Appendices

A Further Experimental Details

We used the same hyperparameters as [1] and terminated training after the same number of examples specifid in [1]. We used a temperature \mathbf{c} of 1 , which was recommended in [2]. We initialized \mathbf{T} to be an identity matrix and all ζ to zero.

Compated to MAML [1], training a convolutional MT-net takes roughly 0.4 times longer (omniglot 40k steps took 7 h 19 m for MT-net and 5 h 14 m for MAML). This gap is fairly small because 1×1 convolutions require little compute compared to regular convolutions. This gap is larger (roughly 1.1 times) for fully connected MT-nets. We additionally observed that MT-nets take less training steps to converge compared to MAML.

We provide our official implementation of MT-nets at https://github.com/yoonholee/MT-net.

References

[1] C. Finn, P. Abbeel., and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the International Conference on Machine Learning (ICML), Sydney, Australia, 2017.
[2] E. Jang, S. Gu, and B. Poole. Categorical Reparameterization with Gumbel-Softmax. Proceedings of the International Conference on Learning Representations (ICLR), 2017.

B Proofs for Section 4

B. 1 MT-nets Learn a Subspace

Proposition 1. Fix \mathbf{x} and A. Let \mathbf{U} be a d-dimensional subspace of $\mathbb{R}^{n}(d \leq n)$. There exist configurations of \mathbf{T}, \mathbf{W}, and $\boldsymbol{\zeta}$ such that the span of $\mathbf{y}^{\text {new }}-\mathbf{y}$ is \mathbf{U} while satisfying $\mathbf{A}=\mathbf{T W}$.

Proof. We show by construction that Proposition 1 is true.
Suppose that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis of \mathbb{R}^{n} such that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{d}\right\}$ is a basis of \mathbf{U}. Let \mathbf{T} be the $n \times n$ matrix $\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right]$. \mathbf{T} is invertible since it consists of linearly independent columns. Let $\mathbf{W}=\mathbf{T}^{-1} \mathbf{A}$ and let $\boldsymbol{\zeta}_{1}, \boldsymbol{\zeta}_{2}, \ldots, \boldsymbol{\zeta}_{d} \rightarrow \infty$ and $\boldsymbol{\zeta}_{d+1}, \ldots, \boldsymbol{\zeta}_{n} \rightarrow-\infty$. The resulting mask \mathbf{M} that $\boldsymbol{\zeta}$ generates is a matrix with only ones in the first d rows and zeroes elsewhere.

$$
\begin{array}{r}
\mathbf{y}^{\text {new }}-\mathbf{y}=\mathbf{T}\left(\mathbf{W}^{\text {new }}-\mathbf{W}\right) \mathbf{x} \\
=\mathbf{T}\left(\mathbf{M} \odot \nabla_{\mathbf{W}} \mathcal{L}_{\mathcal{T}}\right) \mathbf{x} \tag{1}
\end{array}
$$

Since all but the first d rows of \mathbf{M} are $\mathbf{0},\left(\mathbf{M} \odot \nabla_{\mathbf{W}} \mathcal{L}_{\mathcal{T}}\right) \mathbf{x}$ is an n-dimensional vector in which nonzero elements can only appear in the first d dimensions. Therefore, the vector $\mathbf{T}\left(\mathbf{M} \odot \nabla_{\mathbf{W}} \mathcal{L}_{\mathcal{T}}\right) \mathbf{x}$ is a linear combination of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{d}\right\}$. Thus the span of $\mathbf{y}^{\text {new }}-\mathbf{y}$ is \mathbf{U}.

B. 2 MT-nets Learn a Metric in their Subspace

Proposition 2. Fix \mathbf{x}, \mathbf{A}, and a loss function $\mathcal{L}_{\mathcal{T}}$. Let \mathbf{U} be a d-dimensional subspace of \mathbb{R}^{n}, and $g(\cdot, \cdot)$ a metric tensor on \mathbf{U}. There exist configurations of \mathbf{T}, \mathbf{W}, and $\boldsymbol{\zeta}$ such that the vector $\mathbf{y}^{\text {new }}-\mathbf{y}$ is in the steepest direction of descent on $\mathcal{L}_{\mathcal{T}}$ with respect to the metric du.

Proof. We show Proposition 2 is true by construction as well.
We begin by constructing a representation for the arbitrary metric tensor $g(\cdot, \cdot)$. Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be a basis of \mathbb{R}^{n} such that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{d}\right\}$ is a basis of \mathbf{U}. Vectors $\mathbf{u}_{1}, \mathbf{u}_{2} \in \mathbf{U}$ can be expressed as $\mathbf{u}_{1}=\sum_{i=0}^{d} c_{1 i} \mathbf{v}_{i}$ and $\mathbf{u}_{2}=\sum_{i=0}^{d} c_{2 i} \mathbf{v}_{i}$. We can express any metric tensor $g(\cdot, \cdot)$ using such coefficients c :

$$
g\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)=\underbrace{\left[\begin{array}{lll}
c_{11} & \ldots & c_{1 d}
\end{array}\right]}_{\mathbf{c}_{1}^{\top}} \underbrace{\left[\begin{array}{ccc}
g_{11} & \cdots & g_{1 d} \tag{2}\\
\vdots & \ddots & \vdots \\
g_{d 1} & \cdots & g_{d d}
\end{array}\right]}_{\mathbf{G}} \underbrace{\left[\begin{array}{c}
c_{21} \\
\vdots \\
c_{2 d}
\end{array}\right]}_{\mathbf{c}_{2}}
$$

where \mathbf{G} is a positive definite matrix. Because of this, there exists an invertible $d \times d$ matrix \mathbf{H} such that $\mathbf{G}=\mathbf{H}^{\top} \mathbf{H}$. Note that $g\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)=\left(\mathbf{H} \mathbf{c}_{1}\right)^{\top}\left(\mathbf{H} \mathbf{c}_{2}\right)$: the metric $g(\cdot, \cdot)$ is equal to the inner product after multiplying \mathbf{H} to given vectors \mathbf{c}.

Using \mathbf{H}, we can alternatively parameterize vectors in \mathbf{U} as

$$
\begin{align*}
\mathbf{u}_{1} & =\underbrace{\left[\begin{array}{lll}
\mathbf{v}_{1} & \cdots & \mathbf{v}_{d}
\end{array}\right]}_{\mathbf{V}} \mathbf{c}_{1} \tag{3}\\
& =\mathbf{V H}^{-1}\left(\mathbf{H c}_{1}\right) \tag{4}
\end{align*}
$$

Here, we are using $\mathbf{H} \mathbf{c}_{1}$ as a d-dimensional parameterization and the columns of the $n \times d$ matrix $\mathbf{V H}^{-1}$ as an alternative basis of \mathbf{U}.

Let $\mathbf{v}_{1}^{H}, \ldots, \mathbf{v}_{d}^{H}$ be the columns of $\mathbf{V H} \mathbf{H}^{-1}$, and set $\mathbf{T}=\left[\mathbf{v}_{1}^{\mathbf{H}}, \ldots, \mathbf{v}_{d}^{\mathbf{H}}, \mathbf{v}_{d+1}, \ldots, \mathbf{v}_{n}\right]$. Since \mathbf{H} is invertible, $\left\{\mathbf{v}_{1}^{\mathbf{H}}, \ldots, \mathbf{v}_{d}^{\mathbf{H}}\right\}$ is a basis of \mathbf{U} and thus \mathbf{T} is an invertible matrix. As in Proposition 1, set $\mathbf{W}=\mathbf{T}^{-1} \mathbf{A}, \boldsymbol{\zeta}_{1}, \boldsymbol{\zeta}_{2}, \ldots, \boldsymbol{\zeta}_{d} \rightarrow \infty$, and $\boldsymbol{\zeta}_{d+1}, \ldots, \boldsymbol{\zeta}_{n} \rightarrow-\infty$. Note that this configuration of $\boldsymbol{\zeta}$ generates a mask \mathbf{M} that projects gradients onto the first d rows, which will later be multiplied by the vectors $\left\{\mathbf{v}_{1}^{\mathbf{H}}, \ldots, \mathbf{v}_{d}^{\mathbf{H}}\right\}$.

We can express \mathbf{y} as $\mathbf{y}=V \mathbf{c}_{\mathbf{y}}=\mathbf{V H}^{-1}\left(\mathbf{H} \mathbf{c}_{\mathbf{y}}\right)$, where $\mathbf{c}_{\mathbf{y}}$ is again a d-dimensional vector. Note that $\mathbf{V H}^{-1}$ is constant in the network and change in \mathbf{W} only affects $\mathbf{H c}_{\mathbf{y}}$. Since $\nabla_{\mathbf{W}} \mathcal{L}_{\mathcal{T}}=\left(\nabla_{\mathbf{W}_{\mathbf{x}}} \mathcal{L}_{\mathcal{T}}\right) \mathbf{x}^{\top}$, the task-specific update is in the direction of steepest descent of $\mathcal{L}_{\mathcal{T}}$ in the space of $\mathbf{H} \mathbf{c}_{y}$ (with the Euclidean metric). This is exactly the direction of steepest descent of $\mathcal{L}_{\mathcal{T}}$ in \mathbf{U} with respect to the metric $g(\cdot, \cdot)$.

C Additional Experiments

Figure 1: Additional qualitative results from the polynomial regression task

