
Gated Path Planning Networks

A. Learning Plots
As mentioned in Section 5.5, we provide additional learning
plots for varying dataset sizes (Figure 5), varying maze sizes
(Figure 6), and 3D ViZDoom results (Figure 7).

B. Hyperparameter Settings
Unless otherwise noted, all models in Tables 1, 2, 3, 4, 5, 6,
7, 8 are trained on 2D mazes of size 15⇥ 15 for 30 epochs
using a learning rate of 1e-3, batch size 32, gradient clipping
of 40, and 25k/5k/5k train-val-test split. An initial sweep
of learning rates over { 1e-4, 1e-3, 5e-3, 1e-2, 1e-1 } found
that GPPN is more robust to varying learning rates and that
1e-3 worked best for both models (see Table 9). We do a hy-
perparameter sweep of (K,F ) over K 2 {5, 10, 15, 20, 30}
and F 2 {3, 5, 7, 9, 11}. The only exceptions are the fol-
lowing: For the larger 28⇥28 maze in Table 7, we sweep K
over {14, 28, 56} to account for longer trajectories required
to solve some mazes. For the 10k and 100k dataset sizes
in Table 4, we used a train-test-val split of 10k/2k/2k and
100k/10k/10k, respectively. The variance results in Table 5
are obtained using dataset size 100k. The 3D ViZDoom
results in Table 8 were obtained using K = 30, the best
setting of F for each transition kernel, a smaller dataset size
10k , a smaller learning rate 5e-4, and 100 training epochs.

The particular form of the LSTM update the GPPNs take
in the experimental section is slightly different from the
standard one. The first difference is that we remove the
dependence of each layer of the ConvLSTM on the ”re-
ward” function R̄[i0,j0,F ] since we did not find this skip-
connection helped performance much in preliminary exper-
iments. Therefore layers of the GPPN only take as input
the previous layer’s hidden units. The second change was
made to make the GPPN easier to implement in a framework
where built-in LSTM updates are available but ConvLSTMs
are not. It first takes the convolution over the previous hid-
den layers and produces a 1-channel feature map, and then
for each position passes that feature map position to the
framework’s built-in LSTM update. This is similar to hav-
ing a single shared input gate for all the inputs. When tested
against a GPPN with the standard LSTM update equation
with full input gating, we did not observe any significant
different in test metrics but the single input gate did save
some computation time.

C. Hyper-VIN
The VIN uses convolutions to represent the model, which
causes it to effectively be spatially invariant, meaning VINs
are incapable of truly solving mazeworld in the same way
as value iteration on the true model. The result is that
VINs learn a workaround that enables it to deal with non-
linearities over the state space: it assigns a large negative

Figure 4. Left: A sample 2D maze environment, where yellow
cells, purple cells, and the green circle represent open spaces,
walls, and the goal state respectively. All mazes are constructed
as fully connected trees with a decimation parameter that destroys
walls with a certain probability. Right: The initial reward vector
learned for the 2D maze task on a fully trained VIN. VIN gets
around the spatial invariance of its model by applying a large
negative reward to states that should never be entered (walls) and
a large reward for the goal location.

reward to every wall position. This is shown in Figure 4: the
large reward gradient between walls and non-walls discour-
ages the model from producing policies that “visit” wall
states which would be impossible under the true model.
Additionally, the spatial convolution model is fixed and in-
variant for all mazes, which is suboptimal as each MDP in
the 2D environments require a different transition kernel
based on the maze design.

In this section, we try to alleviate this issue by, first, untying
the weights of the spatial convolution and, second, predict-
ing the untied convolution weights directly from the maze
design. We call this variant the Hyper-VIN, adopting the
naming convention from HyperNetworks (Ha et al., 2017)
which also used the kernel of using a network with weights
predicted from another network. To implement the Hyper-
VIN, we predict for each position (i, j) in the environment
a convolutional weight matrix from the input map design.
The Hyper-VIN update equation then becomes:

V̄ (t)
i0,j0 = !

⇣
W ā,i0,j0

R R̄[i0,j0,3] +W ā,i0,j0

V V̄ (t�1)
[i0,j0,3]

⌘

A question that can be asked about Hyper-VIN is if they
perform as well as (or better than) the actual algorithms they
were designed to mimic because the true algorithm is within
the model class. This would provide some evidence whether
such modules were actually computing the value, or whether
they simply acted like recurrent networks and computed
a less interpretable internal representation. Empirically,
we instead found that Hyper-VINs have high variance in
training and are difficult to optimize (see Table 10). Hyper-
VINs trained by SGD often fail to reach the performance of
their exact algorithmic counterpart (value iteration) on small
mazes even though value iteration is within the hypothesis
class of these models, suggesting that the optimization of
such architectures is significantly difficult.



Gated Path Planning Networks

Figure 5. Performance on 2D mazes of size 15⇥ 15 with varying dataset sizes N. All models are trained using K = 30 and learning
rate 1e-3.

Figure 6. Performance on 2D mazes with varying maze sizes m⇥m. All models are trained using learning rate 1e-3, dataset size 25k,
and K = 30 (for m = 15) or K=56 (for m = 28).



Gated Path Planning Networks

Figure 7. Performance on 3D ViZDoom mazes of size 15⇥ 15. All models are trained using K=30, learning rate 5e-4, and dataset size
10k.

Table 9. Test performance (%Opt) on 2D mazes of size 15⇥ 15 with varying learning rates. The models were trained using dataset size
25K and the best (K,F ) settings for each maze transition kernel. “–” indicates the training diverged. Learning rate 1e-3 worked best for
all models and transition kernels. GPPN is less sensitive to learning rate changes.

%Opt with learning rate
Kernel Model K F 1e-4 1e-3 5e-3 1e-2

NEWS VIN 20 5 64.1 92.0 38.1 2.9
NEWS GPPN 20 11 95.5 99.0 96.9 19.4

Moore VIN 30 5 77.1 85.9 75.2 2.7
Moore GPPN 30 9 94.0 98.8 82.2 2.0

Diff. Drive VIN 30 3 74.2 97.5 – –
Diff. Drive GPPN 30 9 91.7 99.3 96.3 18.6

Table 10. Test performance (mean and standard deviation) on 2D mazes of size 15⇥ 15, taken over 7 runs on the same dataset. These
results were attained using iteration count K = 20 for all models, filter size F = 3 for VIN and Hyper-VIN, and F = 11 for GPPN. Due
to GPU memory limitations with Hyper-VIN, all models were trained using half the hidden dimension compared to experiments in the
main paper. Hyper-VIN has high variance in training and is difficult to optimize.

NEWS Differential Drive
Model %Opt %Suc %Opt %Suc

mean stdev mean stdev mean stdev mean stdev

Hyper-VIN 75.1 11.4 80.2 9.5 77.6 1.9 94.8 0.6
VIN 85.8 6.6 87.1 5.7 97.8 0.1 98.7 0.1

GPPN 98.9 0.2 99.3 0.2 98.1 0.9 98.8 1.1
Value Iteration 94.2 – 94.2 – 85.1 – 85.1 –


