Appendices

A Further Experimental Details

We used the same hyperparameters as [1] and terminated training after the same number of examples specified in [1]. We used a temperature c of 1, which was recommended in [2]. We initialized T to be an identity matrix and all ζ to zero.

Compared to MAML [1], training a convolutional MT-net takes roughly 0.4 times longer (omniglot 40k steps took 7h 19m for MT-net and 5h 14m for MAML). This gap is fairly small because 1×1 convolutions require little compute compared to regular convolutions. This gap is larger (roughly 1.1 times) for fully connected MT-nets. We additionally observed that MT-nets take less training steps to converge compared to MAML.

We provide our official implementation of MT-nets at https://github.com/yoonholee/MT-net.

References

B Proofs for Section 4

B.1 MT-nets Learn a Subspace

Proposition 1. Fix x and A. Let U be a d-dimensional subspace of \mathbb{R}^n ($d \leq n$). There exist configurations of T, W, and ζ such that the span of $y^{\text{new}} - y$ is U while satisfying $A = TW$.

Proof. We show by construction that Proposition 1 is true.

Suppose that $\{v_1, v_2, \ldots, v_n\}$ is a basis of \mathbb{R}^n such that $\{v_1, v_2, \ldots, v_d\}$ is a basis of U. Let T be the $n \times n$ matrix $[v_1, v_2, \ldots, v_n]$. T is invertible since it consists of linearly independent columns. Let $W = T^{-1}A$ and let $\zeta_1, \zeta_2, \ldots, \zeta_d \to \infty$ and $\zeta_{d+1}, \ldots, \zeta_n \to -\infty$. The resulting mask M that ζ generates is a matrix with only ones in the first d rows and zeroes elsewhere.

$$y^{\text{new}} - y = T(W^{\text{new}} - W)x$$
$$= T(M \odot \nabla_W \mathcal{L}_T)x$$

(1)

Since all but the first d rows of M are 0, $(M \odot \nabla_W \mathcal{L}_T)x$ is an n-dimensional vector in which nonzero elements can only appear in the first d dimensions. Therefore, the vector $T(M \odot \nabla_W \mathcal{L}_T)x$ is a linear combination of $\{v_1, v_2, \ldots, v_d\}$. Thus the span of $y^{\text{new}} - y$ is U. \qed
B.2 MT-nets Learn a Metric in their Subspace

Proposition 2. Fix x, A, and a loss function L_T. Let U be a d-dimensional subspace of \mathbb{R}^n, and $g(\cdot, \cdot)$ a metric tensor on U. There exist configurations of T, W, and ζ such that the vector $y^{\text{new}} - y$ is in the steepest direction of descent on L_T with respect to the metric du.

Proof. We show Proposition 2 is true by construction as well.

We begin by constructing a representation for the arbitrary metric tensor $g(\cdot, \cdot)$. Let $\{v_1, v_2, \ldots, v_n\}$ be a basis of \mathbb{R}^n such that $\{v_1, v_2, \ldots, v_d\}$ is a basis of U. Vectors $u_1, u_2 \in U$ can be expressed as $u_1 = \sum_{i=0}^d c_{1i}v_i$ and $u_2 = \sum_{i=0}^d c_{2i}v_i$. We can express any metric tensor $g(\cdot, \cdot)$ using such coefficients c:

$$g(u_1, u_2) = \begin{bmatrix} c_{11} & \ldots & c_{1d} \end{bmatrix} \begin{bmatrix} g_{11} & \ldots & g_{1d} \\ \vdots & \ddots & \vdots \\ g_{d1} & \ldots & g_{dd} \end{bmatrix} \begin{bmatrix} c_{21} \\ \vdots \\ c_{2d} \end{bmatrix},$$

where G is a positive definite matrix. Because of this, there exists an invertible $d \times d$ matrix H such that $G = H^\top H$. Note that $g(u_1, u_2) = (Hc_1)^\top(Hc_2)$: the metric $g(\cdot, \cdot)$ is equal to the inner product after multiplying H to given vectors c.

Using H, we can alternatively parameterize vectors in U as

$$u_1 = \begin{bmatrix} v_1 & \ldots & v_d \end{bmatrix} c_1 \quad \text{(3)}$$

$$= VH^{-1}(Hc_1). \quad \text{(4)}$$

Here, we are using Hc_1 as a d-dimensional parameterization and the columns of the $n \times d$ matrix VH^{-1} as an alternative basis of U.

Let v_1^H, \ldots, v_d^H be the columns of VH^{-1}, and set $T = [v_1^H, \ldots, v_d^H, v_{d+1}, \ldots, v_n]$. Since H is invertible, $\{v_1^H, \ldots, v_d^H\}$ is a basis of U and thus T is an invertible matrix. As in Proposition 1, set $W = T^{-1}A$, $\zeta_1, \zeta_2, \ldots, \zeta_d \rightarrow \infty$, and $\zeta_{d+1}, \ldots, \zeta_n \rightarrow -\infty$. Note that this configuration of ζ generates a mask M that projects gradients onto the first d rows, which will later be multiplied by the vectors $\{v_1^H, \ldots, v_d^H\}$.

We can express y as $y = Vc_y = VH^{-1}(Hc_y)$, where c_y is again a d-dimensional vector. Note that VH^{-1} is constant in the network and change in W only affects Hc_y. Since $\nabla_W L_T = (\nabla_{Wx} L_T)x^\top$, the task-specific update is in the direction of steepest descent of L_T in the space of Hc_y (with the Euclidean metric). This is exactly the direction of steepest descent of L_T in U with respect to the metric $g(\cdot, \cdot)$.

\square
C Additional Experiments

Figure 1: Additional qualitative results from the polynomial regression task