
Appendix for

“An Optimal Control Approach to Deep Learning and

Applications to Discrete-Weight Neural Networks”

A Full Statement and Sketch of the Proof of Theorem 1

In this section, we give the full statement of Theorem 1 and a sketch of its proof as presented in [Halkin, 1966]. We note
that in [Halkin, 1966], more general initial and final conditions are considered. For simplicity, we shall stick to the current
formulation in the main text. We note also that the result presented here has been extended (in the sense that the convexity
condition has been relaxed to directional convexity) [Holtzman, 1966, Holtzman and Halkin, 1966] and proven in different
ways subsequently [Canon et al., 1970].

Before we begin, we simplify the notation by concatenating all the samples xs into a large vector x = (x1, . . . , xS). The
functions ft are then redefined accordingly in the natural way. Moreover, we define the total loss function Φ(x) := 1

S

∑
s Φs(xs)

and the total regularization Lt(x, θ) = 1
S

∑
s Lt(xs, θ). Consequently, we have the reformulated problem

min
θ∈Θ

J(θ) := Φ(xT) +

T−1∑
t=0

Lt(xt, θt)

subject to:

xt+1 = ft(xt, θt), t = 0, . . . , T − 1. (1)

We now make the following assumptions:

(B1) Φ is twice continuous differentiable.

(B2) ft(·, θ), Lt(·, θ) are twice continuously differentiable with respect to x, and ft(·, θ), Lt(·, θ) together with their x partial
derivatives are uniformly bounded in t and θ.

(B3) The sets {ft(x, θ) : θ ∈ Θt} and {Lt(x, θ) : θ ∈ Θt} are convex for every t and x ∈ Rdt .

The full statement of Theorem 1 is as follows:

Theorem A.1 (Discrete PMP, Full Statement). Let (B1)-(B3) be satisfied. Suppose that θ∗ := {θ∗t : t = 0, . . . , T − 1} is an
optimal solution of (1) and x∗ := {x∗t : t = 0, . . . , T} is the corresponding state process with θ = θ∗. Then, there exists a
co-state (or adjoint) process p∗ := {p∗t : t = 0, . . . , T} and a real number β ≥ 0 (abnormal multiplier) such that {p∗, β} are
not all zero, and the following holds:

x∗t+1 = ∇pHt(x
∗
t , p
∗
t+1, θ

∗
t) x∗0 = x0 (2)

p∗t = ∇xHt(x
∗
t , p
∗
t+1, θ

∗
t) p∗T = −β∇Φ(x∗T) (3)

Ht(x
∗
t , p
∗
t , θ
∗
t) ≥ Ht(x

∗
t , p
∗
t , θ) for all θ ∈ Θt (4)

for t = 0, 1, . . . , T − 1, where the Hamiltonian function H is defined as

Ht(x, p, θ) := p · ft(x, θ)− βLt(x, θ).

Remark A.1. Compared with the informal statement, the full statement involves an abnormal multiplier β. It exists to cover
degenerate cases. This is related to “normality” in the calculus of variations [Bliss, 1938], or constraint qualification in the
language of nonlinear programming [Kuhn and Tucker, 2014]. When it equals 0, the problem is degenerate. In applications
we often focus on non-degenerate cases where β is positive, in which case we can normalize {p∗t , β} accordingly so that β = 1.
We then obtain the informal statement in the main text.

Sketch of the proof of Theorem A.1. To begin with, we may assume without loss of generality that L ≡ 0. To see why this is
so, we define an extra scalar variable wt with

wt+1 = wt + Lt(xt, θt), w0 = 0.

1

We then append w to x to form the new (dt + 1)-dimensional state vector (x,w). Accordingly, we modify ft(x, θ) to
(ft(x, θ), w + Lt(x, θ)) and Φ(x) to Φ(x) + w. It is clear that all assumptions (B1)-(B3) are preserved.

As in the main text, we define the set of reachable states by the original dynamical system

Wt := {x ∈ Rdt : ∃θ s.t. xθt = x} (5)

where xθt is the evolution of the dynamical system for xt under θ. This is basically the set of all states that the system can
reach under “some” control at time t. Let {x∗,θ∗} be a pair of optimal solutions of (1). Let us define the set of all final
states with lower loss value than the optimum as

S := {x ∈ RdT : Φ(x) < Φ(x∗T)}. (6)

Then, it is clear that WT and B are disjoint. Otherwise, {x∗,θ∗} would not have been optimal. Now, if WT and B are
convex, then one can then use separation properties of convex sets to prove the theorem. However, in general they are
non-convex (even if (B3) is satisfied). The idea is to consider the following linearized problem

ψt+1 = ft(x
∗
t , θt) +∇xft(x∗t , θ∗t)(ψt − x∗t), t = 0, 1, . . . , T − 1

ψ0 = x0 (7)

Then, we can similarly define the counter-parts to Wt and S as

W+
t := {x ∈ Rdt : ∃θ s.t. ψθ

t = x} (8)

and
S+ := {x ∈ RdT : (x− x∗T) · ∇Φ(x∗T) < 0}. (9)

It is clear that the sets W+
T and S+ are both convex. In [Halkin, 1966], the author proves an important linearization lemma

that says: if WT and S are disjoint, then W+
T and S+ are separated, i.e. there exists a non-zero vector π ∈ RdT such

that

(x− x∗T) · π ≤ 0 x ∈W+
T (10)

(x− x∗T) · π ≥ 0 x ∈ S+ (11)

Here, π is the normal of a separating hyper-plane of the convex sets W+
T and S+. In fact, one can show that π = −β∇Φ(x∗T)

for some β ≥ 0. We note here that the linearization lemma, i.e. the separation of W+
T and S+, forms the bulk of the proof

of the theorem in [Halkin, 1966]. The proof relies on topological properties of non-separated convex sets. We shall omit its
proof here and refer the reader to [Halkin, 1966].

Now, we may define p∗T = π, and for t ≤ T , set

p∗t = ∇xHt(x
∗
t , p
∗
t+1, θ

∗
t) = ∇xf(x∗t , θ

∗
t)
T
p∗t+1. (12)

In other words, p∗t evolves the normal π of the separating hyper-plane of W+
T and S+ backwards in time. An important

property one can check is that p∗t and ψt (defined by Eq. (12) and (7)) are adjoint of each other at the optimum, i.e. if
θt = θ∗t , then we have

(ψt+1 − x∗t+1) · p∗t+1 = (ψt − x∗t) · p∗t . (13)

This fact allows one to prove the Hamiltonian maximization condition (4). Indeed, suppose that for some t ∈ {0, . . . , T − 1}
the condition is violated, i.e. there exists θ̃ ∈ Θt such that

Ht(x
∗
t , p
∗
t+1, θ̃) = Ht(x

∗
t , p
∗
t+1, θ

∗
t) + ε

for some ε > 0. This means
p∗t+1 · ft(x∗t , θ̃) = p∗t+1 · ft(x∗t , θ∗t) + ε

i.e.,
p∗t+1 · (ft(x∗t , θ̃)− x∗t+1) = ε

Now, we simply evolve ψs, s ≥ t + 1 with θs = θ∗s but the initial condition ψt+1 = ft(x
∗
t , θ̃). Then, Eq. (13) implies that

π · (ψT − x∗T)· = ε > 0, but this contradicts (10).

Remark A.2. Note that in the original proof [Halkin, 1966], it is also assumed that ∇xft is non-singular, which also forces
dt = d to be constant for all t. This is obviously not satisfied naturally by most neural networks that have changing dimensions.
However, one can check that this condition only serves to ensure that if p∗T 6= 0, then p∗t 6= 0 for all t = 0, . . . , T − 1. Hence,
without this assumption, we can only be sure that not all {p∗, β} are 0.

2

A.1 The Convexity Condition for Neural Networks

As also discussed in the main text, the most stringent condition in Theorem A.1 is the convexity condition for ft, i.e. the set
{ft(x, θ) : θ ∈ Θ} must be convex. It is easy to see that for the usual feed-forward neural networks, one can decompose it in
such a way that the convexity constraint is satisfied as long as the parameter sets Θt are convex. Indeed, we have

xt+1 = σ(gt(xt, θt))

where σ is some non-trainable nonlinear activation function and gt is affine in θ. We can simply decompose this into two
steps

x′t+1 = gt(xt, θt),

x′t+2 = σ(x′t+1).

Then, x′t+2 = xt+1 but each of these two steps now satisfy the convexity constraint.
Similarly, in residual networks, we can usually write the layer transformation as

xt+1 = xt + ht(σ(gt(xt, θt)), φt)

where gt, ht are maps affine in θ and φ respectively, and σ is a non-trainable non-linearity. The above cannot be straightfor-
wardly split into two layers as there is a shortcut connection from xn. However, we can introduce auxiliary variables yt and
consider the 3-step decomposition

x′t+1 = gt(xt, θt) y′t+1 = xt,

x′t+2 = σ(x′t+1) y′t+2 = y′t+1,

x′t+3 = y′t+2 + ht(x
′
t+2, φt) y′t+3 = y′t+2.

It is clear then that x′t+3 is equal to xt+1 in the residual network layer. Furthermore, this new decomposed system satisfy
the convexity assumption as long as Θt is a convex set.

B Proof of Theorem 2

In this section, we prove Theorem 2 in the main text using some elementary estimates. Let us first prove a useful result.

Lemma B.1 (Discrete Gronwall’s Lemma). Let K ≥ 0 and ut, wt, be non-negative real valued sequences satisfying

ut+1 ≤ Kut + wt,

for t = 0, . . . , T − 1. Then, we have for all t = 0, . . . , T ,

ut ≤ max(1,KT)

(
u0 +

T−1∑
s=0

ws

)
.

Proof. We prove by induction the inequality

ut ≤ max(1,Kt)

(
u0 +

t−1∑
s=0

ws

)
, (14)

from which the lemma follows immediately. The case t = 0 is trivial. Suppose the above is true for some t, we have

ut+1 ≤ Kut + wt

≤ K max(1,Kt)

(
u0 +

t−1∑
s=0

ws

)
+ wt

≤ max(1,Kt+1)

(
u0 +

t−1∑
s=0

ws

)
+ max(1,Kt+1)wt

= max(1,Kt+1)

(
u0 +

t∑
s=0

ws

)
.

This proves (14) and hence the lemma.

3

Let us now commence the proof of a preliminary lemma that estimates the magnitude of pθs for any θ ∈ Θ. Hereafter,
C will be stand for any generic constant that does not depend on θ, φ and S (batch size), but may depend on other fixed
quantities such as T and the Lipschitz constants K in (A1)-(A2). Also, the value of C is allowed to change to another
constant value with the same dependencies from line to line in order to reduce notational clutter.

Lemma B.2. There exists a constant C > 0 such that for each t = 0, . . . , T and θ ∈ Θ, we have

‖pθs,t‖ ≤
C

S
.

for all s = 1, . . . , S.

Proof. First, notice that pθs,T = − 1
S∇Φs(x

θ
s,T) and so by assumption (A1), we have

‖pθs,T ‖ =
1

S
‖∇Φs(x

θ
s,T)‖ ≤ K

S
.

Now, for each 0 ≤ t < T , we have by Eq. (8) and assumption (A2) in the main text,

‖pθs,t‖ =‖∇xHt(x
θ
s,t, p

θ
s,t+1, θt)‖

≤‖∇xft(xθs,t, θt)
T
pθs,t+1‖+

1

S
∇x‖Lt(xθs,t, θt)‖

≤K‖pθs,t+1‖+
K

S

Using Lemma B.1 with t→ T − t, we get

‖pθs,t‖ ≤ max(1,KT)(
K

S
+
TK

S
) =

C

S
.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Recall the definition

Ht(x, p, θ) = p · ft(x, θ)−
1

S
Lt(x, θ).

Let us define the quantity

I(x,p,θ) :=

T−1∑
t=0

pt+1 · xt+1 −Ht(xt, pt+1, θt)− Lt(xt, θt)

Then, from Eq. (7) from the main text, we know that I(xθ
s ,p

θ
s ,θ) = 0 for any s = 1, . . . , S and θ ∈ Θ. Let us now fix some

sample s and obtain corresponding estimates. We have

0 =I(xφ
s ,p

φ
s ,φ)− I(xθ

s ,p
θ
s ,θ)

=

T−1∑
t=0

pφs,t+1 · x
φ
s,t+1 − pθs,t+1 · xθs,t+1

− 1

S

T−1∑
t=0

Lt(x
φ
s,t, φt)− Lt(xθs,t, θt)

−
T−1∑
t=0

Ht(x
φ
s,t, p

φ
s,t+1, φt)−Ht(x

θ
s,t, p

θ
s,t+1, φt) (15)

We can rewrite the first term on the right hand side as

T−1∑
t=0

pφs,t+1 · x
φ
s,t+1 − pθs,t+1 · xθs,t+1

=

T−1∑
t=0

pθs,t+1 · δxs,t+1 + xθs,t+1 · δps,t+1 + δxs,t+1 · δps,t+1, (16)

4

where we have defined δxs,t := xφs,t − xθs,t and δps,t := pφs,t − pθs,t. We may simplify further by observing that δxs,0 = 0, and
so

T−1∑
t=0

pθs,t+1 · δxs,t+1 + xθs,t+1 · δps,t+1 =pθs,T · δxs,T +

T−1∑
t=0

pθs,t · δxs,t + xθs,t+1 · δps,t+1

=pθs,T · δxs,T +

T−1∑
t=0

∇xHt(x
θ
s,t, p

θ
s,t+1, θt) · δxs,t

+

T−1∑
t=0

∇pHt(x
θ
s,t, p

θ
s,t+1, θt) · δps,t+1

By defining the extended vector zθs,t := (xθs,t, p
θ
s,t+1), we can rewrite this as

T−1∑
t=0

pθs,t+1 · δxs,t+1 + xθs,t+1 · δps,t+1 =pθs,T · δxs,T +

T−1∑
t=0

∇zHt(z
θ
s,t, θt) · δzs,t (17)

Similarly, we also have

T−1∑
t=0

δxs,t+1 · δps,t+1 =
1

2

T−1∑
t=0

δxs,t+1 · δps,t+1 +
1

2

T−1∑
t=0

δxs,t+1 · δps,t+1

=
1

2
δxs,T · δps,T

+
1

2

T−1∑
t=0

(∇zHt(z
φ
s,t, φt)−∇zHt(z

θ
s,t, θt)) · δzs,t

=
1

2
δxs,T · δps,T

+
1

2

T−1∑
t=0

(∇zHt(z
θ
s,t, φt)−∇zHt(z

θ
s,t, θt)) · δzs,t

+
1

2

T−1∑
t=0

δzs,t · ∇2
zHt(z

θ
s,t + r1(t)δzs,t, φt)δzs,t (18)

where in the last line we used Taylor’s theorem with r1(t) ∈ [0, 1] for each t. Now, we can rewrite the terminal terms (i.e. T
terms) in (17) and (18) as follows:

(pθs,T +
1

2
δps,T) · δxs,T

=− 1

S
∇Φs(x

θ
s,T) · δxs,T −

1

2S
(∇Φs(x

φ
s,T)−∇Φs(x

θ
s,T)) · δxs,T

=− 1

S
∇Φs(x

θ
s,T) · δxs,T −

1

2S
δxs,T · ∇2Φs(x

θ
s,T + r2δxs,T)δxs,T

=− 1

S
(Φs(x

φ
T)− Φs(x

θ
T))− 1

2S
δxs,T · [∇2Φs(x

θ
s,T + r2δxs,T) +∇2Φs(x

θ
s,T + r3δxs,T)]δxs,T (19)

for some r2, r3 ∈ [0, 1]. Lastly, for each t = 0, 1, . . . , T − 1 we have

Ht(z
φ
s,t, φt)−Ht(z

θ
s,t, θt) =Ht(z

θ
s,t, φt)−Ht(z

θ
s,t, θt)

+∇zHt(z
θ
s,t, φt) · δzs,t

+
1

2
δzs,t · ∇2

zHt(z
θ
s,t + r4(t)δzs,t, φt)δzs,t (20)

where r4(t) ∈ [0, 1].

5

Substituting Eq. (16, 17, 18, 19, 20) into Eq. (15) yields

1

S

[
Φs(x

φ
s,T) +

T−1∑
t=0

Lt(x
φ
s,t, φt)

]
− 1

S

[
Φs(x

θ
s,T) +

T−1∑
t=0

Lt(x
θ
s,t, θt)

]

=−
T−1∑
t=0

Ht(x
θ
t , p

θ
t+1, φt)−Ht(x

θ
t , p

θ
t+1, θt)

+
1

2S
δxs,T · (∇2Φs(x

θ
s,T + r2δxs,T) +∇2Φs(x

θ
s,T + r3δxs,T))δxs,T

+
1

2

T−1∑
t=0

(∇zHt(z
θ
s,t, φt)−∇zHt(z

θ
s,t, θt)) · δzs,t

+
1

2

T−1∑
t=0

δzs,t · (∇2
zHt(z

θ
s,t + r1(t)δzs,t, φt)−∇2

zHt(z
θ
s,t + r4(t)δzs,t, φt))δzs,t (21)

Note that by summing over all s, the left hand side is simply J(φ)− J(θ). Let us further simplify the right hand side. First,
by (A1), we have

δxs,T · (∇2Φs(x
θ
s,T + r2δxs,T) +∇2Φs(x

θ
s,T + r3δxs,T))δxs,T ≤ K‖δxs,T ‖2. (22)

Next,

(∇zHt(z
θ
s,t, φt)−∇zHt(z

θ
s,t, θt)) · δzs,t

≤‖∇xHt(x
θ
s,t, p

θ
s,t+1, φt)−∇xHt(x

θ
s,t, p

θ
s,t+1, θt)‖‖δxs,t‖

+ ‖∇pHt(x
θ
s,t, p

θ
s,t+1, φt)−∇pHt(x

θ
s,t, p

θ
s,t+1, θt)‖‖δps,t+1‖

≤ 1

2S
‖δxs,t‖2 +

S

2
‖∇xHt(x

θ
s,t, p

θ
s,t+1, φt)−∇xHt(x

θ
s,t, p

θ
s,t+1, θt)‖2

+
S

2
‖δps,t‖2 +

1

2S
‖∇pHt(x

θ
s,t, p

θ
s,t+1, φt)−∇pHt(x

θ
s,t, p

θ
s,t+1, θt)‖2

≤ 1

2S
‖δxs,t‖2 +

C2

2S
‖∇xft(xθs,t, φt)−∇xft(xθs,t, θt)‖2

+
1

2S
‖∇xLt(xθs,t, φt)−∇xLt(xθs,t, θt)‖2

+
S

2
‖δps,t‖2 +

1

2S
‖ft(xθs,t, φt)− ft(xθs,t, θt)‖2, (23)

where in the last line we have used Lemma B.2. Similarly, we can simplify the last term in (21). Notice that the second
derivative of Ht with respect to p vanishes since it is linear. Hence, as in Eq. (22) and using Lemma B.2, we have

δzs,t · (∇2
zHt(z

θ
s,t + r1(t)δzs,t, φt)−∇2

zHt(z
θ
s,t + r4(t)δzs,t, φt))δzs,t

≤2KC

S
‖δxs,t‖2 + 4K‖δxs,t‖‖δps,t+1‖

≤2KC

S
‖δxs,t‖2 +

2K

S
‖δxs,t‖2 + 2KS‖δps,t+1‖2 (24)

6

Substituting Eq. (22,23,24) into (21) and summing over s, we have (renaming constants)

1

S

[
Φs(x

φ
s,T) +

T−1∑
t=0

Lt(x
φ
s,t, φt)

]
− 1

S

[
Φs(x

θ
s,T) +

T−1∑
t=0

Lt(x
θ
s,t, θt)

]

=−
T−1∑
t=0

Ht(x
θ
t , p

θ
t+1, φt)−Ht(x

θ
t , p

θ
t+1, θt)

+
C

S

T∑
t=0

‖δxs,t‖2 + CS

T−1∑
t=0

‖δps,t+1‖2

+
C

S

T−1∑
t=0

‖ft(xθs,t, φt)− ft(xθs,t, θt)‖2

+
C

S

T−1∑
t=0

‖∇xft(xθs,t, φt)−∇xft(xθs,t, θt)‖2

+
C

S

T−1∑
t=0

‖∇xLt(xθs,t, φt)−∇xLt(xθs,t, θt)‖2 (25)

It remains to estimate the magnitudes of δxs,t and δps,t. Observe that δxs,0 = 0, hence we have for each t = 0, . . . , T − 1

‖δxs,t+1‖ ≤‖ft(xφs,t, φt)− ft(xθs,t, φt)‖+ ‖ft(xθs,t, φt)− ft(xθs,t, θt)‖
≤K‖δxs,t‖+ ‖ft(xθs,t, φt)− ft(xθs,t, θt)‖

Using Lemma B.1, we have

‖δxs,t‖ ≤ C
T−1∑
t=0

‖ft(xθs,t, φt)− ft(xθs,t, θt)‖ (26)

Similarly,

‖δps,t‖ ≤‖∇xHt(x
φ
s,t, p

φ
s,t+1, φt)−∇xHt(x

θ
s,t, p

θ
s,t+1, θt)‖

≤2K‖δps,t+1‖+
C

S
‖δxs,t‖

+
C

S
‖∇xft(xθs,t, φt)−∇xft(xθs,t, θt)‖2

+
C

S
‖∇xLt(xθs,t, φt)−∇xLt(xθs,t, θt)‖,

and so by Lemma B.1, Eq. (26) and the fact that ‖δpT,s‖ ≤ K
S ‖δxT,s‖ (by (A1)), we have

‖δps,t‖ ≤
C

S

T−1∑
t=0

‖ft(xθs,t, φt)− ft(xθs,t, θt)‖

+
C

S

T−1∑
t=0

‖∇xft(xθs,t, φt)−∇xft(xθs,t, θt)‖2

+
C

S

T−1∑
t=0

‖∇xLt(xθs,t, φt)−∇xLt(xθs,t, θt)‖. (27)

Finally, we conclude the proof of Theorem 2 by substituting estimates (26) and (27) into (25) and summing over s.

C Gradient Descent with Back-propagation as a modification of MSA

Here we show that the classical gradient-descent algorithm where the gradients are computed using back-propagation [LeCun, 1988]
is a modification of the MSA. This was originally discussed in [Li et al., 2018]. As discussed in the main paper, the reason
MSA may diverge is if the arg-max step is too drastic such that the non-negative penalty terms dominate. One simple way
is to make the arg-max step infinitesimal, in the appropriate direction, provided such updates provide feasible solutions. In

7

other words, if we assume differentiability with respect to θ for all ft and that Θt is the whole Euclidean space, we may
substitute the arg-max step with a steepest ascent step

θ1t = θ0t + η∇θ
S∑
s=1

Ht(x
θ0

s,t, p
θ0

s,t+1, θ
0
t), (28)

for small small learning rate η > 0. We show the following:

Proposition C.1. The MSA (Alg. 1 in the main text) with the maximization step replaced by (28) is equivalent to gradient-
descent with back-propagation on J .

Proof. As in Appendix A, WLOG we can assume L ≡ 0 by redefining coordinates. We have the following form for the
Hamiltonian of the sample s

Ht(x
θ
s,t, p

θ
s,t+1, θt) = pθs,t+1 · f(xθs,t, θt),

and the total loss function is J(θ) = 1
S

∑S
s=1 Φs(x

θ
s,T). It is easy to see that pθs,t = − 1

S∇xθ
s,t

Φs(x
θ
s,T) (here ∇xθ

s,t
is the total

derivative) by working backwards from t = T and the fact that ∇xθ
s,t
xθs,t+1 = ∇xft(xθs,t, θt). Hence,

∇θtJ(θ) =
1

S

S∑
s=1

∇xθ
s,t+1

Φs(x
θ
s,T) · ∇θtxθs,t+1

=

S∑
s=1

−pθs,t+1 · ∇θtft(xθs,t, θt)

=−∇θ
S∑
s=1

Ht(x
θ
s,t, p

θ
s,t+1, θt)

Hence, (28) is simply the gradient descent step

θk+1
t = θkt − η∇θtJ(θk).

Thus, we have shown that the classical gradient descent algorithm constitute a modification of the MSA where the arg-
max step is replaced by a gradient ascent step, so that (10) dominates the penalty terms in Theorem 2 in the main text
(one can see this by observing that the penalty terms are now O(η2) but the gains from steepest ascent is O(η)). However,
differentiability must be assumed, and moreover, θk+1

t must also be admissable, i.e. belong to Θt. If either condition is
violated, the modification is not valid.

D Implementation and Model Details

A Tensorflow implementation of the binary and ternary MSA algorithm, together with code to reproduce our results are
found at

https://github.com/LiQianxiao/discrete-MSA

D.1 MSA for Binary-weight Neural Networks

We give additional implementation details of our binary network algorithm (Alg. 2 in the main text), which is essentially
Alg. 1 with the parameter update step replaced by (16). One extra step is to also keep and update an exponential moving
average of Mθk

t and use the averaged value to update our parameters. Note that in applications, we may have some floating-
point precision layers (e.g. batch normalization layers), in which case the simplest way is to just train them using gradient
descent. Also, Alg. 2 assumed that binary layers are fully-connected networks. For convolution networks, to compute Mθ

t ,
we simply have to take gradient of Ht with respect to θ (noting that H is linear in θ) to obtain the corresponding quantity.
Before we discuss the choice of hyper-parameters in Sec. D.1.2, we first give an argument for the convergence of the binary
MSA algorithm in a simple setting.

8

https://github.com/LiQianxiao/discrete-MSA

D.1.1 Convergence of the Binary MSA for a Simple Problem

Let us show informally that Alg. 2 in the main text converges, with an appropriate choice of regularization parameter, for
a simple binary linear regression problem. The motivation here is show the importance of the added regularization terms
involving ρk,t.

Consider a simple linear regression problem (i.e. linear network with T = 1) in which the unique solution is a Binary
matrix. For s = 1, . . . , S, let xs,0 ∈ Rd0 be independent and have independent and identically distributed components with
mean 0 and variance 1. These are the training samples. We shall consider the full-batch version so no exponential moving
averages are applied.

Let θ∗0 ∈ {−1,+1}d0×d1 be the ground-truth, and so our regression targets are ys = θ∗0xs,0. Define the sample loss function

Φs(x) :=
1

2
‖ys − x‖2.

At the kth iteration, let us denote the error vector δθk0 = θ∗0 − θk0 . Then, using the update rules in Alg. 2, we have

xθ
k

s,1 = θk0xs,0 pθ
k

s,1 =
1

S
δθk0xs,0

and so

H0(xθ
k

s,0, p
θk

s,1, θ0) =
1

S
δθk0xs,0 · θ0xs,0

The update step is then

[θk+1
0]ij =

{
sign([δθk0GS]ij) |[δθk0GS]ij | ≥ 2Sρk,0

[θk0]ij otherwise

where GS := 1
S

∑S
s=1 xs,0x

T
s,0. For large S, by the central limit theorem GS is approximately the identity matrix plus a

small perturbation that is O(1/
√
S) (valid for small perturbations only, large deviations will have to be bounded carefully by

concentration inequalities or precise asymptotics [Den Hollander, 2008, Boucheron et al., 2013]). Therefore, δθk0GS = δθk0 +
O(‖δθk0‖F /

√
S). Taking the sign, we see that we get the correct answer (i.e. δθk+1

1 = 0) if ‖δθk0‖FS−3/2 � ρk,0 � ‖δθk0‖FS−1.
Since ‖δθk0‖F decreases as optimization proceeds, this also shows that we need to decrease ρk,t as k increases.

Note that if we took the naive, unstabilized MSA with ρk,0 ≡ 0 (i.e. Alg. 1 in the main text), then it is clear that a
coordinate that has the right sign ([δθk0]ij = 0) will continue to fluctuate because of the random signs introduced by the

O(‖δθk0‖F /
√
S) term, and hence will not converge. This shows the importance of the regularization term in our algorithm.

D.1.2 Choice of Hyperparameters

Note that all constant factors multiplied to the hyper-parameters can be absorbed into the hyper-parameters themselves
when implementing the algorithms. Hence in the following, ρk,t represents the value of 2ρk,t in Alg. 2.

The preceding example also shows that the regularization parameter ρk,t should be suitably decreased as the optimization
proceeds. We found a good heuristic is to simply set ρk,t to be a constant fraction of the maximum absolute value of the

components of Mθk

t that is not of the same sign as θkt . For the binary experiment, we take this constant fraction to be 0.5
for all layers.

Another hyper-parameter is the exponential moving average parameter, αt, which we take to be 0.999 in all experiments.
We also decay it (i.e. making it closer to 1) as the iterations proceed.

D.1.3 Model Details for Experiments

For ease of comparison, we have used almost identical set-ups as in [Courbariaux et al., 2015]. The only difference is that we
ignore the bias terms in all binary layers, resulting in slightly fewer parameters.

For the MNIST experiment, we optimize a (3xFC2048)-FC10 fully connected network. For CIFAR-10, we consider a con-
volutional neural network with (2xConv128)-2x2maxpool-(2xConv256)-2x2maxpool-(2xConv512)-2x2maxpool-(2xFC1024)-
FC10. Lastly, for SVHN, we use the same network as CIFAR-10, but with half the number of channels in the convolution
layers. All networks used ReLU activations and square-smoothed hinge loss. Note that the ReLU activation and the square-
smoothed hinge loss are not twice differentiable, so technically it does not satisfy the assumptions in Theorem 2. Nevertheless,
we observe that the algorithm converges. Also, we tested other activations (e.g. soft-plus, tanh) and losses (soft-max with
cross entropy) and the results are similar. Batch-normalization is added after each affine transformation and before the non-
linearity. Binary layers are trained according to Alg. 2, but batch-normalization layers have floating-point weights, and hence
are trained by Adam optimizer [Kingma and Ba, 2014] for simplicity. In all our experiments, no preprocessing steps are used
other than scaling all input values to be between 0 and 1. We have checked that using different set-ups (e.g. cross-entropy
loss, different network structures) does not generally require retuning the parameters and the algorithm performs well. Note
that however, we found that batch normalization layers are quite necessary for obtaining good performance in our algorithms,

9

as is also the case in [Courbariaux et al., 2015]. In the main text, Theorem 2 justifies this to a certain extent, by requiring
the inputs fed to be O(1).

In our comparisons with BinaryConnect [Courbariaux et al., 2015], we used the original code published at https://

github.com/MatthieuCourbariaux/BinaryConnect with the only difference being that we changed the inference step to
use binary weights (instead of full precision weights). Note that there are quite a number of regularization techniques
employed here. To check their effects on the training loss, we ran the BinaryConnect code without stochastic binarization
etc., but the training graphs are generally similar, hence we omit them here.

D.2 MSA for Ternary-weight Neural Networks

The model setups for ternary-weight neural networks are identical as the binary ones, except we also have a parameter λt for
each layer that promotes sparsity. We take λt=1e-7 for all t and all experiments. It is expected that large values will lead to
sparser solutions, but with worse accuracy. We did not tune this value to find the best sparsity-performance trade-off. This
is worthy of future exploration. The other hyperparameter choices are mostly identical as in the Binary case, except we take
ρk,t to be a smaller fraction at 0.25.

References

[Bliss, 1938] Bliss, G. A. (1938). Normality and abnormality in the calculus of variations. Transactions of the American
Mathematical Society, 43(3):365–376.

[Boucheron et al., 2013] Boucheron, S., Lugosi, G., and Massart, P. (2013). Concentration inequalities: A nonasymptotic
theory of independence. Oxford university press.

[Canon et al., 1970] Canon, M. D., Cullum Jr, C. D., and Polak, E. (1970). Theory of optimal control and mathematical
programming. McGraw-Hill Book Company.

[Courbariaux et al., 2015] Courbariaux, M., Bengio, Y., and David, J.-P. (2015). Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in Neural Information Processing Systems, pages 3123–
3131.

[Den Hollander, 2008] Den Hollander, F. (2008). Large deviations, volume 14. American Mathematical Soc.

[Halkin, 1966] Halkin, H. (1966). A maximum principle of the pontryagin type for systems described by nonlinear difference
equations. SIAM Journal on control, 4(1):90–111.

[Holtzman, 1966] Holtzman, J. (1966). Convexity and the maximum principle for discrete systems. IEEE Transactions on
Automatic Control, 11(1):30–35.

[Holtzman and Halkin, 1966] Holtzman, J. M. and Halkin, H. (1966). Discretional convexity and the maximum principle for
discrete systems. SIAM Journal on Control, 4(2):263–275.

[Kingma and Ba, 2014] Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

[Kuhn and Tucker, 2014] Kuhn, H. W. and Tucker, A. W. (2014). Nonlinear programming. In Traces and emergence of
nonlinear programming, pages 247–258. Springer.

[LeCun, 1988] LeCun, Y. (1988). A theoretical framework for back-propagation. In The Connectionist Models Summer
School, volume 1, pages 21–28.

[Li et al., 2018] Li, Q., Chen, L., Tai, C., and E, W. (2018). Maximum principle based algorithms for deep learning. Journal
of Machine Learning Research, 18:1–29.

10

https://github.com/MatthieuCourbariaux/BinaryConnect
https://github.com/MatthieuCourbariaux/BinaryConnect

	Full Statement and Sketch of the Proof of Theorem 1
	The Convexity Condition for Neural Networks

	Proof of Theorem 2
	Gradient Descent with Back-propagation as a modification of MSA
	Implementation and Model Details
	MSA for Binary-weight Neural Networks
	Convergence of the Binary MSA for a Simple Problem
	Choice of Hyperparameters
	Model Details for Experiments

	MSA for Ternary-weight Neural Networks

