ω̃ := (ω1, . . . ,ω(L), λV,b(1) + ε(1), . . . ,b(L) + ε(L), λc)



and let x̃(i,`) denote the corresponding features at layer ` using these parameters. Then there exists some constant C ≥ 1 so
that ∣∣∆x(i,`)

∣∣ :=
∣∣x̃(i,`) − x(i,`)

∣∣ ≤ C max
{
ε(1), . . . , ε(`)

}
.

For each hidden layer ` ∈ [L] and each corresponding feature k ∈ [d`] define the activation levels

η
(i,`)
k := 〈W (`)

k (ω(`)),x(i,`−1)〉+ b
(`)
k

η̃
(i,`)
k := 〈W (`)

k (ω(`)), x̃(i,`−1)〉+ b
(`)
k + ε(`) = η

(i,`)
k + 〈Wk(ω(`)),∆x(i,`−1)〉+ ε(`)

for each set of parameters. Define
η(−,`) := max

i∈[N ],k∈[d`]
{η(i,`)
k : η

(i,`)
k < 0}

with the convention that η(−,`) = −∞ if η(i,`)
k ≥ 0 for all k ∈ [d`], i ∈ [N ]. Set

η(−) := max
`∈[L]

η(−,`)

as the largest negative activation level of the network. Put

W∗ := max
`∈[L
} ‖W (`)‖2

as the largest norm of the matrices W (`) across the network. Take any 0 < ε(L) so that

ε(L) <
|η(−)|

2C max{1,W∗}
,

then for ` = L− 1, . . . , 1 inductively choose

0 < ε(`) < min

{
|η(−)|

2C max{1,W∗}
,

ε(`+1)

C max{1,W∗}

}
.

In particular, ε(L) > ε(L−1) > · · · > ε(1) > 0. For any such choice

η̃
(i,`)
k ≥ ε(`) − |〈W (`)

k ,∆x(i,`−1)〉| ≥ ε(`) − C max{1,W∗}ε(`−1) > 0 if η
(i,`)
k ≥ 0

η̃
(i,`)
k ≤ −

∣∣η(−)
∣∣+ C max{1,W∗}ε(`−1) + ε(`) ≤ −1

2

∣∣η(−)
∣∣+ ε(`) < 0 if η

(i,`)
k < 0.

Now let cl(x(i)) ∈ {1, . . . , R} denote the class of a data point. Put

z(i,r)(ω) := 〈vr − vcl(x(i)),x
(i,L)(ω)〉+ (cr − ccl(x(i)))

z̃(i,r)(ω̃) := λ〈vr − vcl(x(i)),x
(i,L)(ω̃)〉+ λ(cr − ccl(x(i))) = λz(i,r) + λ〈vr − vcl(x(i)),∆x(i,L)〉

as the outputs of the network. That L(ω) = 0 implies

σ
(
1 + z(i,r)

)
= 0 for all r 6= cl(xi)

and so z(i,r) ≤ −1 for all i, r 6= cl(xi). Thus

z̃(i,r) ≤ −λ+ 2C‖V ‖2λε(L),

and so if
0 < ε(L) <

λ− 1

2C‖V ‖2λ

then z̃(i,r) < −1 for all i, r 6= cl(xi). For any λ > 1 and corresponding choices of ε(`) it follows that L(ω̃) = 0. Moreover,
by construction the signature function S(ω̃) is constant as λ, ε(`) vary and so ω̃ lies in some fixed cell Ωu for all λ > 1. But
ω̃ → ω as λ→ 1, so ω ∈ Ωu. Finally, for this cell Ωu it follows that L|Ωu = 0 by definition of the signature function.



Theorem (Theorem 3 from the paper). Consider the loss (5) for a fully connected network. Assume that α > 0 and that the
data points (x(i),y(i)) are generic. Then L(ω) = 0 at any type I local minimum.

In order to prove this theorem we will need two lemmas.

Lemma 100. Let xi, i ∈ [N ] denote arbitrary points in Rd andDi, i ∈ [N ] an arbitrary family ofm×m diagonal matrices.
Then

N∑
i=1

DiAxi = 0 for all A ∈Mm×d if and only if

N∑
i=1

Di(j, j)xi = 0 for all j ∈ [m]

Proof. Letting A = [a1, . . . ,ad] and writing out the expression

N∑
i=1

DiAxi = 0

column-wise shows that the first statement is equivalent to

d∑
k=1

(
N∑
i=1

Dixi(k)

)
ak = 0 for all (a1, . . . ,ad) ∈ Rd,

which in turn is equivalent to (
N∑
i=1

Dixi(k)

)
= 0 for all k ∈ [d] (108)

For each k the left hand side determines a diagonal matrix Ek, which vanishes if and only if all of its diagonal entries vanish.
Thus (108) is equivalent to

N∑
i=1

Di(j, j)xi(k) = 0 for all k ∈ [d], j ∈ [m],

which is exactly the conclusion of the lemma written component-by-component.

Lemma 101. Let Ωu denote a cell on which the loss L(ω) of a fully-connected network is constant. Let ε(i,u)
r ∈ {0, 1}

denote the error indicator for x(i) and class r ∈ [R] on the cell. Define

ε(i,u) :=
∑

r:y
(i)
r =0

ε(i,u)
r

as the total number of errors for x(i) on the cell. Then there exist scalars λ(i) ∈ {1, α, . . . , αL} so that the equalities∑
y
(i)
r =1

ε(i,u)λ(i)µ(i)x(i) =
∑

y
(i)
r =0

ε(i,u)
r λ(i)µ(i)x(i)

∑
y
(i)
r =1

ε(i,u)λ(i)µ(i) =
∑

y
(i)
r =0

ε(i,u)
r λ(i)µ(i)

∑
y
(i)
r =1

ε(i,u)µ(i) =
∑

y
(i)
r =0

ε(i,u)
r µ(i) (109)

hold for all r ∈ [R].



Proof. The L|Ωu
is constant if and only if all of the multilinear forms in the decomposition of L|Ωu

vanish, that is, each of
the multilinear forms is the zero function (c.f. the proof of theorem 1). Let cl(x(i)) denote the class of a data point. Put

µ(i) := (µ(i), . . . , µ(i)) ∈ RR T (i) := Id− 1⊗ y(i)

and for such a cell define the diagonal matrices

ε(i,u)
r := σ′

(
1 +

(
〈vr − vcl(x(i)),x

(i,L)〉+ cr − ccl(x(i))

))
λ

(i,`,u)
k := σ′α

(
〈a(`)
k ,x(i,`−1)〉+ b

(`)
k

)
E(i,u) := diag

(
ε

(i,u)
1 , . . . , ε

(i,u)
R

)
Λ(i,`,u) := diag

(
λ

(i,`,u)
1 , . . . , λ

(i,`,u)
d`

)
.

These diagonal matrices remain constant for all ω ∈ Ωu by the definition of a cell. Set

ν(i,u) := (T (i))TE(i,u)µ(i).

Then the multilinear forms in theorem 1 have the following form

φu0
(
A(1), . . . , A(L), V

)
=

N∑
i=1

〈V Λ(i,L,u)A(L) · · ·A(2)Λ(i,1,u)A(1)x(i),ν(i,u)〉

φu`
(
b(`), A(`+1), . . . , A(L), V ) =

N∑
i=1

〈V Λ(i,L,u)A(L) · · ·A(`+1)Λ(i,`,u)b(`),ν(i,u)〉

φuL(b(L), V ) =

N∑
i=1

〈V Λ(i,L,u)b(L),ν(i,u)〉

φuL+1(c) =

N∑
i=1

〈c,ν(i,u)〉.

Now φu0 vanishes for all V,A(`) if and only if

N∑
i=1

(
Λ(i,L,u)A(L) · · ·A(2)Λ(i,1,u)A(1)x(i)

)
⊗ ν(i,u) = 0

for all A(`). In other words, each of the R columns

N∑
i=1

(
Λ(i,L,u)A(L) · · ·A(2)Λ(i,1,u)A(1)x(i)

)
ν(i,u)
r = 0 for all r ∈ [R]

must vanish. Now Λ(i,L,u) is diagonal, and so lemma 100 shows this can happen if and only if

N∑
i=1

λ
(i,L,u)
kL

(Λ(i,L−1,u)A(L−1) · · ·A(2)Λ(i,1,u)A(1)x(i)
)
ν(i,u)
r = 0 for all (r, kL) ∈ [R]× [dL].

Now λ
(i,L,u)
kL

Λ(i,L−1,u) is once again diagonal, and so this can happen if and only if

N∑
i=1

λ
(i,L,u)
kL

λ
(i,L−1,u)
kL−1

(Λ(i,L−2,u)A(L−2) · · ·A(2)Λ(i,1,u)A(1)x(i)
)
ν(i,u)
r = 0 for all (r, kL, kL−1) ∈ [R]×[dL]×[dL−1].

Continuing in this way shows φu0 vanishes if and only if

N∑
i=1

ν(i,u)
r

(
λ

(i,L,u)
kL

λ
(i,L−1,u)
kL−1

· · ·λ(i,1,u)
k1

)
x(i) = 0 for all (r, kL, . . . , k1) ∈ [R]× [dL]× · · · × [d1].



A similar argument shows φu` , ` ∈ [L] vanish if and only if

N∑
i=1

ν(i,u)
r λ

(i,L,u)
kL

· · ·λ(i,`,u)
k`

= 0 for all (r, kL, . . . , k`) ∈ [R]× [dL]× · · · × [d`],

while φuL+1 vanishes if and only if
N∑
i=1

ν(i,u)
r = 0 for all r ∈ [R].

Pick some (kL, . . . , k1) ∈ [dL]× · · · × [d1] arbitrary and set

λ(i) := λ
(i,L,u)
kL

· · ·λ(i,1,u)
k1

∈ {1, α, . . . , αL}.

For any such a choice the fact that φu0 vanishes implies the first equation in (109) due to the definition of ν(i,u)
r , while the

fact that φu1 vanishes implies the second equation. Finally, that the third equation in (109) holds comes from the fact that
φuL+1 vanishes.

Proof of the theorem. The claims are immediate from the preceeding two lemmas. For generic data∑
y
(i)
r =1

ε(i,u)λ(i)µ(i)x(i) =
∑

y
(i)
r =0

ε(i,u)
r λ(i)µ(i)x(i)

∑
y
(i)
r =1

ε(i,u)λ(i)µ(i) =
∑

y
(i)
r =0

ε(i,u)
r λ(i)µ(i)

∑
y
(i)
r =1

ε(i,u)µ(i) =
∑

y
(i)
r =0

ε(i,u)
r µ(i)

can hold only if all of the coefficients vanish, i.e. ε(i,u)
r λ(i) = 0 for all i ∈ [N ], r ∈ [R]. But λ(i) > 0 for all i ∈ [N ] since

α > 0, and so ε(i,u)
r = 0 for all i ∈ [N ], r ∈ [R]. That is, L(ω) = 0 on any flat cell Ωu.

Proofs of theorems from section 3: Critical Point Analysis
We begin by showing that no sub-optimal minimizers exist in the simplest case α = 1, i.e. for deep linear networks with
binary hinge loss. The loss here is ∑

µ(i)σ
(

1− y(i)
(
〈v,W (L) · · ·W (1)x(i)〉+ c

))
. (110)

Note that if we define v̄ := (W (L) · · ·W (1))Tv then (110) corresponds to a convex loss E(v̄, c) whose first argument is
parametrized as a multilinear product.

Theorem 100 (Deep Linear Networks). Consider the loss (110) with arbitrary data and assume that ω is any critical point
in the Clarke sense. Then the following hold —

(i) If v̄ 6= 0 then ω is a global minimum.
(ii) If the µ(i) weight both classes equally weighted and ω is a local minimum with v̄ = 0 then it is a global minimum.

Proof. Recall that the loss takes the form

L(ω) =

N∑
i=1

µ(i)σ
(
1− y(i)(〈v,x(i,L)〉+ c)

)
y(i) ∈ {−1, 1}

for a deep linear network, where
x(i,L) = W (L) · · ·W (1)x(i)



denote the features from the linear network at the Lth hidden layer. Let W := W (L) · · ·W (1) and v̄ := WTv, and recall
that on a cell Ωu the expression

L|Ωu
(ω) =

N∑
i=1

µ(i)ε(i,u) −
N∑
i=1

µ(i)ε(i,u)y(i)
(
〈v,x(i,L)〉+ c

)
defines the loss. The expressions

−∇W (1)L|Ωu
=

N∑
i=1

(W (L) · · ·W (2))Tv ⊗ x(i)µ(i)ε(i,u)y(i)

−∇cL|Ωu
=

N∑
i=1

µ(i)ε(i,u)y(i)

then furnish the gradient of L with respect to the parameters (W (1), c) on the cell. By definition, it therefore follows that

0 = (W (L) · · ·W (2))Tv ⊗ z z :=

N∑
i=1

µ(i)λ(i)y(i)x(i), λ(i) :=
∑

u∈I(ω)

θ(u)ε(i,u)

0 =

N∑
i=1

µ(i)λ(i)y(i)

a critical point, where the non-negative constants θ(u) ≥ 0 sum to one. In particular, the coefficients λ(i) ∈ [0, 1] lie in the
unit interval. Multiplying by transpose of W (1) shows

0 = v̄ ⊗ z

at a critical point. This gives a dichotomy — either z vanishes or v̄ vanishes.

Consider first the case where z vanishes. Then

0 =

N∑
i=1

µ(i)λ(i)y(i)x(i) and 0 =

N∑
i=1

µ(i)λ(i)y(i) (111)

both hold. Moreover, for each i ∈ [N ] the coefficients λ(i) obey

λ(i) ∈


{1} if 1−

(
〈v̄,x(i)〉+ c

)
y(i) > 0

[0, 1] if 1−
(
〈v̄,x(i)〉+ c

)
y(i) = 0

{0} if 1−
(
〈v̄,x(i)〉+ c

)
y(i) < 0

(112)

as well. This follows from the observation that ε(i,u) = 1 for all cells u ∈ I(ω) in the first case, while ε(i,u) = 0 for all
cells u ∈ I(ω) in the last case. Now for each i ∈ [N ] define the functions

f (i)(w, d) := µ(i)σ
(
1−

(
〈w,x(i)〉+ d

)
y(i)
)
,

which are clearly convex. The subdifferential ∂f (i)(w, d) of f (i)(w, d) at a point (w, d) is easily computed as

∂f (i)(w, d) =


{−µ(i)y(i)(x(i), 1)T } if 1−

(
〈w,x(i)〉+ d

)
y(i) > 0

−[0, 1]µ(i)y(i)(x(i), 1)T if 1−
(
〈w,x(i)〉+ d

)
y(i) = 0

{0} if 1−
(
〈w,x(i)〉+ d

)
y(i) < 0,

and so (111,112) imply that the inclusion

0 ∈
N∑
i=1

∂f (i)(v̄, c)



holds. As each f (i)(w, d) is Lipschitz, the composite function

E(w, d) :=

N∑
i=1

f (i)(w, d)

obeys the calculus rule

∂E(w, d) =

N∑
i=1

∂f (i)(w, d)

(c.f. (Borwein & Lewis, 2010) theorem 3.3.5). Thus 0 ∈ ∂E(v̄, c) and so (v̄, c) is a global minimizer.

It remains to address the case where v̄ vanishes. Then as a function of c the loss remains constant for all c in the unit interval,

E(0, c) =

N∑
i=1

µ(i)σ
(
1− y(i)c

)
=
σ(1− c) + σ(1 + c)

2
= 1,

and moreover if c /∈ [−1, 1] then the convex function E(0, c) attains its minimum in the unit interval. This follows from the
equal mass hypothesis ∑

y(i)=1

µ(i) =
∑

y(i)=−1

µ(i) =
1

2

on the weights. At a local minimum ω where v̄ vanishes the parameter c must therefore lie in the unit interval. It therefore
suffices to assume that c ∈ (−1, 1) without loss of generality. But then the loss L is differentiable (in fact smooth) near ω,
and so theorem 1 from (Laurent & von Brecht, 2018) yields the result in this case.

Theorem (Theorem 4 from the paper). Consider the loss (9) with α > 0 and data x(i), i ∈ [N ] that are linearly separable.
Assume that ω = (W,v,b, c) is any critical point of the loss in the Clarke sense. Then either v = 0 or ω is a global
minimum.

The proof of theorem 4 relies on the following pair of auxiliary lemmas. The former gives an explicit description of the
multilinear decomposition for the loss in a network with one hidden layer; the latter computes the Clarke subdifferential in
terms of the decomposition of parameter space into cells.

Lemma 102 (Decomposition with L = 1). Let

L|Ωu
(W,v,b, c) = φu0 (W,v) + φu1 (b,v) + φu2 (c) + φu3

denote the loss on a cell Ωu. For k ∈ [K] define

a
(u)
k :=

∑
i

µ(i)y(i)ε(i,u)λ
(i,u)
k x(i) α

(u)
k :=

∑
i

µ(i)y(i)ε(i,u)λ
(i,u)
k

γ(u) :=
∑
i

µ(i)y(i)ε(i,u) δ(u) :=
∑
i

µ(i)ε(i,u).

Then φu3 = δ(u) and φu2 (c) = −γ(u)c, while the relations

φu0 (W,v) = −
∑
k

vk〈a(u)
k ,wk〉, and φu1 (b,v) = −

∑
k

vkα
(u)
k bk

furnish the multilinear forms defining the loss on Ωu.

Proof. Restricted to a cell Ωu the loss can be written as

L|Ωu
(W,v,b, c) =

∑
i

µ(i)σ
[
−y(i)

{
vTσα(Wx(i) + b) + c

}
+ 1
]

=
∑
i

µ(i)ε(i,u)
[
−y(i)

{
vTΛ(i,u)(Wx(i) + b) + c

}
+ 1
]
.



Expanding this expression leads to

L|Ωu =
∑
i

µ(i)ε(i,u)
[
−y(i)vTΛ(i,u)Wx(i) − y(i)vTΛ(i,u)b− y(i)c+ 1

]
=
∑
i

−µ(i)ε(i,u)y(i)vTΛ(i,u)Wx(i) − µ(i)ε(i,u)y(i)vTΛ(i,u)b− µ(i)ε(i,u)y(i)c+ µ(i)ε(i,u)

= φ
(u)
0 (W,v) + φ

(u)
1 (b,v) + φ

(u)
2 (c) + φ

(u)
3

Now let wk denote the kth row of the matrix W and note that vTΛ(i,u)W =
∑
k vkλ

(i,u)
k wT

k to find

φ
(u)
0 (W,v) = −

∑
i

µ(i)ε(i,u)y(i)

(∑
k

vkλ
(i,u)
k wT

k

)
x(i)

= −
∑
i

∑
k

µ(i)ε(i,u)y(i)vkλ
(i,u)
k 〈wk,x

(i)〉

= −
∑
k

vk

〈∑
i

µ(i)ε(i,u)y(i)λ
(i,u)
k x(i),wk

〉
= −

∑
k

vk〈a(u)
k ,wk〉.

A similar argument reveals

φ
(u)
1 (b,v) = −

∑
i

µ(i)ε(i,u)y(i)vTΛ(i,u)b

= −
∑
i

µ(i)ε(i,u)y(i)
∑
k

(
vkλ

(i,u)
k bk

)
= −

∑
k

vk

(∑
i

µ(i)ε(i,u)y(i)λ
(i,u)
k

)
bk

= −
∑
k

vkα
(u)
k bk

φ
(u)
2 (c) = −γ(u)c γ(u) := −

∑
i

µ(i)ε(i,u)y(i)

as claimed.

Lemma 103 (Subdifferential Calculation). Fix a point ω ∈ Ω and let I(ω) denote its incidence set. Then the convex hull

∂0L(ω) =

 ∑
u∈I(ω)

θ(u)∇L|Ωu
(ω) : θ(u) ≥ 0,

∑
u

θ(u) = 1

 (113)

is the Clarke subdifferential of the loss L at ω. In particular, if I(ω) = {u} is a singleton then ∂0L(ω) is single-valued:
∂0L(ω) = {∇L|Ωu(ω)}.

Proof. For a given point ω ∈ Ω recall that I(ω) denotes the set of indices of the cells that are adjacent to the point ω,

I(ω) :=
{
u ∈ {−1, 1}ND : ω ∈ Ωu

}
where Ωu stands for the closure of the cell Ωu. Assume ωk → ω and ωk /∈ N . As I(ω) is clearly finite it suffices to
assume, by passing to a subsequence if necessary, that ωk ∈ Ωu for some u ∈ I(ω) and all k sufficiently large. But
then ∇L(ωk) = ∇L|Ωu

(ωk), and since ∇L|Ωu
is a continuous function (i.e. a sum of multilinear gradients) the limit

∇L(ωk)→ ∇L|Ωu
(ω) follows. As N has measure zero definition 2 reveals that the convex hull

∂0L(ω) =

 ∑
u∈I(ω)

θ(u)∇L|Ωu
(ω) : θ(u) ≥ 0,

∑
u

θ(u) = 1





is the Clark subdifferential at ω. In particular, if ω ∈ Ωu for some u then I(ω) = {u} and (113) simply becomes
∂0L(ω) = {∇L|Ωu(ω)} as expected.

Proof of Theorem 6. By assumption 0 ∈ ∂0L(ω) and so

0 =
∑

u∈I(ω)

θ(u)∇L|Ωu
(ω) (114)

for some collection of positive coefficients θ(u) due to the characterization (113) of the subdifferential. The explicit formulas
from lemma 102 show

∂L|Ωu

∂wk
(ω) = −vka(u)

k and
∂L|Ωu

∂bk
(ω) = −vkα(u)

k ,

which by (114) then obviously implies that both∑
u∈I(ω)

θ(u)vka
(u)
k = 0 and

∑
u∈I(ω)

θ(u)vkα
(u)
k = 0

must hold for all k. Substituting the expressions a(u)
k and bk provided in lemma 2 then gives the equalities

0 = vk

∑
u

∑
i:y(i)=1

θ(u)µ(i)ε(i,u)λ
(i,u)
k x(i) −

∑
u

∑
i:y(i)=−1

θ(u)µ(i)ε(i,u)λ
(i,u)
k x(i)


0 = vk

∑
u

∑
i:y(i)=1

θ(u)µ(i)ε(i,u)λ
(i,u)
k −

∑
u

∑
i:y(i)=−1

θ(u)µ(i)ε(i,u)λ
(i,u)
k


If there exists a k for which vk 6= 0 then an interchange of summations reveals∑

i:y(i)=1

%
(i)
k x(i) =

∑
i:y(i)=−1

%
(i)
k x(i) (115)

∑
i:y(i)=1

%
(i)
k =

∑
i:y(i)=−1

%
(i)
k where %

(i)
k :=

∑
u

θ(u)µ(i)ε(i,u)λ
(i,u)
k (116)

The claim then follows since (115,116) cannot hold unless all the %(i)
k vanish. To see this, note that if the %(i)

k do not vanish
then

0 < Q :=
∑

i:y(i)=1

%
(i)
k =

∑
i:y(i)=−1

%
(i)
k ,

and upon dividing by Q the equality (115) implies∑
i:y(i)=1

(
%

(i)
k

Q

)
x(i) =

∑
i:y(i)=−1

(
%

(i)
k

Q

)
x(i).

In other words a convex combination of data points of class 1 equals a convex combination of data points of class −1, a
contradiction since the data points are linearly separable.

The theorem then easily follows. If vk 6= 0 for some k then all %(i)
k must vanish. But µ(i) > 0 (by definition) and λ(i,u)

k > 0
(since α > 0). The θ(u)’s are nonnegative and sum to 1 and so at least one of them is strictly positive, say θ(u0) > 0. By
(116) it is then clear that %(i)

k = 0 for all i ∈ [N ] if and only if ε(i,u0) = 0 for all i ∈ [N ]. Recall by definition that

ε(i,u0) = σ′
(

1− y(i)ŷ(i)
)

inside the cell Ωu0 , and so ε(i,u0) = 0 for all i ∈ [N ] implies that

0 = σ
(

1− y(i)ŷ(i)
)

for all i ∈ [N ] as well. Thus L|Ωu0
= 0, and since ω ∈ Ωu0 the continuity of the loss implies L(ω) = 0 as well.



Theorem (Theorem 5 from the paper). Consider the loss (9) with α > 0 and data x(i), i ∈ [N ] that are linearly separable.
Assume that the µ(i) weight both classes equally. Then every local minimum of L(ω) is a global minimum.

The proof of theorem 5 relies on the following four auxiliary lemmas.

Lemma 104. Let R = I1 ∪ . . .∪ IN be a partition of the real line into a finite number of non-empty intervals. Let f(t) be a
function defined by

f(t) = Pj(t) if t ∈ Ij ,

where the P1(t), . . . , PN (t) are polynomials. Then there exists t0 > 0 such that the function t 7→ sign(f(t)) is constant on
(0, t0).

Proof. First note that there exists a t∗ such that the interval (0, t∗) is contained in one of the intervals Ij . On this interval
(0, t∗) the function f(t) is simply the polynomial Pj(t). If Pj(t) is the zero polynomial, then sign(f(t)) = 0 for all
t ∈ (0, t∗) and choosing τ = t∗ leads to the claimed result. If Pj(t) is a non-trivial polynomial, it has either no roots on
(0, t∗) or a finite number of roots on (0, t∗). In the first case sign(f(t)) is clearly constant on (0, t∗) and so choosing τ = t∗

gives the claim. In the second case simply choose τ to be the first root of Pj(t) that is larger than 0.

Before turning to the remaining three auxiliary lemmas it is beneficial to recall the decomposition

L|Ωu
(W,v,b, c) = φu0 (W,v) + φu1 (b,v) + φu2 (c) + φu3 (117)

φu0 (W,v) = −
∑
k

vk〈a(u)
k ,wk〉, φu1 (b,v) = −

∑
k

vkα
(u)
k bk, φu2 (c) = −γ(u)c, (118)

for the loss on a cell, as well as the constants

a
(u)
k :=

∑
i

µ(i)ε(i,u)λ
(i,u)
k y(i)x(i) α

(u)
k :=

∑
i

µ(i)ε(i,u)λ
(i,u)
k y(i) (119)

γ(u) :=
∑
i

µ(i)y(i)ε(i,u) φu3 :=
∑
i

µ(i)ε(i,u). (120)

used to define the decomposition. By assumption the data x(i), i ∈ [N ] are linearly separable and so there exists a unit
vector q ∈ Rd, a bias β ∈ R and a margin m > 0 such that the family of inequalities

〈 q , y(i)x(i) 〉+ βy(i) ≥ m (121)

hold. Combining (119) with (121) gives the estimate

〈q,a(u)
k 〉+ βα

(u)
k ≥ m

∑
i

µ(i)ε(i,u)λ
(i,u)
k , (122)

that will be used repeatedly when proving the remaining auxiliary lemmas.

Lemma 105 (First perturbation). Let ω = (W,v,b, c) ∈ Ω denote any point in the parameter space. Define

W̃ = sign(vk) ek ⊗ q and b̃ = β sign(vk) ek.

For t ∈ R let ω(t) := (W + tW̃ ,v,b + tb̃, c) denote a corresponding perturbation of ω. Then

(i) There exists t0 > 0 and u ∈ I(ω) such that ω(t) ∈ Ωu for all t ∈ [0, t0).

(ii) L(ω) ≥ L(ω(t)) + t|vk|m
∑
i µ

(i)ε(i,u)λ
(i,u)
k for all t ∈ [0, t0).

Proof. To prove (i) let ω(t) = (W + tW̃ ,v,b + tb̃, c) = (W (t),v,b(t), c) denote the perturbation considered in the
lemma. Without loss of generality, it suffices to consider the case k = 1. Then the first row of W (t) and the first entry of
b(t) are given by

w1(t) = w1 + tsign(v1)q, b1(t) = b1 + tsign(v1)β

whereas the other rows and entries remains unchanged,

wk(t) = wk, and bk(t) = bk for k ≥ 2.



Define the constants A(i)
k and B(i)

k as

〈w1(t),x(i)〉+ b1(t) = 〈w1,x
(i)〉+ b1 + tsign(v1)

(
〈q,x(i)〉+ β

)
= A

(i)
1 +B

(i)
1 t

〈wk,x
(i)〉+ bk = A

(i)
k for k ≥ 2,

so that the signature functions can be written as:

s
(i,1)
1 (ω(t)) = sign(A

(i)
1 +B

(i)
1 t)

s
(i,1)
k (ω(t)) = sign(A

(i)
k ) for k ≥ 2

s(i,2)(ω(t)) = sign

[
1− y(i)

{
c+ v1σα(A

(i)
1 +B

(i)
1 t)) +

K∑
k=2

vkσα(A
(i)
k )

}]
.

The functions appearing inside the sign functions are clearly piecewise defined polynomials, and therefore lemma 104
implies that there exists t0 > 0 such that t 7→ S(ω(t)) is constant on (0, t0). This implies that for t ∈ (0, t0), ω(t) either
remains in a fixed cell Ωu (if none of the entries of S(ω(t)) are equal to 0) or on the boundary of a fixed cell Ωu (if some of
the entries of S(ω(t)) are equal to 0). In both cases we have that ω(t) ∈ Ωu for all t ∈ (0, t0). Since ω(t) is continuous
and since Ωu is closed, ω(t) ∈ Ωu for all t ∈ [0, t0) and so (i) holds. To prove (ii), first note that due to the continuity of the
loss, equality (117) holds not only for ω ∈ Ωu, but also for any ω ∈ Ωu. By part (i), ω(t) remains in some fixed Ωu for all
t small enough. Thus (117-118) apply. The bilinearity of φu0 and φu1 then yield

L(ω(t))− L(ω) = tφu0 (W̃ ,v) + tφu1 (b̃,v) = −t|vk|
(
〈a(u)
k ,q〉+ α

(u)
k β

)
,

which combined with (122) proves (ii).

Lemma 106 (Second perturbation). Let ω = (W,v,b, c) ∈ Ω denote a point in the parameter space. Assume that v = 0
and c /∈ {−1,+1}. Define

ṽ = ek.

For t ∈ R let ω(t) := (W,v + tṽ,b, c) denote a corresponding perturbation of ω. Then

(i) There exists t0 > 0 such that ω(t) ∈ Ωu for all u ∈ I(ω) and all t ∈ (−t0, t0).

(ii) L(ω(t))− L(ω) = −t
(
〈a(u)
k ,wk〉 − αukbk

)
for all t ∈ (−t0, t0) and all u ∈ I(ω).

Proof. To prove (i), note that v = 0 implies the equalities

s(i,1)(ω(t)) = sign(Wx(i) + b)

s(i,2)(ω(t)) = sign
[

1− cy(i) − ty(i)ṽTσα(Wx(i) + b)
]

for the signature function. But then 1− cy(i) 6= 0 since c /∈ {+1,−1}, and so there exists an interval (−t0, t0) on which all
the functions s(i,2)(ω(t)) do not change. Obviously the functions s(i,1)(ω2(t)) do not change as well since W and b are
not perturbed. So the signature S(ω(t)) does not change on (−t0, t0), which yields (i). To prove (ii), choose an arbitrary
u ∈ I(ω). Since ω(t) remains in Ωu for all t ∈ (−t0, t0) the relations (117)-(118) imply

L(ω(t))− L(ω∗) = t (φu0 (W, ṽ) + φu1 (b, ṽ)) = −t
(
〈a(u)
k ,wk〉 − αukbk

)
for all t ∈ (−t0, t0), which is the desired result.

Lemma 107 (Third perturbation). Let ω = (W,v,b, c) ∈ Ω denote a point in the parameter space. Assume that v = 0.
Define

W̃ = ek ⊗ q, ṽ = ek and b̃ = βek.

For t ∈ R let ω(t) := (W + tW̃ ,v + tṽ,b + tb̃, c) denote a corresponding perturbation of ω. Then

(i) There exists t0 > 0 and u ∈ I(ω) such that ω(t) ∈ Ωu for all t ∈ [0, t0).



(ii) L(ω) ≥ L(ω(t)) + t
(
〈a(u)
k ,wk〉+ α

(u)
k bk

)
+ t2m

∑
i µ

(i)ε(i,u)λ
(i,u)
k for all t ∈ [0, t0).

Proof. To prove (i) let ω(t) = (W + tW̃ ,v + tṽ,b + tb̃, c) = (W (t),v(t),b(t), c) denote the perturbation considered in
the lemma. Without loss of generality, if suffices to consider the case k = 1. Define the constants A(i)

k and B(i)
k as

〈w1(t),x(i)〉+ b1(t) = 〈w1,x
(i)〉+ b1 + t

(
〈q,x(i)〉+ β

)
= A

(i)
1 +B

(i)
1 t

〈wk(t),x(i)〉+ bk(t) = 〈wk,x
(i)〉+ bk = A

(i)
k for k ≥ 2.

The fact that v(t) = te1 then gives

s
(i,1)
1 (ω(t)) = sign(A

(i)
1 +B

(i)
1 t)

s
(i,1)
k (ω(t)) = sign(A

(i)
k ) for k ≥ 2

s(i,2)(ω(t)) = sign
[

1− y(i)
{
c+ tσα(A

(i)
1 +B

(i)
1 t)

}]
for the signature functions. As in the proof of part (i) of lemma 105, the arguments of the sign functions are piecewise
defined polynomials and so lemma 104 gives the claim. To prove (ii), note that since ω(t) remains in a fixed cell Ωu for all
t ∈ (0, t0) the formulas (117)-(118) apply. Expanding the bilinear forms gives

L(ω(t)) − L(ω) = t
(
φu0 (W̃ ,v) + φu0 (W, ṽ) + φu1 (b̃,v) + φu1 (b, ṽ)

)
+ t2

(
φu0 (W̃ , ṽ) + φu1 (b̃, ṽ)

)
,

and v = 0 the first order terms are

φu0 (W, ṽ) + φu1 (b, ṽ) = −〈a(u)
k ,wk〉 − αukbk.

Applying (122) then yields

φu0 (W̃ , ṽ) + φu1 (b̃, ṽ) = −〈a(u)
k ,q〉 − α(u)

k β ≤ −m
∑
i

µ(i)ε(i,u)λ
(i,u)
k

for second order terms, giving the claim.

Proof of Theorem 5. The proof is in two steps. The first step shows that a sub-optimal local minimizer must necessarily
be of the form ω = (W,0,b,±1), while the second step shows that such a sub-optimal minimizer cannot exist if the two
classes are equally weighted.

STEP 1: Assume that ω = (W,v,b, c) ∈ Ω is a sub-optimal local minimum. Then `(i)(ω) > 0 for some data point x(i).
Take an arbitrary u ∈ I(ω). By continuity of the loss, there exists ω̂ ∈ Ωu such that `(i)(ω̂) > 0, and, as a consequence,
ε(i,u) = 1. Thus

ε(i,u) = 1 for all u ∈ I(ω). (123)

since u was arbitrary. Now choose an arbitrary k ∈ [K] and consider the perturbation ω(t) := (W + tW̃ ,v,b + tb̃, c)

described in lemma 105. As α > 0 the λ(i,u)
k are all strictly positive. By (123), the term

∑
i µ

(i)ε(i,u)λ
(i,u)
k appearing in

statement (ii) of lemma 105 is strictly positive as well. Since ω is a local minimum, vk must necessary be equal to zero,
otherwise the considered perturbation would lead to a strict decrease of the loss. Thus v = 0 since k was arbitrary. Assume
that c /∈ {−1,+1} for the sake of contradiction. The perturbation described in lemma 106 gives

〈a(u)
k ,wk〉+ α

(u)
k bk = 0 for all u ∈ I(ω), (124)

which combines with (123), (124) and the perturbation described in lemma (107) to give a strict decrease in the loss. This
contradicts the fact that ω is a local minimum, and so in fact c ∈ {−1, 1}.

STEP 2. By step 1 a sub-optimal local minimizer must be of the form ω = (W,0,b,±1). Assume c = 1, as the argument
for the case c = −1 is similar. Thus ω = (W,0,b, 1). Consider the perturbation ω(t) = (W,0,b, 1− t). For t ∈ [0, 2] it



then follows that

L(ω(t)) =
∑
i

µ(i)σ
(

1− y(i) + y(i)t
)

=
∑

i:y(i)=1

µ(i)σ(t) +
∑

i:y(i)=−1

µ(i)σ(2− t)

=
∑

i:y(i)=1

µ(i)t+
∑

i:y(i)=−1

µ(i)(2− t)

= 2
∑

i:y(i)=−1

µ(i) = 1

where the equal mass hypothesis ∑
i:y(i)=1

µ(i) =
∑

i:y(i)=−1

µ(i) =
1

2

justifies the last two equalities. Therefore L(ω) = L(ω(t)) = 1 for t small enough. But if t 6= 0 then ω(t) cannot be a
local minimizer by stem 1. Thus the point ω = (W,0,b, 1) ∈ Ω has arbitrarily close neighbors ω(t) ∈ Ω that have same
loss and that are not local minima. This implies that ω can not be a local minimum.

Theorem (Theorem 6 from the paper). Consider the loss (9) with α = 0 and data x(i), i ∈ [N ] that are linearly separable.
Assume that ω = (W,v,b, c) is a critical point in the Clarke sense, and that x(i) is any data point that contributes a
nonzero value to the loss. Then for each hidden neuron k ∈ [K] either

(i) 〈wk,x
(i)〉+ bk ≤ 0, or (ii) vk = 0.

Proof. The proof of theorem 6 shows

0 = vk

∑
u

∑
i:y(i)=1

θ(u)µ(i)ε(i,u)λ
(i,u)
k x(i) −

∑
u

∑
i:y(i)=−1

θ(u)µ(i)ε(i,u)λ
(i,u)
k x(i)


0 = vk

∑
u

∑
i:y(i)=1

θ(u)µ(i)ε(i,u)λ
(i,u)
k −

∑
u

∑
i:y(i)=−1

θ(u)µ(i)ε(i,u)λ
(i,u)
k


whenever ω is a critical point. If `(i)(ω) > 0 for some data point x(i) then `(i) > 0 on each neighboring cell Ωu, u ∈ I(ω)
by continuity of the loss. This implies that ε(i,u) = 1 for all u ∈ I(ω). If vk 6= 0 for some k then∑

i:y(i)=1

%
(i)
k x(i) =

∑
i:y(i)=−1

%
(i)
k x(i)

∑
i:y(i)=1

%
(i)
k =

∑
i:y(i)=−1

%
(i)
k where %

(i)
k :=

∑
u

θ(u)µ(i)ε(i,u)λ
(i,u)
k

and the corresponding %(i)
k must all vanish since the data x(i), i ∈ [N ] are separable. If `(i) > 0 this necessarily implies that

λ
(i,u)
k = 0 for some u since the ε(i,u) = 1 and at least one θ(u) does not vanish. This in turn implies σ(〈wk,x

(i)〉+ bk) = 0

due to the definition of the λ(i)
k .

Proofs of theorems from section 4: Exact Penalties and Multi-Class Structure
The proof of theorem 7 requires modifying the notion of a cell. This modification is straightforward; it simply accounts for
the fact that the penalized loss

Eγ
(
ω(1), . . . ,ω(R)

)
:=

R∑
r=1

L(r)
(
ω(r)

)
+ γR

(
ω̆(1), . . . , ω̆(R)) (125)



has the R-fold Cartesian product Ω× · · · ×Ω as its parameter domain. The notion of a cell Ωu for the model (125) consists
of sets (Cartesian products) of the form

Ωu = Ωu(1) × Ωu(2) × · · · × Ωu(R) , (126)

where each u(r) ∈ {−1, 1}ND denotes a signature for the individual two-class losses. Thus a binary vector of the form

u =
(
u(1), . . . , u(R)

)
∈ {−1, 1}NDR u(r) ∈ {−1, 1}ND

defines a signature for the full model. That sets of the form (126) cover the product space Ω× · · · ×Ω up to a set of measure
zero follows easily from the fact that if

(
ω(1), . . . ,ω(R)

)
/∈ Ωu for all u then at least one of the u(r) (say u(1) WLOG) lies

in the set

N := Ω \

 ⋃
u(1)∈{0,1}ND

Ωu(1)


which has measure zero in Ω. Thus u must lie in the set

N × Ω× · · · × Ω

which has measure zero in the product space Ω× · · · × Ω, and so the union of the R measure zero sets of the form

Ω× · · · × N × · · · × Ω

contains all parameters
(
ω(1), . . . ,ω(R)

)
that do not lie in a cell. The proof also relies following auxiliary lemma.

Lemma 108. For any R vectors x(1), . . . ,x(R) ∈ Rd, if

‖x(r)‖2 =
1

R− 1

∑
s6=r

〈x(s),x(r)〉 for all r ∈ {1, . . . , R}

then x1 = · · · = xR.

Proof. By relabelling if necessary, it suffices to assume x(1) has largest norm amongst the x(r). Thus ‖x(1)‖ ≥ ‖x(r)‖ for
all 1 ≤ r ≤ R. If ‖x(1)‖ = 0 then there is nothing to prove. Otherwise apply Cauchy-Schwarz and the hypothesis of the
lemma to find

‖x(1)‖2 ≤ 1

R− 1

∑
s6=1

‖x(s)‖‖‖x(1)‖

‖x(1)‖ ≤ 1

R− 1

∑
s6=1

‖x(s)‖.

The latter inequality implies ‖x(1)‖ = · · · = ‖x(R)‖ since x(1) has largest norm. Thus

‖x(1)‖2 =
1

R− 1

∑
s6=1

cos θr‖x(1)‖2

1 =
1

R− 1

∑
s6=1

cos θr

by the hypothesis of the lemma. The latter equality implies cos θr = 1 for all r, and so the lemma is proved.

Theorem (Theorem 7 from the paper). If γ > 0 then the following hold for (125) —

(i) The penalty is exact, that is, at any critical point
(
ω(1), . . . ,ω(R)

)
of Eγ the equalities

ω(`,1) = · · · = ω(`,R) = ω̄(`) :=
1

R

R∑
r=1

ω(`,r)

b(`,1) = · · · = b(`,R) = b̄(`) :=
1

R

R∑
r=1

b(`,r)

hold for all ` ∈ [L].



(ii) At any critical point of Eγ the two-class critical point relations

0 ∈ ∂0L(r)(ω̆,vr, cr) (127)

hold for all r ∈ [R].

Proof. Let
(
ω(1), . . . ,ω(R)

)
denote any critical point. For each (`, r) the equalities

∇ω(`,r)R = γ
(
ω(`,r) − ω̃(`,r)

)
ω̃(`,r) :=

1

R− 1

∑
s 6=r

ω(`,s)

∇b(`,r)R = γ
(
b(`,r) − b̃(`,r)

)
b̃(`,r) :=

1

R− 1

∑
s6=r

b(`,s)

follow from a straightforward calculation. By definition of a critical point, for each cell Ωu adjacent to the critical point
there exist corresponding constants θ(u) ≥ 0 with

∑
u θ

(u) = 1 so that the equalities

0 =
∑
u

θ(u)∇vr
L̄|Ωu

0 =
∑
u

θ(u)
(
∇ω(`,r)L̄|Ωu

+∇ω(`,r)R
)

= γ
(
ω(`,r) − ω̃(`,r)

)
+
∑
u

θ(u)∇ω(`,r)L̄|Ωu

0 =
∑
u

θ(u)
(
∇b(`,r)L̄|Ωu +∇b(`,r)R

)
= γ

(
b(`,r) − b̃(`,r)

)
+
∑
u

θ(u)∇b(`,r)L̄|Ωu (128)

hold for all ` ∈ [L] and r ∈ [R], where the final equalities in the second and third line follow from the fact thatR is smooth
and so its gradients do not depend upon the cell. Now on any cell Ωu the loss L(r) decomposes into a sum of multilinear
forms

L(r)|Ωu = φ
(u,r)
0

(
ω(1,r), . . . , ω(L,r),vr

)
+

L−1∑
`=1

φ
(u,r)
`

(
b(`,r), ω(`+1,r), . . . , ω(L,r),vr

)
+ φ

(u,r)
L

(
b(L,r),vr

)
+ φ

(u,r)
L+1 (cr) + φ

(u,r)
L+2

by theorem 1. For any multilinear form φ(v1, . . . ,vn) the equality

φ(v1, . . . ,vn) = 〈vk,∇vk
φ(v1, . . . ,vn)〉

holds for all k ∈ [n] by Euler’s theorem for homogeneous functions. Taking the inner-product of (128) with vr, ω
(L,r) and

b(L,r) then shows

0 =
∑
u

θ(u)
(
φ

(u,r)
0 + · · ·+ φ

(u,r)
L

)
0 =

∑
u

θ(u)
(
φ

(u,r)
0 + · · ·+ φ

(u,r)
L−1

)
+ γ
(
‖ω(L,r)‖2 − 〈ω(L,r), ω̃(L,r)〉

)
0 =

∑
u

θ(u)
(
φ

(u,r)
L

)
+ γ
(
‖b(L,r)‖2 − 〈b(L,r), b̃(L,r)〉

)
(129)

which upon adding the second and third equalities yields

‖ω(L,r)‖2 + ‖b(L,r)‖2 = 〈ω(L,r), ω̃(L,r)〉+ 〈b(L,r), b̃(L,r)〉

for all r ∈ [R]. By the definitions of ω̃(L,r) and b̃(L,r) (c.f. lemma 108), this can happen if and only if

ω(L,1) = · · · = ω(L,R) and b(L,1) = · · · = b(L,R).

Using this in the second and third equations in (129) then shows that

0 =
∑
u

θ(u)
(
φ

(u,r)
0 + · · ·+ φ

(u,r)
L−1

)
=
∑
u

θ(u)
(
φ

(u,r)
L

)
(130)



for all r ∈ [R] as well. Now take the inner-product of (128) with ω(L−1,r) and b(L−1,r) to find

0 =
∑
u

θ(u)
(
φ

(u,r)
0 + · · ·+ φ

(u,r)
L−2

)
+ γ
(
‖ω(L−1,r)‖2 − 〈ω(L−1,r), ω̃(L−1,r)〉

)
0 =

∑
u

θ(u)
(
φ

(u,r)
L−1

)
+ γ
(
‖b(L−1,r)‖2 − 〈b(L−1,r), b̃(L−1,r)〉

)
Adding these equations and using (130) then reveals

ω(L−1,1) = · · · = ω(L−1,R) and b(L−1,1) = · · · = b(L−1,R)

must hold as well, and so also

0 =
∑
u

θ(u)
(
φ

(u,r)
0 + · · ·+ φ

(u,r)
L−2

)
=
∑
u

θ(u)
(
φ

(u,r)
L−1

)
must hold. Continuing from ` = L− 2 to ` = 1 by induction reveals

ω(`,1) = · · · = ω(`,R) and b(`,1) = · · · = b(`,R).

for all ` ∈ [L], and so part (i) is proved. Part (ii) then follows from part (i) since the equalities

ω̃(`,r) = ω̄(`) = ω(`,r) b̃(`,r) = b(`) = b(`,r)

hold for all (`, r) at any critical point. Thus (128) yields

0 =
∑
u

θ(u)∇vr
L(r)|Ω

u(r)

0 =
∑
u

θ(u)∇ω(`,r)L(r)|Ω
u(r)

0 =
∑
u

θ(u)∇b(`,r)L(r)|Ω
u(r)

(131)

for all ` ∈ [L], r ∈ [R]. Now consider (131) for r = 1. Any cells appearing in the sum (131) satisfy either (ω̆,v1, c1) ∈ Ωu(1)

or (ω̆,v1, c1) ∈ ∂Ωu(1) . If (ω̆,v1, c1) ∈ Ωu(1) for some u(1) then (131) must consist only of gradients on the single cell
Ωu(1) and so (ω̆,v1, c1) ∈ Ωu(1) is a critical point of L(1) in the classical sense. If (ω̆,v1, c1) ∈ ∂Ωu(1) for some u(1) in
the sum then (ω̆,v1, c1) ∈ ∂Ωu(1) for all cells u the sum. Thus (131) consists of a positive combination of gradients of L(1)

on cells adjacent to (ω̆,v1, c1), and so (ω̆,v1, c1) defines a critical point of L(1) in the extended Clarke sense. Applying
this reasoning for r = 2, . . . , R then yields part (ii) and proves the theorem.

The following preliminary lemma will aid the proofs of the stated corollaries to this theorem.

Lemma 109. Consider a piecewise multilinear loss

L̄(ω) =

R∑
r=1

L̄(r)(ω̆,vr, cr)

that satisfies theorem 7, and for γ > 0 let

Eγ(ω(1), . . . ,ω(R)) :=

R∑
r=1

L̄(r)
(
ω(r)

)
+ γR

(
ω̆(1), . . . , ω̆(R)) ω(r) = (ω̆(r),vr, cr)

denote its corresponding exact penalization. If
(
ω(1), . . . ,ω(R)

)
is a local minimum of Eγ and ω̆ := (ω̆(1) + · · ·+ ω̆(R))/R

then ω := (ω̆,v1, c1, . . . ,vR, cR) is a local minimum of L̄.



Proof. As
(
ω(1), . . . ,ω(R)

)
is a local minimum of Eγ it must be a critical point. Thus each ω(r) takes the form

ω(r) = (ω̆,vr, cr)

by theorem 7. If ω̆ is not a local minimizer of L̄ then there exists a sequence ωk → ω for which L̄(ωk) < L̄(ω) holds.
Define the identically replicated points

ω(r,k) := (ω̆k,v
(k)
r , ckr ), so that

(
ω(1,k), . . . ,ω(R,k)

)
→
(
ω(1), . . . ,ω(R)

)
and moreover

Eγ
(
ω(1,k), . . . ,ω(R,k)

)
= L̄(ωk) < L̄(ω) = Eγ

(
ω(1), . . . ,ω(R)

)
which contradicts the fact that

(
ω(1), . . . ,ω(R)

)
is a local minimizer of Eγ .

For our multiclass analysis we begin at α = 1 and study the deep linear problem

L(ω) =

R∑
r=1

L(r)(ω
)

for (132)

L(r)(ω) :=
∑

µ(i,r)σ
(
1− y(i,r)(〈vr,x(i,L)〉+ cr)

)
using the soft penalty approach. The features x(i,L) := W (L) · · ·W (1)x(i) result from a deep linear network, and so if we
define v̄(r) := (W (L) · · ·W (1))Tvr then we may once again view (132) as a convex loss

E(1)(v̄1, c1) + · · ·+ E(R)(v̄R, cR)

with over-parametrized arguments. If the positive weights µ(i,r) > 0 satisfy
∑
y(i,r)=1 µ

(i,r) =
∑
y(i,r)=−1 µ

(i,r) = 1
2 then

we say that the µ(i,r) give equal weight to all classes. Directly appealing to the critical point relations (127) gives our first
simple corollary using this approach.

Corollary 100 (Multiclass Deep Linear Networks, I). Consider the loss (132) and its corresponding penalty (125) with
γ > 0 and arbitrary data. Assume that ω = (ω(1), . . . ,ω(R)) is any critical point of Eγ in the Clarke sense. If v̄(r) 6= 0 for
all r ∈ [R] then ω is a global minimum of L and of Eγ .

Proof. By theorem 7 any critical point of Eγ yields a common set of weights W (`), ` ∈ [L] for which the two-class critical
point relations

0 ∈ ∂0L(r)
(
W (1), . . . ,W (L),vr, cr)

hold for all r ∈ [R]. By theorem 100, if v̄r 6= 0 then (v̄r, cr) is a global minimum of the convex function

E(r)(wr, cr) :=

N∑
i=1

µ(i,r)σ
(
1− y(i,r)(〈wr,x

(i)〉+ cr)
)

and so 0 ∈ ∂E(r)(v̄r, cr) by definition of the subgradient for convex functions. If v̄r 6= 0 for all r ∈ [R] it therefore follows
that

0 ∈ ∂E(r)(v̄r, cr)

for all r ∈ [R]. Finally, define the convex function E(w1, c1, . . . ,wR, cR) := E(1)(w1, c1) + · · · + E(R)(wR, cR) and
note that the sum rule

∂E(v̄1, c1, . . . , v̄R, cR) =

R∑
r=1

∂E(r)(v̄r, cr)

holds since each E(r) is Lipschitz. Thus 0 ∈ ∂E(v̄1, c1, . . . , v̄R, cR), and as γ > 0 it follows that ω is a global
minimizer.

Corollary 101 (Multiclass Deep Linear Networks, II). Consider the loss (132) and its corresponding penalty (125) with
γ > 0 and arbitrary data. Assume that ω = (ω(1), . . . ,ω(R)) is a local minimum of Eγ with v̄(r) = 0 for some r ∈ [R]. If
the µ(i,r) give equal weight to all classes then ω is a global minimum of L and of Eγ .



Proof. Any local minimum (ω(1), . . . ,ω(R)) of Eγ is necessarily a critical point, and so each ω(r) takes the form

ω(r) = (W (1), . . . ,W (L),vr, cr)

for some common weight matrices W (`), ` ∈ [L]. Moreover, 0 ∈ ∂0L(r)(W (1), . . . ,W (L),vr, cr) for all r ∈ [R] as well.

Consider any r ∈ [R] for which v̄(r) = 0. Then as a function of cr the convex function E(r) obeys

E(r)(0, cr) =

N∑
i=1

µ(i,r)σ
(
1− y(i,r)cr

)
=
σ(1− cr) + σ(1 + cr)

2

due to the equal weight hypothesis. Thus Eγ can only attain a local minimum if cr lies in the unit interval −1 ≤ cr ≤ 1, and
moreover E(0, cr) ≡ 1 is constant on the unit interval. It therefore suffices to assume that −1 < cr < 1 without loss of
generality, and so in particular, that the function E(r) is differentiable (in fact smooth) near ω. Define the perturbation ω̃ of
ω = (ω(1), . . . ,ω(R)) as

W̃ (`,r) := W (`) + δ(`)X(`) W̃ (`,s) := W (`) (s 6= r),

ṽr := vr + δ(0)wr,

where the δ(`), ` ∈ [L] and δ(0) are small scalars, the X(`) are arbitrary matrices and wr is an arbitrary vector. Then the
energy Eγ becomes

Eγ(ω̃)− Eγ(ω) = E(r)
(
(W̃ (L,r) · · · W̃ (1,r))T ṽr, cr

)
− E(r)(0, cr) + γ

L∑
`=1

(
δ(`)
)2‖X(`)‖2.

Define the vector

zr :=

N∑
i=1

µ(i,r)y(i,r)x(i),

and note that
E(r)

(
(W̃ (L,r) · · · W̃ (1,r))T ṽr, cr

)
− E(r)(0, cr) = −〈(W̃ (L,r) · · · W̃ (1,r))zr, ṽr〉

for all δ(0), δ(`) sufficiently small. As ω is a local minimizer, the inequality

γ

L∑
`=1

(
δ(`)
)2‖X(`)‖2 ≥ 〈(W̃ (L,r) · · · W̃ (1,r))zr, ṽr〉 (133)

must therefore hold for all X(`),wr and corresponding δ(`), δ(0) sufficiently small.

First, apply (133) with δ(`) = 0 for all ` ∈ [L] to find that

0 ≥ 〈W (L) · · ·W (1)zr,vr + δ(0)wr〉

for any wr arbitrary and corresponding δ(0) sufficiently small. But v̄(r) = 0 and so 0 = 〈W (L) · · ·W (1)zr,wr〉 for all wr,
whence

W (L) · · ·W (1)zr = 0.

Now, if zr = 0 then
0 = ∇E(r)(0, cr),

and so if zr for all r ∈ [R] for which v̄(r) = 0 then 0 = ∇E(r)(0, cr) for all such r ∈ [R]. If v̄r 6= 0 the relation
0 ∈ ∂E(r)(v̄r, cr) holds as well (as in the previous corollary), and so ω is a global minimum.

It therefore remains to consider the case where there exists r ∈ [R] for which v̄(r) = 0 but zr 6= 0. AsW (L) · · ·W (1)zr = 0
there exists an index 0 ≤ k ≤ L− 1 for which

W (k) · · ·W (1)zr 6= 0 W (k+1) · · ·W (1)zr = 0,



where clearly k = 0 means zr 6= 0 but W (1)zr = 0. Apply (133) with δ(`) = 0 for all ` 6= k + 1 to find that

γ
(
δ(k+1)

)2‖X(k+1)‖2 ≥ 〈W (L) · · ·W (k+2)(W (k+1) + δ(k+1)X(k+1))W (k) · · ·W (1)zr,vr + δ(0)wr〉

for all X(k+1),wr arbitrary and corresponding δ(k+1), δ(0) sufficiently small. But W (k+1) · · ·W (1)zr = 0 and so

γ
(
δ(k+1)

)2‖X(k+1)‖2 ≥ δ(k+1)〈W (L) · · ·W (k+2)X(k+1)W (k) · · ·W (1)zr,vr + δ(0)wr〉 (134)

must hold for all X(k+1),wr arbitrary and corresponding δ(k+1), δ(0) sufficiently small as well. Now apply (134) with
δ(0) = 0 to see

γ
(
δ(k+1)

)2‖X(k+1)‖2 ≥ δ(k+1)〈W (L) · · ·W (k+2)X(k+1)W (k) · · ·W (1)zr,vr〉,

but as W (k) · · ·W (1)zr 6= 0 and X(k+1) is arbitrary this can happen if and only if (W (L) · · ·W (k+2))Tvr = 0. But then
(134) shows

γ
(
δ(k+1)

)2‖X(k+1)‖2 ≥ δ(k+1)δ(0)〈W (L) · · ·W (k+2)X(k+1)W (k) · · ·W (1)zr,wr〉

must hold for all X(k+1),wr and corresponding δ(k+1), δ(0) sufficiently small. Take δ(k+1) =
(
δ(0)
)2

for δ(0) small to find

γ
(
δ(0)
)4‖X(k+1)‖2 ≥

(
δ(0)
)3〈W (L) · · ·W (k+2)X(k+1)W (k) · · ·W (1)zr,wr〉

and so in fact 〈W (L) · · ·W (k+2)X(k+1)W (k) · · ·W (1)zr,wr〉 = 0 for X(k+1),wr arbitrary. This cannot happen unless
k ≤ L− 2 and 0 = W (L) · · ·W (k+2), in which case in fact v̄(r) = 0 for all r ∈ [R]. But then E(r) is differentiable for all
r ∈ [R] near (0, cr), and so (W (1), . . . ,W (L),v1, . . . ,vR, c1, . . . , cR) is a differentiable local minimum of L̄ by lemma
109. As L̄ is piecewise multilinear and the minimum is differentiable, L̄ must be constant near the minimum. Take X(`),wr

arbitrary and define
W̃ (`) = W (`) + δX(`) ṽr = vr + δwr

for all δ sufficiently small. Then

L̄
(
W̃ (1), . . . , W̃ (L), Ṽ

)
− L̄

(
W (1), . . . ,W (R), V

)
= 0

for all δ small enough, and since

L̄
(
W̃ (1), . . . , W̃ (L), Ṽ

)
− L̄

(
W (1), . . . ,W (R), V

)
= 〈
(
W̃ (L) · · · W̃ (1)

)T
Ṽ , Z〉 Z = [z1, . . . , zR]

it follows that 〈
(
W̃ (L) · · · W̃ (1)

)T
Ṽ , Z〉 = 0 for all δ small enough. Expanding in powers of δ yields

0 = f0 + δf1

(
X(1), . . . , X(L),W

)
+ · · ·+ δ(L+1)fL+1

(
X(1), . . . , X(L),W

)
.

for some constant f0 and functions f`, ` ∈ [L+ 1] and all δ small enough. But then

fL+1

(
X(1), . . . , X(L),W

)
= 0

for all X(`),W arbitrary. As fL+1

(
X(1), . . . , X(L),W

)
= 〈
(
X(L) · · · X̃(1)

)T
W,Z〉 this can happen if and only if Z = 0.

Thus
zr = ∇E(r)(0, cr) = 0

for all r ∈ [R] and so ω is a global minimum.

To finish the analysis, we first recall the loss

L(ω) =

R∑
r=1

L(r)(ω
)

for (135)

L(r)(ω) :=
∑

µ(i,r)σ
(
1− y(i,r)(〈vr,x(i,1)〉+ cr)

)
for a leaky network with one hidden layer.



Corollary (Corollary 3 from the paper). Consider the loss (135) and its corresponding penalty (125) with γ > 0, 0 < α < 1
and data x(i), i ∈ [N ] that are linearly separable.

(i) Assume that ω = (ω(1), . . . ,ω(R)) is a critical point of Eγ in the Clarke sense. If v(r) 6= 0 for all r ∈ [R] then ω is a
global minimum of L and of Eγ .

(ii) Assume that the µ(i,r) give equal weight to all classes. If ω = (ω(1), . . . ,ω(R)) is a local minimum of Eγ and vr = 0
for some r ∈ [R] then ω is a global minimum of L and of Eγ .

Proof. For part (i), note once again that theorem 7 any critical point of Eγ yields a common set of weights (W,b) for which
the two-class critical point relations

0 ∈ ∂0L(r)
(
W,b,vr, cr)

hold for all r ∈ [R]. By theorem 4, if vr 6= 0 for all r ∈ [R] then (W,b,vr, cr) is a global minimum of L(r) for all r ∈ [R].
But the x(i) are separable, and so

0 = L(r)(W,b,vr, cr)

for all r ∈ [R] and therefore ω is a global minimum.

For part (ii), define the sets

[R]0 := {r ∈ [R] : vr = 0} and [R]+ := {r ∈ [R] : vr 6= 0}

as those classes where vr does and does not vanish, respectively. If r ∈ [R]0 then vr = 0 and so as a function of cr the
corresponding loss L(r) takes the form

L(r)(W,b,vr, cr) =
σ(1− cr) + σ(1 + cr)

2

due to the equal weight hypothesis. A local minimum ω must therefore have cr ∈ [−1, 1], and as L(r) is constant in
for cr ∈ [−1, 1] it suffices to assume that cr ∈ (−1, 1) for all r ∈ [R]0 without loss of generality. If r ∈ [R]+ then
(W,b,vr, cr) is a global minimum of L(r) by part (i), and since the x(i) are separable a global minimum of L(r) must have
zero loss. Thus each of the N equalities

y(i,r)
(
〈vr,x(i,1)〉+ cr

)
≥ 1

must hold. By replacing (vr, cr) with (λvr, λcr) for any λ > 1 with λ arbitrarily close to 1 it therefore suffices to assume
that

y(i,r)
(
〈vr,x(i,1)〉+ cr

)
> 1

for all i ∈ [N ], r ∈ [R]+ without loss of generality. In other words, by combining the case r ∈ [R]0 and the case r ∈ [R]+
it suffices to assume that the local minimizer ω obeys

sign
(
1− y(i,r)(〈vr,x(i,1)〉+ cr)

)
∈ {−1, 1}

for all i ∈ [N ], r ∈ [R] without loss of generality. For such a local minimizer, let wh, h ∈ [H] denote the rows of W . By
relabelling the data points if necessary assume that

〈wh,x
(1)〉 ≤ 〈wh,x

(2)〉 ≤ · · · ≤ 〈wh,x
(N−1)〉 ≤ 〈wh,x

(N)〉,

and let i1 respectively denote the greatest index for which the equality

〈wh,x
(i)〉+ bh = 0

holds. Thus 0 = 〈wh,x
(i1)〉+ bh < 〈wh,x

(i1+1)〉+ bh, and so decreasing bh by any amount smaller than

〈wh,x
(i1) − x(i1+1)〉

gives a row/bias pair (wh,bh) for which

sign
(
〈wh,x

(i)〉+ bh
)
∈ {−1, 1}



for all i ∈ [N ]. Applying such a decrease to all bh, h ∈ [H] if necessary gives

sign
(
Wx(i) + b

)
∈ {−1, 1}H

for all i ∈ [N ]. Taking the size of these decreases sufficiently small thus yields a local minimizer ω of Eγ for which the
signature functions obey

s(i,1)(W,b,v1, c1, . . . ,vR, cr) ∈ {−1, 1}NH and s(i,2)(W,b,v1, c1, . . . ,vR, cr) ∈ {−1, 1}NR

for all i ∈ [N ], that is the point ω̆ := (W,b,v1, c1, . . . ,vR, cR) lies in the interior of a cell on which the loss L(ω̆) is
smooth. Moreover, the corresponding replicated point ω = (ω(1), . . . ,ω(R)) is a local minimum of Eγ and, by lemma
109, of L as well. Thus L attains a local minimum on the interior of a cell. But as α > 0 and the x(i) are separable, the
decomposition of lemma 102 shows that this can happen only if

L(r)(W,b,vr, cr) = 0

for all r ∈ [R], and so ω is a global minimizer as claimed.
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