
Hierarchical Imitation and Reinforcement Learning

Hoang M. Le 1 Nan Jiang 2 Alekh Agarwal 2 Miroslav Dudı́k 2 Yisong Yue 1 Hal Daumé III 3 2

Abstract
We study how to effectively leverage expert feed-
back to learn sequential decision-making poli-
cies. We focus on problems with sparse rewards
and long time horizons, which typically pose
significant challenges in reinforcement learning.
We propose an algorithmic framework, called hi-
erarchical guidance, that leverages the hierarchi-
cal structure of the underlying problem to inte-
grate different modes of expert interaction. Our
framework can incorporate different combina-
tions of imitation learning (IL) and reinforcement
learning (RL) at different levels, leading to dra-
matic reductions in both expert effort and cost of
exploration. Using long-horizon benchmarks, in-
cluding Montezuma’s Revenge, we demonstrate
that our approach can learn significantly faster
than hierarchical RL, and be significantly more
label-efficient than standard IL. We also theoret-
ically analyze labeling cost for certain instantia-
tions of our framework.

1. Introduction
Learning good agent behavior from reward signals alone—
the goal of reinforcement learning (RL)—is particularly
difficult when the planning horizon is long and rewards are
sparse. One successful method for dealing with such long
horizons is imitation learning (IL) (Abbeel & Ng, 2004;
Daumé et al., 2009; Ross et al., 2011; Ho & Ermon, 2016),
in which the agent learns by watching and possibly query-
ing an expert. One limitation of existing imitation learn-
ing approaches is that they may require a large amount of
demonstration data in long-horizon problems.

The central question we address in this paper is: when ex-
perts are available, how can we most effectively leverage
their feedback? A common strategy to improve sample ef-

1California Institute of Technology, Pasadena, CA 2Microsoft
Research, New York, NY 3University of Maryland, College Park,
MD. Correspondence to: Hoang M. Le <hmle@caltech.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

ficiency in RL over long time horizons is to exploit hierar-
chical structure of the problem (Sutton et al., 1998; 1999;
Kulkarni et al., 2016; Dayan & Hinton, 1993; Vezhnevets
et al., 2017; Dietterich, 2000). Our approach leverages hi-
erarchical structure in imitation learning. We study the case
where the underlying problem is hierarchical, and subtasks
can be easily elicited from an expert. Our key design prin-
ciple is an algorithmic framework called hierarchical guid-
ance, in which feedback (labels) from the high-level ex-
pert is used to focus (guide) the low-level learner. The
high-level expert ensures that low-level learning only oc-
curs when necessary (when subtasks have not been mas-
tered) and only over relevant parts of the state space. This
differs from a naı̈ve hierarchical approach which merely
gives a subtask decomposition. Focusing on relevant parts
of the state space speeds up learning (improves sample ef-
ficiency), while omitting feedback on the already mastered
subtasks reduces expert effort (improves label efficiency).

We begin by formalizing the problem of hierarchical imi-
tation learning (Section 3) and carefully separate out cost
structures that naturally arise when the expert provides
feedback at multiple levels of abstraction. We first apply hi-
erarchical guidance to IL, derive hierarchically guided vari-
ants of behavior cloning and DAgger (Ross et al., 2011),
and theoretically analyze the benefits (Section 4). We next
apply hierarchical guidance to the hybrid setting with high-
level IL and low-level RL (Section 5). This architecture
is particularly suitable in settings where we have access to
high-level semantic knowledge, the subtask horizon is suf-
ficiently short, but the low-level expert is too costly or un-
available. We demonstrate the efficacy of our approaches
on a simple but extremely challenging maze domain, and
on Montezuma’s Revenge (Section 6). Our experiments
show that incorporating a modest amount of expert feed-
back can lead to dramatic improvements in performance
compared to pure hierarchical RL.1

2. Related Work
For brevity, we provide here a short overview of related
work, and defer to Appendix C for additional discussion.

1Code and experimental setups are available at https://
sites.google.com/view/hierarchical-il-rl

https://sites.google.com/view/hierarchical-il-rl
https://sites.google.com/view/hierarchical-il-rl

Hierarchical Imitation and Reinforcement Learning

Imitation Learning. One can broadly dichotomize IL into
passive collection of demonstrations (behavioral cloning)
versus active collection of demonstrations. The former set-
ting (Abbeel & Ng, 2004; Ziebart et al., 2008; Syed &
Schapire, 2008; Ho & Ermon, 2016) assumes that demon-
strations are collected a priori and the goal of IL is to find
a policy that mimics the demonstrations. The latter setting
(Daumé et al., 2009; Ross et al., 2011; Ross & Bagnell,
2014; Chang et al., 2015; Sun et al., 2017) assumes an in-
teractive expert that provides demonstrations in response to
actions taken by the current policy. We explore extension
of both approaches into hierarchical settings.

Hierarchical Reinforcement Learning. Several RL ap-
proaches to learning hierarchical policies have been ex-
plored, foremost among them the options framework (Sut-
ton et al., 1998; 1999; Fruit & Lazaric, 2017). It is of-
ten assumed that a useful set of options are fully defined a
priori, and (semi-Markov) planning and learning only oc-
curs at the higher level. In comparison, our agent does not
have direct access to policies that accomplish such subgoals
and has to learn them via expert or reinforcement feedback.
The closest hierarchical RL work to ours is that of Kulkarni
et al. (2016), which uses a similar hierarchical structure, but
no high-level expert and hence no hierarchical guidance.

Combining Reinforcement and Imitation Learning. The
idea of combining IL and RL is not new (Nair et al., 2017;
Hester et al., 2018). However, previous work focuses on
flat policy classes that use IL as a “pre-training” step (e.g.,
by pre-populating the replay buffer with demonstrations).
In contrast, we consider feedback at multiple levels for a
hierarchical policy class, with different levels potentially
receiving different types of feedback (i.e., imitation at one
level and reinforcement at the other). Somewhat related to
our hierarchical expert supervision is the approach of An-
dreas et al. (2017), which assumes access to symbolic de-
scriptions of subgoals, without knowing what those sym-
bols mean or how to execute them. Previous literature has
not focused much on comparisons of sample complexity
between IL and RL, with the exception of the recent work
of Sun et al. (2017).

3. Hierarchical Formalism
For simplicity, we consider environments with a natural
two-level hierarchy; the HI level corresponds to choosing
subtasks, and the LO level corresponds to executing those
subtasks. For instance, an agent’s overall goal may be to
leave a building. At the HI level, the agent may first choose
the subtask “go to the elevator,” then “take the elevator
down,” and finally “walk out.” Each of these subtasks
needs to be executed at the LO level by actually navigat-

ing the environment, pressing buttons on the elevator, etc.2

Subtasks, which we also call subgoals, are denoted as
g ∈ G, and the primitive actions are denoted as a ∈ A. An
agent (also referred to as learner) acts by iteratively choos-
ing a subgoal g, carrying it out by executing a sequence
of actions a until completion, and then picking a new sub-
goal. The agent’s choices can depend on an observed state
s ∈ S.3 We assume that the horizon at the HI level is HHI,
i.e., a trajectory uses at most HHI subgoals, and the hori-
zon at the LO level is HLO, i.e., after at most HLO primitive
actions, the agent either accomplishes the subgoal or needs
to decide on a new subgoal. The total number of primitive
actions in a trajectory is thus at most HFULL := HHIHLO.

The hierarchical learning problem is to simultaneously
learn a HI-level policy µ : S → G, called the meta-
controller, as well as the subgoal policies πg : S → A for
each g ∈ G, called subpolicies. The aim of the learner
is to achieve a high reward when its meta-controller and
subpolicies are run together. For each subgoal g, we also
have a (possibly learned) termination function βg : S →
{True,False}, which terminates the execution of πg . The
hierarchical agent behaves as follows:

1: for hHI = 1 . . . HHI do
2: observe state s and choose subgoal g ← µ(s)
3: for hLO = 1 . . . HLO do
4: observe state s
5: if βg(s) then break
6: choose action a← πg(s)

The execution of each subpolicy πg generates a LO-level
trajectory τ = (s1, a1, . . . , sH , aH , sH+1) with H ≤
HLO.4 The overall behavior results in a hierarchical tra-
jectory σ = (s1, g1, τ1, s2, g2, τ2, . . .), where the last state
of each LO-level trajectory τh coincides with the next state
sh+1 in σ and the first state of the next LO-level trajec-
tory τh+1. The subsequence of σ which excludes the LO-
level trajectories τh is called the HI-level trajectory, τHI :=
(s1, g1, s2, g2, . . .). Finally, the full trajectory, τFULL, is the
concatenation of all the LO-level trajectories.

We assume access to an expert, endowed with a meta-

2An important real-world application is in goal-oriented di-
alogue systems. For instance, a chatbot assisting a user with
reservation and booking for flights and hotels (Peng et al., 2017;
El Asri et al., 2017) needs to navigate through multiple turns of
conversation. The chatbot developer designs the hierarchy of sub-
tasks, such as ask user goal, ask dates, offer flights, confirm, etc.
Each subtask consists of several turns of conversation. Typically
a global state tracker exists alongside the hierarchical dialogue
policy to ensure that cross-subtask constraints are satisfied.

3While we use the term state for simplicity, we do not require
the environment to be fully observable or Markovian.

4The trajectory might optionally include a reward signal after
each primitive action, which might either come from the environ-
ment, or be a pseudo-reward as we will see in Section 5.

Hierarchical Imitation and Reinforcement Learning

controller µ?, subpolicies π?
g , and termination functions β?

g ,
who can provide one or several types of supervision:

• HierDemo(s): hierarchical demonstration. The ex-
pert executes its hierarchical policy starting from s
and returns the resulting hierarchical trajectory σ? =
(s?1, g

?
1 , τ

?
1 , s

?
2, g

?
2 , τ

?
2 , . . .), where s?1 = s.

• LabelHI(τHI): HI-level labeling. The expert provides
a good next subgoal at each state of a given HI-level
trajectory τHI = (s1, g1, s2, g2, . . .), yielding a la-
beled data set {(s1, g?1), (s2, g

?
2), . . . }.

• LabelLO(τ ; g): LO-level labeling. The expert pro-
vides a good next primitive action towards a given
subgoal g at each state of a given LO-level trajectory
τ = (s1, a1, s2, a2, . . .), yielding a labeled data set
{(s1, a?1), (s2, a

?
2), . . . }.

• InspectLO(τ ; g): LO-level inspection. Instead of
annotating every state of a trajectory with a good ac-
tion, the expert only verifies whether a subgoal g was
accomplished, returning either Pass or Fail.

• LabelFULL(τFULL): full labeling. The expert labels
the agent’s full trajectory τFULL = (s1, a1, s2, a2, . . .),
from start to finish, ignoring hierarchical structure,
yielding a labeled data set {(s1, a?1), (s2, a

?
2), . . . }.

• InspectFULL(τFULL): full inspection. The expert
verifies whether the agent’s overall goal was accom-
plished, returning either Pass or Fail.

When the agent learns not only the subpolicies πg , but also
termination functions βg , then LabelLO also returns good
termination values ω? ∈ {True,False} for each state of
τ = (s1, a1 . . .), yielding a data set {(s1, a?1, ω?

1), . . . }.

Although HierDemo and Label can be both generated
by the expert’s hierarchical policy (µ?, {π?

g}), they differ
in the mode of expert interaction. HierDemo returns a
hierarchical trajectory executed by the expert, as required
for passive IL, and enables a hierarchical version of be-
havioral cloning (Abbeel & Ng, 2004; Syed & Schapire,
2008). Label operations provide labels with respect to
the learning agent’s trajectories, as required for interactive
IL. LabelFULL is the standard query used in prior work on
learning flat policies (Daumé et al., 2009; Ross et al., 2011),
and LabelHI and LabelLO are its hierarchical extensions.

Inspect operations are newly introduced in this paper,
and form a cornerstone of our interactive hierarchical guid-
ance protocol that enables substantial savings in label effi-
ciency. They can be viewed as “lazy” versions of the cor-
responding Label operations, requiring less effort. Our
underlying assumption is that if the given hierarchical tra-
jectory σ = {(sh, gh, τh)} agrees with the expert on HI
level, i.e., gh = µ?(sh), and LO-level trajectories pass the

Algorithm 1 Hierarchical Behavioral Cloning (h-BC)

1: Initialize data buffers DHI ← ∅ and Dg ← ∅, g ∈ G
2: for t = 1, . . . , T do
3: Get a new environment instance with start state s
4: σ? ← HierDemo(s)
5: for all (s?h, g?h, τ?h) ∈ σ? do
6: Append Dg?

h
← Dg?

h
∪ τ?h

7: Append DHI ← DHI ∪ {(s?h, g?h)}
8: Train subpolicies πg ← Train(πg,Dg) for all g
9: Train meta-controller µ← Train(µ,DHI)

inspection, i.e., InspectLO(τh; gh) = Pass, then the re-
sulting full trajectory must also pass the full inspection,
InspectFULL(τFULL) = Pass. This means that a hierarchi-
cal policy need not always agree with the expert’s execution
at LO level to succeed in the overall task.

Besides algorithmic reasons, the motivation for separating
the types of feedback is that different expert queries will
typically require different amount of effort, which we refer
to as cost. We assume the costs of the Label operations
are CL

HI, C
L
LO and CL

FULL, the costs of each Inspect op-
eration are C I

LO and C I
FULL. In many settings, LO-level in-

spection will require significantly less effort than LO-level
labeling, i.e., C I

LO � CL
LO. For instance, identifying if a

robot has successfully navigated to the elevator is presum-
ably much easier than labeling an entire path to the elevator.
One reasonable cost model, natural for the environments in
our experiments, is to assume that Inspect operations
take time O(1) and work by checking the final state of the
trajectory, whereas Label operations take time propor-
tional to the trajectory length, which is O(HHI), O(HLO)
and O(HHIHLO) for our three Label operations.

4. Hierarchically Guided Imitation Learning
Hierarchical guidance is an algorithmic design principle in
which the feedback from high-level expert guides the low-
level learner in two different ways: (i) the high-level expert
ensures that low-level expert is only queried when neces-
sary (when the subtasks have not been mastered yet), and
(ii) low-level learning is limited to the relevant parts of the
state space. We instantiate this framework first within pas-
sive learning from demonstrations, obtaining hierarchical
behavioral cloning (Algorithm 1), and then within inter-
active imitation learning, obtaining hierarchically guided
DAgger (Algorithm 2), our best-performing algorithm.

4.1. Hierarchical Behavioral Cloning (h-BC)

We consider a natural extension of behavioral cloning to
the hierarchical setting (Algorithm 1). The expert pro-
vides a set of hierarchical demonstrations σ?, each con-
sisting of LO-level trajectories τ?h = {(s?` , a?`)}HLO

`=1 as well
as a HI-level trajectory τ?HI = {(s?h, g?h)}HHI

h=1. We then run

Hierarchical Imitation and Reinforcement Learning

Algorithm 2 Hierarchically Guided DAgger (hg-DAgger)

1: Initialize data buffers DHI ← ∅ and Dg ← ∅, g ∈ G
2: Run Hierarchical Behavioral Cloning (Algorithm 1)

up to t = Twarm-start
3: for t = Twarm-start + 1, . . . , T do
4: Get a new environment instance with start state s
5: Initialize σ ← ∅
6: repeat
7: g ← µ(s)
8: Execute πg , obtain LO-level trajectory τ
9: Append (s, g, τ) to σ

10: s← the last state in τ
11: until end of episode
12: Extract τFULL and τHI from σ
13: if InspectFULL(τFULL) = Fail then
14: D? ← LabelHI(τHI)
15: Process (sh, gh, τh) ∈ σ in sequence as long as

gh agrees with the expert’s choice g?h in D?:
16: if Inspect(τh; gh) = Fail then
17: Append Dgh ← Dgh ∪ LabelLO(τh; gh)
18: break
19: Append DHI ← DHI ∪ D?

20: Update subpolicies πg ← Train(πg,Dg) for all g
21: Update meta-controller µ← Train(µ,DHI)

Train (lines 8–9) to find the subpolicies πg that best pre-
dict a?` from s?` , and meta-controller µ that best predicts
g?h from s?h, respectively. Train can generally be any su-
pervised learning subroutine, such as stochastic optimiza-
tion for neural networks or some batch training procedure.
When termination functions βg need to be learned as part of
the hierarchical policy, the labels ω?

g will be provided by the
expert as part of τ?h = {(s?` , a?` , ω?

`)}.5 In this setting, hier-
archical guidance is automatic, because subpolicy demon-
strations only occur in relevant parts of the state space.

4.2. Hierarchically Guided DAgger (hg-DAgger)

Passive IL, e.g., behavioral cloning, suffers from the distri-
bution mismatch between the learning and execution distri-
butions. This mismatch is addressed by interactive IL algo-
rithms, such as SEARN (Daumé et al., 2009) and DAgger
(Ross et al., 2011), where the expert provides correct ac-
tions along the learner’s trajectories through the operation
LabelFULL. A naı̈ve hierarchical implementation would
provide correct labels along the entire hierarchical trajec-
tory via LabelHI and LabelLO. We next show how to use
hierarchical guidance to decrease LO-level expert costs.

We leverage two HI-level query types: InspectLO and
LabelHI. We use InspectLO to verify whether the sub-
tasks are successfully completed and LabelHI to check
whether we are staying in the relevant part of the state
space. The details are presented in Algorithm 2, which uses

5In our hierarchical imitation learning experiments, the termi-
nation functions are all learned. Formally, the termination signal
ωg , can be viewed as part of an augmented action at LO level.

DAgger as the learner on both levels, but the scheme can be
adapted to other interactive imitation learners.

In each episode, the learner executes the hierarchical pol-
icy, including choosing a subgoal (line 7), executing the
LO-level trajectories, i.e., rolling out the subpolicy πg for
the chosen subgoal, and terminating the execution accord-
ing to βg (line 8). Expert only provides feedback when
the agent fails to execute the entire task, as verified by
InspectFULL (line 13). When InspectFULL fails, the ex-
pert first labels the correct subgoals via LabelHI (line 14),
and only performs LO-level labeling as long as the learner’s
meta-controller chooses the correct subgoal gh (line 15),
but its subpolicy fails (i.e., when InspectLO on line 16
fails). Since all the preceding subgoals were chosen and
executed correctly, and the current subgoal is also correct,
LO-level learning is in the “relevant” part of the state space.
However, since the subpolicy execution failed, its learning
has not been mastered yet. We next analyze the savings in
expert cost that result from hierarchical guidance.

Theoretical Analysis. We analyze the cost of hg-DAgger
in comparison with flat DAgger under somewhat stylized
assumptions. We assume that the learner aims to learn the
meta-controller µ from some policy classM, and subpoli-
cies πg from some class ΠLO. The classesM and ΠLO are
finite (but possibly exponentially large) and the task is real-
izable, i.e., the expert’s policies can be found in the corre-
sponding classes: µ? ∈ M, and π?

g ∈ ΠLO, g ∈ G. This al-
lows us to use the halving algorithm (Shalev-Shwartz et al.,
2012) as the online learner on both levels. (The implemen-
tation of our algorithm does not require these assumptions.)

The halving algorithm maintains a version space over poli-
cies, acts by a majority decision, and when it makes a mis-
take, it removes all the erring policies from the version
space. In the hierarchical setting, it therefore makes at most
log |M|mistakes on the HI level, and at most log |ΠLO|mis-
takes when learning each πg . The mistake bounds can be
further used to upper bound the total expert cost in both
hg-DAgger and flat DAgger. To enable an apples-to-apples
comparison, we assume that the flat DAgger learns over the
policy class ΠFULL = {(µ, {πg}g∈G) : µ ∈M, πg ∈ ΠLO},
but is otherwise oblivious to the hierarchical task structure.
The bounds depend on the cost of performing different
types of operations, as defined at the end of Section 3. We
consider a modified version of flat DAgger that first calls
InspectFULL, and only requests labels (LabelFULL) if the
inspection fails. The proofs are deferred to Appendix A.

Theorem 1. Given finite classes M and ΠLO and realiz-
able expert policies, the total cost incurred by the expert in
hg-DAgger by round T is bounded by

TC I
FULL +

(
log2 |M|+ |Gopt| log2 |ΠLO|

)
(CL

HI +HHIC
I
LO)

+
(
|Gopt| log2 |ΠLO|

)
CL

LO, (1)

Hierarchical Imitation and Reinforcement Learning

where Gopt ⊆ G is the set of the subgoals actually used by
the expert, Gopt := µ?(S).

Theorem 2. Given the full policy class ΠFULL =
{(µ, {πg}g∈G) : µ ∈M, πg ∈ ΠLO} and a realizable ex-
pert policy, the total cost incurred by the expert in flat DAg-
ger by round T is bounded by

TC I
FULL +

(
log2 |M|+ |G| log2 |ΠLO|

)
CL

FULL. (2)

Both bounds have the same leading term, TC I
FULL, the cost

of full inspection, which is incurred every round and can
be viewed as the “cost of monitoring.” In contrast, the re-
maining terms can be viewed as the “cost of learning” in the
two settings, and include terms coming from their respec-
tive mistake bounds. The ratio of the cost of hierarchically
guided learning to the flat learning is then bounded as

Eq. (1)− TC I
FULL

Eq. (2)− TC I
FULL

≤ CL
HI +HHIC

I
LO + CL

LO

CL
FULL

, (3)

where we applied the upper bound |Gopt| ≤ |G|. The sav-
ings thanks to hierarchical guidance depend on the specific
costs. Typically, we expect the inspection costs to be O(1),
if it suffices to check the final state, whereas labeling costs
scale linearly with the length of the trajectory. The cost ra-
tio is then ∝ HHI+HLO

HHIHLO
. Thus, we realize most significant

savings if the horizons on each individual level are sub-
stantially shorter than the overall horizon. In particular, if
HHI = HLO =

√
HFULL, the hierarchically guided approach

reduces the overall labeling cost by a factor of
√
HFULL.

More generally, whenever HFULL is large, we reduce the
costs of learning be at least a constant factor—a significant
gain if this is a saving in the effort of a domain expert.

5. Hierarchically Guided IL / RL
Hierarchical guidance also applies in the hybrid setting
with interactive IL on the HI level and RL on the LO level.
The HI-level expert provides the hierarchical decomposi-
tion, including the pseudo-reward function for each sub-
goal,6 and is also able to pick a correct subgoal at each
step. Similar to hg-DAgger, the labels from HI-level expert
are used not only to train the meta-controller µ, but also to
limit the LO-level learning to the relevant part of the state
space. In Algorithm 3 we provide the details, with DAgger
on HI level and Q-learning on LO level. The scheme can be
adapted to other interactive IL and RL algorithms.

The learning agent proceeds by rolling in with its meta-
controller (line 7). For each selected subgoal g, the sub-
policy πg selects and executes primitive actions via the

6This is consistent with many hierarchical RL approaches, in-
cluding options (Sutton et al., 1999), MAXQ (Dietterich, 2000),
UVFA (Schaul et al., 2015a) and h-DQN (Kulkarni et al., 2016).

Algorithm 3 Hierarchically Guided DAgger /Q-learning
(hg-DAgger/Q)

input Function pseudo(s; g) providing the pseudo-reward
input Predicate terminal(s; g) indicating the termination of g
input Annealed exploration probabilities εg > 0, g ∈ G
1: Initialize data buffers DHI ← ∅ and Dg ← ∅, g ∈ G
2: Initialize subgoal Q-functions Qg , g ∈ G
3: for t = 1, . . . , T do
4: Get a new environment instance with start state s
5: Initialize σ ← ∅
6: repeat
7: sHI ← s, g ← µ(s) and initialize τ ← ∅
8: repeat
9: a← εg-greedy(Qg, s)

10: Execute a, next state s̃, r̃ ← pseudo(s̃; g)
11: Update Qg: a (stochastic) gradient descent step

on a minibatch from Dg

12: Append (s, a, r̃, s̃) to τ and update s← s̃
13: until terminal(s; g)
14: Append (sHI, g, τ) to σ
15: until end of episode
16: Extract τFULL and τHI from σ
17: if InspectFULL(τFULL) = Fail then
18: D? ← LabelHI(τHI)
19: Process (sh, gh, τh) ∈ σ in sequence as long as

gh agrees with the expert’s choice g?h in D?:
20: Append Dgh ← Dgh ∪ τh

Append DHI ← DHI ∪ D?

21: else
22: Append Dgh ← Dgh ∪ τh for all (sh, gh, τh) ∈ σ
23: Update meta-controller µ← Train(µ,DHI)

ε-greedy rule (lines 9–10), until some termination condi-
tion is met. The agent receives some pseudo-reward, also
known as intrinsic reward (Kulkarni et al., 2016) (line 10).
Upon termination of the subgoal, agent’s meta-controller
µ chooses another subgoal and the process continues until
the end of the episode, where the involvement of the expert
begins. As in hg-DAgger, the expert inspects the overall
execution of the learner (line 17), and if it is not successful,
the expert provides HI-level labels, which are accumulated
for training the meta-controller.

Hierarchical guidance impacts how the LO-level learners
accumulate experience. As long as the meta-controller’s
subgoal g agrees with the expert’s, the agent’s experience
of executing subgoal g is added to the experience replay
buffer Dg . If the meta-controller selects a “bad” subgoal,
the accumulation of experience in the current episode is
terminated. This ensures that experience buffers contain
only the data from the relevant part of the state space.

Algorithm 3 assumes access to a real-valued function
pseudo(s; g), providing the pseudo-reward in state s
when executing g, and a predicate terminal(s; g), indi-
cating the termination (not necessarily successful) of sub-
goal g. This setup is similar to prior work on hierar-
chical RL (Kulkarni et al., 2016). One natural defini-

Hierarchical Imitation and Reinforcement Learning

tion of pseudo-rewards, based on an additional predicate
success(s; g) indicating a successful completion of sub-
goal g, is as follows:

1 if success(s; g)

−1 if ¬success(s; g) and terminal(s; g)

−κ otherwise,

where κ > 0 is a small penalty to encourage short trajec-
tories. The predicates success and terminal are pro-
vided by an expert or learnt from supervised or reinforce-
ment feedback. In our experiments, we explicitly provide
these predicates to both hg-DAgger/Q as well as the hierar-
chical RL, giving them advantage over hg-DAgger, which
needs to learn when to terminate subpolicies.

6. Experiments
We evaluate the performance of our algorithms on two sep-
arate domains: (i) a simple but challenging maze naviga-
tion domain and (ii) the Atari game Montezuma’s Revenge.

6.1. Maze Navigation Domain

Task Overview. Figure 1 (left) displays a snapshot of the
maze navigation domain. In each episode, the agent en-
counters a new instance of the maze from a large collec-
tion of different layouts. Each maze consists of 16 rooms
arranged in a 4-by-4 grid, but the openings between the
rooms vary from instance to instance as does the initial po-
sition of the agent and the target. The agent (white dot)
needs to navigate from one corner of the maze to the tar-
get marked in yellow. Red cells are obstacles (lava), which
the agent needs to avoid for survival. The contextual in-
formation the agent receives is the pixel representation of
a bird’s-eye view of the environment, including the partial
trail (marked in green) indicating the visited locations.

Due to a large number of random environment instances,
this domain is not solvable with tabular algorithms. Note
that rooms are not always connected, and the locations of
the hallways are not always in the middle of the wall. Prim-
itive actions include going one step up, down, left or right.
In addition, each instance of the environment is designed
to ensure that there is a path from initial location to target,
and the shortest path takes at least 45 steps (HFULL = 100).
The agent is penalized with reward −1 if it runs into lava,
which also terminates the episode. The agent only receives
positive reward upon stepping on the yellow block.

A hierarchical decomposition of the environment corre-
sponds to four possible subgoals of going to the room im-
mediately to the north, south, west, east, and the fifth pos-
sible subgoal go to target (valid only in the room con-
taining the target). In this setup, HLO ≈ 5 steps, and
HHI ≈ 10–12 steps. The episode terminates after 100 prim-

itive steps if the agent is unsuccessful. The subpolicies
and meta-controller use similar neural network architec-
tures and only differ in the number of action outputs. (De-
tails of network architecture are provided in Appendix B.)

Hierarchically Guided IL. We first compare our hierar-
chical IL algorithms with their flat versions. The algorithm
performance is measured by success rate, defined as the
average rate of successful task completion over the previ-
ous 100 test episodes, on random environment instances
not used for training. The cost of each Label operation
equals the length of the labeled trajectory, and the cost of
each Inspect operation equals 1.

Both h-BC and hg-DAgger outperform flat imitation learn-
ers (Figure 2, left). hg-DAgger, in particular, achieves
consistently the highest success rate, approaching 100%
in fewer than 1000 episodes. Figure 2 (left) displays the
median as well as the range from minimum to maximum
success rate over 5 random executions of the algorithms.

Expert cost varies significantly between the two hierarchi-
cal algorithms. Figure 2 (middle) displays the same suc-
cess rate, but as a function of the expert cost. hg-DAgger
achieves significant savings in expert cost compared to
other imitation learning algorithms thanks to a more effi-
cient use of the LO-level expert through hierarchical guid-
ance. Figure 1 (middle) shows that hg-DAgger requires
most of its LO-level labels early in the training and requests
primarily HI-level labels after the subgoals have been mas-
tered. As a result, hg-DAgger requires only a fraction of
LO-level labels compared to flat DAgger (Figure 2, right).

Hierarchically Guided IL / RL. We evaluate hg-
DAgger/Q with deep double Q-learning (DDQN, Van Has-
selt et al., 2016) and prioritized experience replay (Schaul
et al., 2015b) as the underlying RL procedure. Each
subpolicy learner receives a pseudo-reward of 1 for each
successful execution, corresponding to stepping through
the correct door (e.g., door to the north if the subgoal
is north) and negative reward for stepping into lava or
through other doors.

Figure 1 (right) shows the learning progression of hg-
DAgger/Q, implying two main observations. First, the
number of HI-level labels rapidly increases initially and
then flattens out after the learner becomes more success-
ful, thanks to the availability of InspectFULL operation.
As the hybrid algorithm makes progress and the learning
agent passes the InspectFULL operation increasingly of-
ten, the algorithm starts saving significantly on expert feed-
back. Second, the number of HI-level labels is higher than
for both hg-DAgger and h-BC. InspectFULL returns Fail
often, especially during the early parts of training. This is
primarily due to the slower learning speed of Q-learning
at the LO level, requiring more expert feedback at the HI

Hierarchical Imitation and Reinforcement Learning

episode 0-250
(success rate 27%)

250-500
(81%)

500-750
(91%)

750-1000
(97%)

0K

2K

4K

6K

8K

10K

ex
p

er
t

co
st

hg-DAgger (Alg. 2)
expert cost per type

HI-level labeling

LO-level labeling

LO-level inspection

0K 50K 100K 150K 200K 250K 300K 350K 400K
RL samples at LO-level

0%

20%

40%

60%

80%

100%

su
cc

es
s

ra
te

hg-DAgger/Q (Alg. 3)
RL samples vs. expert cost

0K

5K

10K

15K

20K

25K

30K

35K

40K

H
I-

le
ve

l
ex

p
er

t
co

st

success rate
HI-level expert cost
every 5K episodes

Figure 1. Maze navigation. (Left) One sampled environment instance; the agent needs to navigate from bottom right to bottom left.
(Middle) Expert cost over time for hg-DAgger; the cost of Label operations equals the length of labeled trajectory, the cost of Inspect
operations is 1. (Right) Success rate of hg-DAgger/Q and the HI-level label cost as a function of the number of LO-level RL samples.

0 200 400 600 800 1000

episode (rounds of learning)

0%

20%

40%

60%

80%

100%

su
cc

es
s

ra
te

hg-DAgger
h-BC
flat DAgger
flat beh. cloning

0K 10K 20K 30K 40K 50K 60K 70K

expert cost (HI + LO levels)

0%

20%

40%

60%

80%

100%

su
cc

es
s

ra
te

hg-DAgger
h-BC
flat DAgger
flat beh. cloning

0K 10K 20K 30K 40K 50K 60K

expert cost (LO-level)

0%

20%

40%

60%

80%

100%

su
cc

es
s

ra
te

hg-DAgger
flat DAgger

Figure 2. Maze navigation: hierarchical versus flat imitation learning. Each episode is followed by a round of training and a round of
testing. The success rate is measured over previous 100 test episodes; the expert cost is as in Figure 1. (Left) Success rate per episode.
(Middle) Success rate versus the expert cost. (Right) Success rate versus the LO-level expert cost.

level. This means that the hybrid algorithm is suited for
settings where LO-level expert labels are either not avail-
able or more expensive than the HI-level labels. This is
exactly the setting we analyze in the next section.

In Appendix B.1, we compare hg-DAgger/Q with hierar-
chical RL (h-DQN, Kulkarni et al., 2016), concluding that
h-DQN, even with significantly more LO-level samples,
fails to reach success rate comparable to hg-DAgger/Q. Flat
Q-learning also fails in this setting, due to a long planning
horizon and sparse rewards (Mnih et al., 2015).

6.2. Hierarchically Guided IL / RL vs Hierarchical RL:
Comparison on Montezuma’s Revenge

Task Overview. Montezuma’s Revenge is among the most
difficult Atari games for existing deep RL algorithms, and
is a natural candidate for hierarchical approach due to the
sequential order of subtasks. Figure 3 (left) displays the
environment and an annotated sequence of subgoals. The
four designated subgoals are: go to bottom of the right stair,
get the key, reverse path to go back to the right stair, then
go to open the door (while avoiding obstacles throughout).

The agent is given a pseudo-reward of 1 for each subgoal

completion and -1 upon loss of life. We enforce that the
agent can only have a single life per episode, preventing
the agent from taking a shortcut after collecting the key (by
taking its own life and re-initializing with a new life at the
starting position, effectively collapsing the task horizon).
Note that for this setting, the actual game environment is
equipped with two positive external rewards corresponding
to picking up the key (subgoal 2, reward of 100) and us-
ing the key to open the door (subgoal 4, reward of 300).
Optimal execution of this sequence of subgoals requires
more than 200 primitive actions. Unsurprisingly, flat RL
algorithms often achieve a score of 0 on this domain (Mnih
et al., 2015; 2016; Wang et al., 2016).

hg-DAgger/Q versus h-DQN. Similar to the maze domain,
we use DDQN with prioritized experience replay at the LO
level of hg-DAgger/Q. We compare its performance with h-
DQN using the same neural network architecture as Kulka-
rni et al. (2016). Figure 3 (middle) shows the learning
progression of our hybrid algorithm. The HI-level horizon
HHI = 4, so meta-controller is learnt from fairly few sam-
ples. Each episode roughly corresponds to one LabelHI

query. Subpolicies are learnt in the order of subgoal execu-
tion as prescribed by the expert.

Hierarchical Imitation and Reinforcement Learning

0%

20%

40%

60%

80%

100%

su
cc

es
s

ra
te

Learning Progression (random trial)

0K 1K 2K 3K 4K 5K 6K 7K 8K 9K

episode (HI-level labeling cost)

0K

200K

400K

600K

800K

1000K

L
O

-l
ev

el
sa

m
pl

es

Subgoal 1
Subgoal 2 (key)
Subgoal 3
Subgoal 4 (door)

0.0M 0.5M 1.0M 1.5M 2.0M 2.5M 3.0M 3.5M 4.0M
LO-level reinforcement learning samples

0

100

200

300

400

ex
te

rn
al

re
w

ar
ds

hg-DAgger/Q versus h-DQN (100 trials)

hg-DAgger/Q 3rd quartile

hg-DAgger/Q median

h-DQN

Figure 3. Montezuma’s revenge: hg-DAgger/Q versus h-DQN. (Left) Screenshot of Montezuma’s Revenge in black-and-white with
color-coded subgoals. (Middle) Learning progression of hg-DAgger/Q in solving the first room of Montezuma’s Revenge for a typical
successful trial. Subgoal colors match the left pane; success rate is the fraction of times the LO-level RL learner achieves its subgoal
over the previous 100 attempts. (Right) Learning performance of hg-DAgger/Q versus h-DQN (median and inter-quartile range).

We introduce a simple modification to Q-learning on the
LO level to speed up learning: the accumulation of expe-
rience replay buffer does not begin until the first time the
agent encounters positive pseudo-reward. During this pe-
riod, in effect, only the meta-controller is being trained.
This modification ensures the reinforcement learner en-
counters at least some positive pseudo-rewards, which
boosts learning in the long horizon settings and should nat-
urally work with any off-policy learning scheme (DQN,
DDQN, Dueling-DQN). For a fair comparison, we intro-
duce the same modification to the h-DQN learner (other-
wise, h-DQN failed to achieve any reward).

To mitigate the instability of DQN (see, for example, learn-
ing progression of subgoal 2 and 4 in Figure 3, middle),
we introduce one additional modification. We terminate
training of subpolicies when the success rate exceeds 90%,
at which point the subgoal is considered learned. Subgoal
success rate is defined as the percentage of successful sub-
goal completions over the previous 100 attempts.

Figure 3 (right) shows the median and the inter-quartile
range over 100 runs of hg-DAgger/Q and hg-DQN.7 The
LO-level sample sizes are not directly comparable with the
middle panel, which displays the learning progression for a
random successful run, rather than an aggregate over mul-
tiple runs. In all of our experiments, the performance of
the imitation learning component is stable across many dif-
ferent trials, whereas the performance of the reinforcement
learning component varies substantially. Subgoal 4 (door)
is the most difficult to learn due to its long horizon whereas
subgoals 1–3 are mastered very quickly, especially com-
pared to h-DQN. Our algorithm benefits from hierarchi-
cal guidance and accumulates experience for each subgoal
only within the relevant part of the state space, where the
subgoal is part of an optimal trajectory. In contrast, h-DQN

7In Appendix B, we present additional plots, including 10 best
runs of each algorithm, subgoal completion rate over 100 trials,
and versions of Figure 3 (middle) for additional random instances.

may pick bad subgoals and the resulting LO-level samples
then “corrupt” the subgoal experience replay buffers and
substantially slow down convergence.8

The number of HI-level labels in Figure 3 (middle) can be
further reduced by using a more efficient RL procedure
than DDQN at the LO level. In the specific example of
Montezuma’s Revenge, the actual human effort is in fact
much smaller, since the human expert needs to provide a
sequence of subgoals only once (together with simple sub-
goal detectors), and then HI-level labeling can be done au-
tomatically. The human expert only needs to understand
the high level semantics, and does not need to be able to
play the game.

7. Conclusion
We have presented hierarchical guidance framework and
shown how it can be used to speed up learning and reduce
the cost of expert feedback in hierarchical imitation learn-
ing and hybrid imitation–reinforcement learning.

Our approach can be extended in several ways. For in-
stance, one can consider weaker feedback such as pref-
erence or gradient-style feedback (Fürnkranz et al., 2012;
Loftin et al., 2016; Christiano et al., 2017), or a weaker
form of imitation feedback, only saying whether the agent
action is correct or incorrect, corresponding to bandit vari-
ant of imitation learning (Ross et al., 2011).

Our hybrid IL / RL approach relied on the availability of
a subgoal termination predicate indicating when the sub-
goal is achieved. While in many settings such a termina-
tion predicate is relatively easy to specify, in other settings
this predicate needs to be learned. We leave the question
of learning the termination predicate, while learning to act
from reinforcement feedback, open for future research.

8In fact, we further reduced the number of subgoals of h-DQN
to only two initial subgoals, but the agent still largely failed to
learn even the second subgoal (see the appendix for details).

Hierarchical Imitation and Reinforcement Learning

Acknowledgments
The majority of this work was done while HML was an
intern at Microsoft Research. HML is also supported in
part by an Amazon AI Fellowship.

References
Abbeel, P. and Ng, A. Y. Apprenticeship learning via in-

verse reinforcement learning. In ICML, pp. 1. ACM,
2004.

Andreas, J., Klein, D., and Levine, S. Modular multitask
reinforcement learning with policy sketches. In ICML,
2017.

Chang, K.-W., Krishnamurthy, A., Agarwal, A., Daume III,
H., and Langford, J. Learning to search better than your
teacher. In ICML, 2015.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,
S., and Amodei, D. Deep reinforcement learning from
human preferences. In NIPS, 2017.

Daumé, H., Langford, J., and Marcu, D. Search-based
structured prediction. Machine learning, 75(3):297–325,
2009.

Dayan, P. and Hinton, G. E. Feudal reinforcement learning.
In NIPS, 1993.

Dietterich, T. G. Hierarchical reinforcement learning with
the MAXQ value function decomposition. J. Artif. Intell.
Res.(JAIR), 13(1):227–303, 2000.

El Asri, L., Schulz, H., Sharma, S., Zumer, J., Harris, J.,
Fine, E., Mehrotra, R., and Suleman, K. Frames: a cor-
pus for adding memory to goal-oriented dialogue sys-
tems. In Proceedings of the 18th Annual SIGdial Meet-
ing on Discourse and Dialogue, pp. 207–219, 2017.

Fruit, R. and Lazaric, A. Exploration–exploitation in mdps
with options. arXiv preprint arXiv:1703.08667, 2017.

Fürnkranz, J., Hüllermeier, E., Cheng, W., and Park, S.-
H. Preference-based reinforcement learning: a formal
framework and a policy iteration algorithm. Machine
learning, 89(1-2):123–156, 2012.

Hausknecht, M. and Stone, P. Deep reinforcement learning
in parameterized action space. In ICLR, 2016.

He, R., Brunskill, E., and Roy, N. Puma: Planning under
uncertainty with macro-actions. In AAAI, 2010.

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul,
T., Piot, B., Sendonaris, A., Dulac-Arnold, G., Osband,
I., Agapiou, J., et al. Deep q-learning from demonstra-
tions. In AAAI, 2018.

Ho, J. and Ermon, S. Generative adversarial imitation
learning. In NIPS, pp. 4565–4573, 2016.

Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenen-
baum, J. Hierarchical deep reinforcement learning: Inte-
grating temporal abstraction and intrinsic motivation. In
NIPS, pp. 3675–3683, 2016.

Loftin, R., Peng, B., MacGlashan, J., Littman, M. L., Tay-
lor, M. E., Huang, J., and Roberts, D. L. Learning be-
haviors via human-delivered discrete feedback: model-
ing implicit feedback strategies to speed up learning. In
AAMAS, 2016.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., et al. Human-level con-
trol through deep reinforcement learning. Nature, 518
(7540):529, 2015.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
ICML, pp. 1928–1937, 2016.

Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W.,
and Abbeel, P. Overcoming exploration in reinforcement
learning with demonstrations. In ICRA, 2017.

Peng, B., Li, X., Li, L., Gao, J., Celikyilmaz, A., Lee,
S., and Wong, K.-F. Composite task-completion dia-
logue policy learning via hierarchical deep reinforce-
ment learning. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing,
pp. 2231–2240, 2017.

Ross, S. and Bagnell, J. A. Reinforcement and imita-
tion learning via interactive no-regret learning. arXiv
preprint arXiv:1406.5979, 2014.

Ross, S., Gordon, G. J., and Bagnell, D. A reduction of
imitation learning and structured prediction to no-regret
online learning. In AISTATS, pp. 627–635, 2011.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. Universal
value function approximators. In International Confer-
ence on Machine Learning, pp. 1312–1320, 2015a.

Schaul, T., Quan, J., Antonoglou, I., and Silver,
D. Prioritized experience replay. arXiv preprint
arXiv:1511.05952, 2015b.

Shalev-Shwartz, S. et al. Online learning and online con-
vex optimization. Foundations and Trends R© in Machine
Learning, 4(2):107–194, 2012.

Sun, W., Venkatraman, A., Gordon, G. J., Boots, B., and
Bagnell, J. A. Deeply aggrevated: Differentiable imi-
tation learning for sequential prediction. arXiv preprint
arXiv:1703.01030, 2017.

Hierarchical Imitation and Reinforcement Learning

Sutton, R. S., Precup, D., and Singh, S. P. Intra-option
learning about temporally abstract actions. In ICML, vol-
ume 98, pp. 556–564, 1998.

Sutton, R. S., Precup, D., and Singh, S. Between mdps
and semi-mdps: A framework for temporal abstraction
in reinforcement learning. Artificial intelligence, 112(1-
2):181–211, 1999.

Syed, U. and Schapire, R. E. A game-theoretic approach to
apprenticeship learning. In NIPS, pp. 1449–1456, 2008.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In AAAI, vol-
ume 16, pp. 2094–2100, 2016.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N.,
Jaderberg, M., Silver, D., and Kavukcuoglu, K. Feudal
networks for hierarchical reinforcement learning. arXiv
preprint arXiv:1703.01161, 2017.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M.,
and Freitas, N. Dueling network architectures for deep
reinforcement learning. In ICML, pp. 1995–2003, 2016.

Zheng, S., Yue, Y., and Lucey, P. Generating long-term
trajectories using deep hierarchical networks. In NIPS,
2016.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K.
Maximum entropy inverse reinforcement learning. In
AAAI, 2008.

