Appendices

A Further Experimental Details

We used the same hyperparameters as [1] and terminated training after the same number of examples specifid in [1]. We used a temperature c of 1, which was recommended in [2]. We initialized T to be an identity matrix and all ζ to zero.

Compated to MAML [1], training a convolutional MT-net takes roughly 0.4 times longer (omniglot 40k steps took 7h 19m for MT-net and 5h 14m for MAML). This gap is fairly small because 1×1 convolutions require little compute compared to regular convolutions. This gap is larger (roughly 1.1 times) for fully connected MT-nets. We additionally observed that MT-nets take less training steps to converge compared to MAML.

We provide our official implementation of MT-nets at https://github.com/yoonholee/MT-net.

References

- [1] C. Finn, P. Abbeel., and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In *Proceedings of the International Conference on Machine Learning (ICML)*, Sydney, Australia, 2017.
- [2] E. Jang, S. Gu, and B. Poole. Categorical Reparameterization with Gumbel-Softmax. *Proceedings of the International Conference on Learning Representations (ICLR)*, 2017.

B Proofs for Section 4

B.1 MT-nets Learn a Subspace

Proposition 1. Fix **x** and **A**. Let **U** be a d-dimensional subspace of \mathbb{R}^n ($d \le n$). There exist configurations of **T**, **W**, and ζ such that the span of $\mathbf{y}^{new} - \mathbf{y}$ is **U** while satisfying $\mathbf{A} = \mathbf{TW}$.

Proof. We show by construction that Proposition 1 is true.

Suppose that $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis of \mathbb{R}^n such that $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_d\}$ is a basis of U. Let T be the $n \times n$ matrix $[\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$. T is invertible since it consists of linearly independent columns. Let $\mathbf{W} = \mathbf{T}^{-1}\mathbf{A}$ and let $\zeta_1, \zeta_2, \dots, \zeta_d \to \infty$ and $\zeta_{d+1}, \dots, \zeta_n \to -\infty$. The resulting mask M that ζ generates is a matrix with only ones in the first d rows and zeroes elsewhere.

$$\mathbf{y}^{\text{new}} - \mathbf{y} = \mathbf{T}(\mathbf{W}^{\text{new}} - \mathbf{W})\mathbf{x}$$
$$= \mathbf{T}(\mathbf{M} \odot \nabla_{\mathbf{W}} \mathcal{L}_{\mathcal{T}})\mathbf{x}$$
(1)

Since all but the first *d* rows of **M** are **0**, $(\mathbf{M} \odot \nabla_{\mathbf{W}} \mathcal{L}_{\mathcal{T}})\mathbf{x}$ is an *n*-dimensional vector in which nonzero elements can only appear in the first *d* dimensions. Therefore, the vector $\mathbf{T}(\mathbf{M} \odot \nabla_{\mathbf{W}} \mathcal{L}_{\mathcal{T}})\mathbf{x}$ is a linear combination of $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_d\}$. Thus the span of $\mathbf{y}^{\text{new}} - \mathbf{y}$ is **U**.

B.2 MT-nets Learn a Metric in their Subspace

Proposition 2. Fix \mathbf{x} , \mathbf{A} , and a loss function $\mathcal{L}_{\mathcal{T}}$. Let \mathbf{U} be a d-dimensional subspace of \mathbb{R}^n , and $g(\cdot, \cdot)$ a metric tensor on \mathbf{U} . There exist configurations of \mathbf{T} , \mathbf{W} , and $\boldsymbol{\zeta}$ such that the vector $\mathbf{y}^{new} - \mathbf{y}$ is in the steepest direction of descent on $\mathcal{L}_{\mathcal{T}}$ with respect to the metric du.

Proof. We show Proposition 2 is true by construction as well.

We begin by constructing a representation for the arbitrary metric tensor $g(\cdot, \cdot)$. Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis of \mathbb{R}^n such that $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_d\}$ is a basis of \mathbf{U} . Vectors $\mathbf{u}_1, \mathbf{u}_2 \in \mathbf{U}$ can be expressed as $\mathbf{u}_1 = \sum_{i=0}^d c_{1i} \mathbf{v}_i$ and $\mathbf{u}_2 = \sum_{i=0}^d c_{2i} \mathbf{v}_i$. We can express any metric tensor $g(\cdot, \cdot)$ using such coefficients c:

$$g(\mathbf{u}_1, \mathbf{u}_2) = \underbrace{\begin{bmatrix} c_{11} & \dots & c_{1d} \end{bmatrix}}_{\mathbf{c}_1^\top} \underbrace{\begin{bmatrix} g_{11} & \dots & g_{1d} \\ \vdots & \ddots & \vdots \\ g_{d1} & \dots & g_{dd} \end{bmatrix}}_{\mathbf{G}} \underbrace{\begin{bmatrix} c_{21} \\ \vdots \\ c_{2d} \end{bmatrix}}_{\mathbf{c}_2}, \tag{2}$$

where **G** is a positive definite matrix. Because of this, there exists an invertible $d \times d$ matrix **H** such that $\mathbf{G} = \mathbf{H}^{\top}\mathbf{H}$. Note that $g(\mathbf{u}_1, \mathbf{u}_2) = (\mathbf{H}\mathbf{c}_1)^{\top}(\mathbf{H}\mathbf{c}_2)$: the metric $g(\cdot, \cdot)$ is equal to the inner product after multiplying **H** to given vectors **c**.

Using H, we can alternatively parameterize vectors in U as

$$\mathbf{u}_1 = \underbrace{\left[\mathbf{v}_1 \quad \dots \quad \mathbf{v}_d\right]}_{\mathbf{V}} \mathbf{c}_1 \tag{3}$$

$$= \mathbf{V}\mathbf{H}^{-1}(\mathbf{H}\mathbf{c}_1).$$
 (4)

Here, we are using \mathbf{Hc}_1 as a *d*-dimensional parameterization and the columns of the $n \times d$ matrix \mathbf{VH}^{-1} as an alternative basis of U.

Let $\mathbf{v}_1^H, \ldots, \mathbf{v}_d^H$ be the columns of \mathbf{VH}^{-1} , and set $\mathbf{T} = [\mathbf{v}_1^H, \ldots, \mathbf{v}_d^H, \mathbf{v}_{d+1}, \ldots, \mathbf{v}_n]$. Since **H** is invertible, $\{\mathbf{v}_1^H, \ldots, \mathbf{v}_d^H\}$ is a basis of **U** and thus **T** is an invertible matrix. As in Proposition 1, set $\mathbf{W} = \mathbf{T}^{-1}\mathbf{A}, \zeta_1, \zeta_2, \ldots, \zeta_d \to \infty$, and $\zeta_{d+1}, \ldots, \zeta_n \to -\infty$. Note that this configuration of ζ generates a mask **M** that projects gradients onto the first *d* rows, which will later be multiplied by the vectors $\{\mathbf{v}_1^H, \ldots, \mathbf{v}_d^H\}$.

We can express \mathbf{y} as $\mathbf{y} = V\mathbf{c}_{\mathbf{y}} = \mathbf{V}\mathbf{H}^{-1}(\mathbf{H}\mathbf{c}_{\mathbf{y}})$, where $\mathbf{c}_{\mathbf{y}}$ is again a *d*-dimensional vector. Note that $\mathbf{V}\mathbf{H}^{-1}$ is constant in the network and change in \mathbf{W} only affects $\mathbf{H}\mathbf{c}_{\mathbf{y}}$. Since $\nabla_{\mathbf{W}}\mathcal{L}_{\mathcal{T}} = (\nabla_{\mathbf{W}\mathbf{x}}\mathcal{L}_{\mathcal{T}})\mathbf{x}^{\top}$, the task-specific update is in the direction of steepest descent of $\mathcal{L}_{\mathcal{T}}$ in the space of $\mathbf{H}\mathbf{c}_{y}$ (with the Euclidean metric). This is exactly the direction of steepest descent of $\mathcal{L}_{\mathcal{T}}$ in \mathbf{U} with respect to the metric $g(\cdot, \cdot)$.

C Additional Experiments

Figure 1: Additional qualitative results from the polynomial regression task