
Appendices
A Further Experimental Details

We used the same hyperparameters as [1] and terminated training after the same number of examples specifid
in [1]. We used a temperature c of 1, which was recommended in [2]. We initialized T to be an identity
matrix and all ζ to zero.

Compated to MAML [1], training a convolutional MT-net takes roughly 0.4 times longer (omniglot 40k
steps took 7h 19m for MT-net and 5h 14m for MAML). This gap is fairly small because 1× 1 convolutions
require little compute compared to regular convolutions. This gap is larger (roughly 1.1 times) for fully
connected MT-nets. We additionally observed that MT-nets take less training steps to converge compared to
MAML.

We provide our official implementation of MT-nets at https://github.com/yoonholee/MT-net.
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B Proofs for Section 4

B.1 MT-nets Learn a Subspace

Proposition 1. Fix x and A. Let U be a d-dimensional subspace of Rn (d ≤ n). There exist configurations
of T,W, and ζ such that the span of ynew − y is U while satisfying A = TW.

Proof. We show by construction that Proposition 1 is true.
Suppose that {v1,v2, . . . ,vn} is a basis of Rn such that {v1,v2, . . . ,vd} is a basis of U. Let T be

the n × n matrix [v1,v2, . . . ,vn]. T is invertible since it consists of linearly independent columns. Let
W = T−1A and let ζ1, ζ2, . . . , ζd →∞ and ζd+1, . . . , ζn → −∞. The resulting mask M that ζ generates
is a matrix with only ones in the first d rows and zeroes elsewhere.

ynew − y = T(Wnew −W)x

= T(M�∇WLT )x (1)

Since all but the first d rows of M are 0, (M � ∇WLT )x is an n-dimensional vector in which nonzero
elements can only appear in the first d dimensions. Therefore, the vector T(M � ∇WLT )x is a linear
combination of {v1,v2, . . . ,vd}. Thus the span of ynew − y is U.
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B.2 MT-nets Learn a Metric in their Subspace

Proposition 2. Fix x, A, and a loss function LT . Let U be a d-dimensional subspace of Rn, and g(·, ·) a
metric tensor on U. There exist configurations of T,W, and ζ such that the vector ynew−y is in the steepest
direction of descent on LT with respect to the metric du.

Proof. We show Proposition 2 is true by construction as well.
We begin by constructing a representation for the arbitrary metric tensor g(·, ·). Let {v1,v2, . . . ,vn}

be a basis of Rn such that {v1,v2, . . . ,vd} is a basis of U. Vectors u1,u2 ∈ U can be expressed as
u1 =

∑d
i=0 c1ivi and u2 =

∑d
i=0 c2ivi. We can express any metric tensor g(·, ·) using such coefficients c:

g(u1,u2) =
[
c11 . . . c1d

]︸ ︷︷ ︸
c>1

g11 . . . g1d
...

. . .
...

gd1 . . . gdd


︸ ︷︷ ︸

G

c21...
c2d


︸ ︷︷ ︸

c2

, (2)

where G is a positive definite matrix. Because of this, there exists an invertible d× d matrix H such that
G = H>H. Note that g(u1,u2) = (Hc1)

>(Hc2): the metric g(·, ·) is equal to the inner product after
multiplying H to given vectors c.

Using H, we can alternatively parameterize vectors in U as

u1 =
[
v1 . . . vd

]︸ ︷︷ ︸
V

c1 (3)

= VH−1 (Hc1) . (4)

Here, we are using Hc1 as a d-dimensional parameterization and the columns of the n× d matrix VH−1 as
an alternative basis of U.

Let vH
1 , . . . ,vH

d be the columns of VH−1, and set T = [vH
1 , . . . ,vH

d ,vd+1, . . . ,vn]. Since H is
invertible, {vH

1 , . . . ,vH
d } is a basis of U and thus T is an invertible matrix. As in Proposition 1, set

W = T−1A, ζ1, ζ2, . . . , ζd → ∞, and ζd+1, . . . , ζn → −∞. Note that this configuration of ζ generates
a mask M that projects gradients onto the first d rows, which will later be multiplied by the vectors
{vH

1 , . . . ,vH
d }.

We can express y as y = V cy = VH−1(Hcy), where cy is again a d-dimensional vector. Note that
VH−1 is constant in the network and change in W only affects Hcy. Since∇WLT = (∇WxLT )x>, the
task-specific update is in the direction of steepest descent of LT in the space of Hcy (with the Euclidean
metric). This is exactly the direction of steepest descent of LT in U with respect to the metric g(·, ·).
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C Additional Experiments

Figure 1: Additional qualitative results from the polynomial regression task
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