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A. Omitted details from Section 2
A.1. Two intervals suffice for G

Here we formally prove (4). In fact, we will prove a slight
generalization of this fact which will be useful later on.

We require the following theorem from Hummel and Gidas:
Theorem A.1 ((Hummel & Gidas, 1984)). Let f be any
analytic function with at most n zeros. Then f ◦ N (0, σ2)
has at most n zeros.

This allows us to prove:
Theorem A.2. Any linear combination F (x) of the proba-
bility density functions of k Gaussians with the same vari-
ance has at most k − 1 zeros, provided at least two of
the Gaussians have different means. In particular, for any
µ 6= ν, the function F (x) = Dµ(x)−Dν(x) has at most 3
zeroes.

Proof. If we have more than 1 Gaussian with the same
mean, we can replace all Gaussians having that mean with
an appropriate factor times a single Gaussian with that mean.
Thus, we assume without loss of generality that all Gaus-
sians have distinct means. We may also assume without loss
of generality that all Gaussians have a nonzero coefficient
in the definition of F .

Suppose the minimum distance between the means of any
of the Gaussians is δ. We first prove the statement when δ
is sufficiently large compared to everything else. Consider
any pair of Gaussians with consecutive means ν, µ. WLOG
assume that µ > ν = 0. Suppose our pair of Gaussians
has the same sign in the definition of F . In particular they
are both strictly positive. For sufficiently large δ, we can
make the contribution of the other Gaussians to F an arbi-
trarily small fraction of the whichever Gaussian in our pair
is largest for all points on [ν, µ]. Thus, for δ sufficiently
large, that there are no zeros on this interval.

Now suppose our pair of Gaussians have different signs in
the definition of F . Without loss of generality, assume the
sign of the Gaussian with mean ν is positive and the sign
of the Gaussian with mean µ is negative. Then the PDF
of the first Gaussian is strictly decreasing on (ν, µ] and the
PDF of the negation of the second Gaussian is decreasing
on [ν, µ). Thus, their sum is strictly decreasing on this
interval. Similarly to before, by making δ sufficiently large,
the magnitude of the contributions of the other Gaussians to
the derivative in this region can be made an arbitrarily small
fraction of the magnitude of whichever Gaussian in our pair
contributes the most at each point in the interval. Thus, in
this case, there is exactly one zero in the intervale [µ, ν].

Also, note that there can be no zeros of F outside of the
convex hull of their means. This follows by essentially the
same argument as the two positive Gaussians case above.

The general case (without assuming δ sufficiently large) fol-
lows by considering sufficiently skinny (nonzero variance)
Gaussians with the same means as the Gaussians in the defi-
nition of F , rescaling the domain so that they are sufficiently
far apart, applying this argument to this new function, un-
scaling the domain (which doesn’t change the number of
zeros), then convolving the function with an appropriate
(very fat) Gaussian to obtain the real F , and invoking Theo-
rem A.1 to say that the number of zeros does not increase
from this convolution.

A.2. The function L

In this section, we derive the form of L. By definition, we
have
√

2πL(µ̂, `, r) =
√

2π
(
Ex∼Gµ∗ [D(x)] + Ex∼Gµ [1−D(x)]

)
=
√

2π

(∫
I

Gµ∗(x)−Gµ̂(x)dx

)
+
√

2π ,

where I = [`1, r1] ∪ [`2, r2]. We then have

√
2πL(µ̂, `, r)

=
√

2π

∑
i=1,2

∫ ri

`i

Gµ∗(x)−Gµ̂(x)dx

+
√

2π

=
∑
i=1,2

∑
j=1,2

∫ ri

`i

e−(x−µ∗j )2/2 − e−(x−µ̂j)2/2dx+
√

2π .

(13)

It is not to hard to see from the Fundamental theorem of
calculus that L is indeed a smooth function of all parameters.

B. Alternative Induced Dynamics
Our focus in this paper is on the dynamics induced by, since
it arises naturally from the form of the total variation dis-
tance (3) and follows the canonical form of GAN dynamics
(1). However, one could consider other equivalent defini-
tions of total variation distance too. And these definitions
could, in principle, induce qualitatively different behavior
of the first order dynamics.

As mentioned in Section 3, an alternative dynamics could
be induced by the definition of total variation distance given
in (12). The corresponding loss function would be

L′(µ, `, r) = |L(µ, `, r)| =
∣∣Ex∼Gµ∗ [D(x)] + Ex∼Gµ [1−D(x)]

∣∣ ,
(14)

i.e. the same as in (6) but with absolute values on the outside
of the expression. Observe that this loss function does not
actually fit the form of the general GAN dynamics presented
in (1). However, it still constitutes a valid and fairly natural
dynamics. Thus one could wonder whether similar behavior
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to the one we observe for the dynamics we actually study
occurs also in this case.

To answer this question, we first observe that by the chain
rule, the (sub)-gradient of L′ with respect to µ, `, r are given
by

∇µL′(µ, `, r) = sgn (L(µ, `, r))∇µL(µ, `, r)

∇`L′(µ, `, r) = sgn (L(µ, `, r))∇`L(µ, `, r)

∇rL′(µ, `, r) = sgn (L(µ, `, r))∇rL(µ, `, r) ,

that is, they are the same as for L except modulated by the
sign of L.

We now show that the optimal discriminator dynamics is
identical to the one that we analyze in the paper (8), and
hence still provably converge. This requires some thought;
indeed a priori it is not even clear that the optimal dis-
criminator dynamics are well-defined, since the optimal
discriminator is no longer unique. This is because for
any µ∗, µ, the sets A1 = {x : Gµ∗(x) ≥ Gµ(x)} and
A2 = {x : Gµ(x) ≥ Gµ∗(x)} both achieve the maxima
in (12), since∫
A1

Gµ(x)−Gµ∗(x)dx = −
∫
A2

Gµ(x)−Gµ∗(x)dx .

(15)

However, we show that the optimal discriminator dynamics
are still well-formed. WLOG assume that

∫
A1
Gµ(x) −

Gµ∗(x)dx ≥ 0, so that A1 is also the optimal discriminator
for the dynamics we consider in the paper. If we let `(i), r(i)

be the left and right endpoints of the intervals in Ai for
i = 1, 2, we have that the update to µ induced by (`(1), r(1))
is given by

∇µL′(µ, `(1), r(1)) = ∇µL(µ, `(1), r(1)) ,

so the update induced by (`(1), r(1)) is the same as the one
induced by the optimal discriminator dynamics in the paper.
Moreover, the update to µ induced by (`(2), r(2)) is given
by

∇µL′(µ, `(2), r(2)) = sgn
(
L(µ, `(2), r(2))

)
∇µL(µ, `(2), r(2))

(a)
= −∇µ(−L(µ, `(1), r(1)))

= ∇µL(µ, `(1), r(1)) ,

where (a) follows from the assumption that
∫
A1
Gµ(x) −

Gµ∗(x)dx ≥ 0 and from (15), so it is also equal to the
the one induced by the optimal discriminator dynamics in
the paper. Hence the optimal discriminator dynamics are
well-formed and unchanged from the optimal discriminator
dynamics described in the paper.

Thus the question is whether the first order approximation
of this dynamics and/or the unrolled first order dynamics

exhibit the same qualitative behavior too. To evaluate the
effectiveness, we performed for these dynamics experiments
analogous to the ones summarized in Figure 2 in the case
of the dynamics we actually analyzed. The results of these
experiments are presented in Figure 4. Although the proba-
bility of success for these dynamics is higher, they still often
do not converge. We can thus see that a similar dichotomy
occurs here as in the context of the dynamics we actually
study. In particular, we still observe the discriminator col-
lapse phenomena in these first order dynamics.

B.1. Why does discriminator collape still happen?

It might be somewhat surprising that even with absolute
values discriminator collapse occurs. Originally the discrim-
inator collapse occurred because if an interval was stuck
in a negative region, it always subtracts from the value of
the loss function, and so the discriminator is incentivized to
make it disappear. Now, since the value of the loss is always
nonnegative, it is not so clear that this still happens.

Despite this, we still observe discriminator collapse with
these dynamics. Here we describe one simple scenario
in which discriminator collapse still occurs. Suppose the
discriminator intervals have left and right endpoints `, r and
L(µ, `, r) > 0. More if it is the case that

∫ ri
`i
Gµ∗(x) −

Gµ(x)dx < 0 for some i = 1, 2. that is, on one of the
discriminator intervals the value of the loss is negative, then
the discriminator is still incentivized locally to reduce this
interval to zero, as doing so increases both L(µ, `, r) and
hence L′(µ, `, r). Symmetrically if L(µ, `, r) < 0 and there
is a discriminator interval on which the loss is positive, the
discriminator is incentivized locally to reduce this interval
to zero, since that increases L′(µ, `, r). This causes the
discriminator collapse and subsequently causes the training
to fail to converge.

C. Omitted Proofs from Section 4.1
This appendix is dedicated to a proof of Theorem 4.1. We
start with some remarks on the proof techniques for these
main lemmas. At a high level, Lemmas 4.3, 4.5, 4.6 all
follow from involved case analyses. Specifically, we are
able to deduce structure about the possible discriminator
intervals by reasoning about the structure of the current
mean estimate µ̂ and the true means. From there we are able
to derive bounds on how these discriminator intervals affect
the derivatives and hence the update functions.

To prove Lemma 4.4, we carefully study the evolution of
the optimal discriminator as we make small changes to the
generator. The key idea is to show that when the generator
means are far from the true means, then the zero crossings
of F (µ̂, x) cannot evolve too unpredictably as we change
µ̂. We do so by showing that locally, in this setting F can
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Figure 4. Heatmap of success probability for random discriminator initialization for regular GAN training, unrolled GAN training with
dynamics induced by 14

be approximated by a low degree polynomial with large
coefficients, via bounding the condition number of a certain
Hermite Vandermonde matrix. This gives us sufficient con-
trol over the local behavior of zeros to deduce the desired
claim. By being sufficiently careful with the bounds, we are
then able to go from this to the full generality of the lemma.
We defer further details to Appendix C.

C.1. Setup

By inspection on the form of (13), we see that the gradient
of the function fµ∗(µ̂) if it is defined must be given by

∂fµ∗

∂µ̂i
=

1√
2π

∑
i=1,2

(
e−(µ̂i−ri)2/2 − e−(µ̂i−`i)2/2

)
.

Here Ii = [`i, ri] are the intervals which achieve the supre-
mum in (4). While these intervals may not be unique, it is
not hard to show that this value is well-defined, as long as
µ̂ 6= µ∗, that is, when the optimal discriminator intervals
are unique as sets.

Recall Fµ∗(µ̂, x) = Gµ∗(x)−Gµ̂(x).

C.2. Basic Math Facts

Before we begin, we require the following facts.

We first need that the Gaussian, and any fixed number of
derivatives of the Gaussian, are Lipschitz functions.
Fact C.1. For any constant i, there exists a constantB such
that for all x, µ ∈ R, di

dxi N (x, µ, σ2 = 1) ≤ B.

Proof. Note that every derivative of the Gaussian PDF (in-
cluding the 0th) is a bounded function. Furthermore, all
these derivatives eventually tend to 0 whenever the input
goes towards∞ or −∞. Thus, any particular derivative is
bounded by a constant for all R. Furthermore, shifting the
mean of the Gaussian does not change the set of values the
derivatives of its derivative takes (only their locations).

We also need the following bound on the TV distance be-
tween two Gaussians, which is folklore, and is easily proven
via Pinsker’s inequality.

Fact C.2 (folklore). If two univariate Gaussians with unit
variance have means within distance at most ∆ then their
TV distance is at most O(1) ·∆.

This immediately implies the following, which states that
fµ∗ is Lipschitz.

Corollary C.3. There is some absolute constant C so that
for any µ, ν, we have |fµ∗(µ)− fµ∗(ν)| ≤ C‖µ− ν‖2.

We also need the following basic analysis fact:

Fact C.4 (folklore). Suppose g : Rd → R is B-Lipschitz
for some B. Then g is differentiable almost everywhere.

This implies that fµ∗ is indeed differentiable except on a
set of measure zero. As mentioned previously, we will
always assume that we never land within this set during our
analysis.

C.3. Proof of Theorem 4.1 given Lemmata

Before we prove the various lemmata described in the body,
we show how Theorem 4.1 follows from them.

Proof of Theorem 4.1. Set δ′ be a sufficiently small con-
stant multiple of δ. Provided we make the nonzero constant
factor on the step size sufficiently small (compared to δ′/δ),
and the exponent on δ in the magnitude step size at least
one, the magnitude of our step size will be at most δ′. Thus,
in any step where µ̂ ∈ Opt(δ′), we end the step outside of
this set but still in Opt(2δ′). By Lemma C.2, for a suffi-
ciently small choice of constant in the definition of δ′, the
TV-distance at the end of such a step will be at most δ.

Contrapositively, in any step where the TV-distance at
the start is more than δ, we will have at the start that
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µ̂ 6∈ Opt(δ′). Then, it suffices to prove that the step de-
creases the total variation distance additively by at least
1/poly(C, eC

2

, 1/δ) in this case. For appropriate choices
of constants in expression for the step size (sufficiently small
multiplicative and sufficiently large in the exponent), this
is immediately implied by Lemma 4.4 and Lemma 4.2 pro-
vided that µ∗, µ̂, µ̂′ ∈ B(2C) and |µ̂1−µ̂2| ≥ δ at the begin-
ning of each step. The condition that we always are within
B(2C) at the start of each step is proven in Lemma 4.6 and
the condition that the means are separated (ie., that we don’t
have mode collapse) is proven in Lemma 4.5.

It is interesting that a critical component of the above proof
involves proving explicitly that mode collapse does not
occur. This suggests the possibility that understanding mode
collapse may be helpful in understanding convergence of
Generative Adversarial Models and Networks.

C.4. Proof of Lemma 4.3

In this section we prove Lemma 4.3. We first require the
following fact:

Fact C.5 ((Markov, 1892)). Let p(x) =
∑d
i=0 cjx

j be a
degree d polynomial so that |p(x)| ≤ 1 for all x ∈ [−1, 1].
Then max0≤j≤d |cj | ≤ (

√
2 + 1)d. More generally, if

|p(x)| ≤ α for all x ∈ [−ρ, ρ], then max0≤j≤d |cjρj | ≤
O(α).

We also have the following, elementary lemma:

Lemma C.6. Suppose µ̂2 > µ∗i for all i. Then there is
some x > µ̂2 so that Fµ∗(µ̂, x) < 0.

We are now ready to prove Lemma 4.3

Proof of Lemma 4.3. We proceed by case analysis on the
arrangement of the µ̂ and µ∗.

Case 1: µ∗1 < µ̂1 and µ∗2 < µ̂2 In this case we have
Fµ∗(µ̂, x) ≤ 0 for all x ≥ µ̂2. Hence the optimal
discriminators are both to the left of µ̂2. Moreover,
by a symmetric logic we have Fµ∗(µ̂, x) ≥ 0 for all
x ≤ µ∗1, so the optimal discriminator has an interval
of the form I1 = [−∞, r1] and possibly I2 = [l2, r2]
where r1 < l2 < r2 < µ̂2. Then it is easy to see that
∂f
∂µ̂2

(µ̂2) ≥ 1√
2π
e−(µ̂2−r2)2/2 ≥ 1√

2π
e−2C2

.

Case 2: µ̂1 < µ∗1 and µ̂2 < µ∗2 This case is symmetric to
Case (1).

Case 3: µ̂1 < µ∗1 < µ∗2 < µ̂2 By Lemma C.6, we know
that Fµ∗(µ̂, x) < 0 for some x ≥ µ̂2, and simi-
larly Fµ∗(µ̂, x) < 0 for some x ≤ µ̂1. Since clearly
F (µ∗)(µ̂, x) > 0 for x ∈ [µ∗1, µ

∗
2], by Theorem A.2

and continuity, the optimal discriminator has one inter-
val. Denote it by I = [`, r], so that we have ` ≤ µ∗1
and r ≥ µ∗2. Suppose ` ≥ µ̂1. Then

∂f

∂µ̂1
(µ̂1) =

1√
2π

(
e−(µ̂1−`)2/2 − e−(µ̂1−r)2/2

)
=

1√
2π
e−(µ̂1−`)2/2

(
1− e−(µ̂1−`)(r−`)e−(r−`)2/2

)
≥ 1√

2π
e−2C2

(
1− e−δ

2/2
)
.

We get the symmetric bound on ∂fµ∗

∂µ̂2
(µ̂2) if r ≤ µ̂2.

The final case is if ` < µ̂1 < µ̂2 < r. Consider the
auxiliary function

H(µ) = e−(`−µ)2/2 − e−(r−µ)2/2 .

On the domain [`, r], this function is monotone decreas-
ing. Moreover, for any µ ∈ [`, r], we have

H ′(µ) = (`− µ)e−(`−µ)2/2 − (r − µ)e−(r−µ)2/2

≤ −r − `
2

e−(r−`)2/8

≤ −γ
2
e−γ

2/8 .

In particular, this implies that H(µ̂1) < H(µ̂2) −
γ2e−γ

2/8/2, so at least one of H(µ̂2) or H(µ̂1) must
be γ2e−γ

2/8/4 in absolute value. Since ∂fµ∗

∂µ̂i
(µ̂i) =

H(µ̂i), this completes the proof in this case.

Case 4: µ∗1 < µ̂1 < µ̂2 < µ∗2 By a symmetric argument to
Case 3, we know that the optimal discriminator in-
tervals are of the form (−∞, r] and [`,∞) for some
r < µ̂1 < µ̂2 < `. The form of the derivative is then
exactly the same as in the last sub-case in Case 3 with
signs reversed, so the same bound holds here.

C.5. Proof of Lemma 4.4

We now seek to prove Lemma 4.4. Before we do so, we
need to get lower bounds on derivatives of finite sums of
Gaussians with the same variance. In particular, we first
show:
Lemma C.7. Fix γ ≥ δ > 0 and C ≥ 1. Suppose we
have µ∗, µ̂ ∈ B(C), µ∗, µ̂ ∈ Sep(γ), with µ̂ 6∈ Rect(δ),
where all these vectors have constant length k. Then, for
any x ∈ [−C,C], we have that | d

i

dxiFµ∗(µ̂, x)| ≥ Ω(1) ·
(δ/C)O(1)e−C

2/2 for some i = 0, . . . , 2k − 1.

Proof. Observe that the value of the ith derivative of
Fµ∗(µ̂, x) for any x is given by

di

dxi
Fµ∗(µ̂, x) =

1√
2π

2k∑
j=1

wj(−1)iHi(zj)e
−z2j /2 ,
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where wj ∈ {−1/k, 1/k}, the zj is either x−µ∗j or x− µ̂j ,
and Hi(z) is the ith (probabilist’s) Hermite polynomial.
Note that the (−1)iHi are orthogonal with respect to the
Gaussian measure over R, and are orthonormal after some fi-
nite scaling that depends only on i and is therefore constant.
Hence, if we form the matrix Mij = (−1)iHi(x − zj), if
we define ui = di

dxiFµ∗(µ̂, x) for i = 0, . . . , 2k − 1, we
have that Mv = u, where vj = 1√

2π
wje

−(x−zj)2/2. By as-

sumption, we have ‖v‖2 ≥ Ω(
√
k · e−C2/2) = Ω(e−C

2/2).
Thus, to show that some ui cannot be too small, it suffices
to show a lower bound on the smallest singular value of
M . To do so, we leverage the following fact, implicit in the
arguments of (Gautschi, 1990):

Theorem C.8 ((Gautschi, 1990)). Let pr(z) be family of
orthonormal polynomials with respect to a positive measure
dσ on the real line for r = 1, 2, . . . , t and let z1, . . . , zt be
arbitrary real numbers with zi 6= zj for i 6= j. Define the
matrix V given by Vij = pi(zj). Then, the smallest singular
value of V , denoted σt(V ), is at least

σmin(V ) ≥

(∫
R

t∑
r=1

`r(y)2dσ(y)

)−1/2

,

where `r(y) =
∏
s6=r

y−zs
zr−zs is the Langrange interpolating

polynomial for the zr.

Set pr = Hr−1 t = 2k, and σ as the Gaussian measure;
then apply the theorem. Observe that for any i, j, we have
|zi − zj | ≥ min(δ, γ) ≥ δ and |zi| ≤ C. Hence the
largest coefficient of any Lagrange interpolating polyno-
mial through the zi is at most (Cδ )2k−1 with degree 2k − 1.
So, the square of any such polynomial has degree at most
2(2k − 1) and max coefficient at most 2k(Cδ )2(2k−1) This
implies that

∫
R

2k∑
r=1

`r(y)2 dσ(y) =

2k∑
r=1

∫
R
`r(y)2 dσ(y)

≤
2k∑
r=1

2(2k − 1) · 2k
(
C

δ

)2(2k−1)

max
s∈[2(2k−1)]

∫
R
ysdσ(y)

≤ O(1) ·
(
C

δ

)4k

max
s∈[4k]

∫ ∞
−∞

yse−y
2/2 dy

≤ O(1) ·
(
C

δ

)O(1)

.

Hence by Theorem C.8 we have that σmin(V ) ≥ Ω(1) ·(
δ
C

)O(1)
. Therefore, we have that ‖u‖2 ≥ Ω(1) ·

(δ/C)O(1)e−C
2/2, which immediately implies the desired

statement.

We next show that the above Lemma can be slightly gen-
eralized, so that we can replace the condition µ̂ 6∈ Rect(δ)
with µ̂ 6∈ Opt(δ).
Lemma C.9. Fix C ≥ 1 ≥ γ ≥ δ ≥ Ξ > 0. Suppose
we have µ∗, µ̂ ∈ B(C), µ∗, µ̂ ∈ Sep(γ), with µ̂ 6∈ Opt(δ).
Then for any x ∈ [−C,C], we have that | d

i

dxiFµ∗(µ̂, x)| ≥
Ω(1) · (δe−C2

/C)O(1) for some i = 0, . . . , 3.

Proof. Let Ξ be of the form Ω(1) · (δe−C2

/C)O(1), where
we will pick its precise value later. Lemma C.7 with δ in
that Lemma set to Ξ and k = 2 proves the special case when
µ̂ 6∈ Rect(Ξ). Thus, the only remaining case is when µ̂i is
close to µ∗i for some i and far away for the other i. Without
loss of generality, we assume the first entries are the close
pair. Then we have |µ̂1 − µ∗1| ≤ Ξ and |µ̂2 − µ∗2| ≥ δ.

There are four terms in the expression for di

dxiFµ∗(µ̂, x)
corresponding to each of µ̂1, µ̂2, µ

∗
1, µ
∗
2. Lemma C.7 with

δ = Ξ and k = 1 implies that the contribution of the µ̂2 and
µ∗2 terms to at least one of the 0th through 3rd derivatives
has magnitude at least Ω(1) · (δe−C2

/C)O(1). Fact C.2
and Lemma C.10 (below) imply that the contribution of the
µ̂1 and µ∗1 terms to these derivatives has magnitude at most
O(1) ·Ξ4. Thus, there exists a Ξ = Ω(1) ·(δ/C)O(1)e−C

2/2

such that the magnitude of the contribution of these second
two terms is less than half that of the first two, which gives
a lower bound on the magnitude of the sum of all the terms
of Ω(1) · (δ/C)O(1)e−C

2/2.

We now show that any function which always has at least
one large enough derivative—including its 0th derivaive—
on some large enough interval must have a nontrivial amount
of mass on the interval.
Lemma C.10. Let 0 < ξ < 1 and t ∈ N. Let F (x) : R→
R be a (t+1)-times differentiable function such that at every
point x on some interval I of length |I| ≥ ξ, F (x) ≥ 0 and
there exists an i = i(x) ∈ 0, . . . , t such that | di

dxiF (x)| ≥
B′ for some B′. Also suppose | dt+1

dxt+1F (x)| ≤ B for some
B. Then,∫ y

z

F (x)dx ≥
(
B′ · (Ω(1) · ξ)t+1 ·min[(B′/B)t+2, 1]

(t+ 1)! · (t+ 1)

)
.

Proof. Let 0 < a < 1 be a non-constant whose value we
will choose later. If I has length more than aξ, truncate
it to have this length. Let z denote the midpoint of I . By
assumption, we know that there is some i ∈ 0, . . . , t such
that | d

i

dxiF (x)| > ξ. Thus, by Taylor’s theorem, we have
that F (µ̂, x) ≥ p(x − z) − (B/(t + 1)!) · |x − z|t+1 for
some degree t polynomial p that has some coefficient of
magnitude at least B′/t!.

Thus, if we let G(y) =
∫ y
z
p(x)dx, then G(y) is a de-

gree t + 1 polynomial with some coefficient which is at
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least B′/(t! · t). By the nonnegativity of F on I , we
have that G is nonnegative on [−aξ/2, aξ/2]. By this
and the contrapositive of Fact C.5 (invoked with α set to
a sufficiently small nonzero constant multiple of B), we
have for some such y and some constant B′′ > 0 that
G(y) = |G(y)| ≥ B′′(|I|/2)t+1B′/(t! · t). Therefore, at
this point, we have∫ y

z

F (x)dx ≥ G(y)−
∫ y

z

(B/(t+ 1)!) · |x− z|t+1dx

≥ B′′at+1(ξ/2)t+1B′

t! · t
− B(aξ/2)t+2

(t+ 1)! · (t+ 1)

≥
(
at+1(ξ/2)t+1(B′′B′ −Bξa/2)

(t+ 1)! · (t+ 1)

)
≥
(
at+1(ξ/2)t+1(B′′B′ −Ba/2)

(t+ 1)! · (t+ 1)

)
.

If B′B′′ ≤ B, we set a = B′B′′/B ≤ 1 which gives∫ y

z

F (x)dx ≥
(

(B′)t+2(Ω(1) · ξ/B)t+1

(t+ 1)! · (t+ 1)

)
.

Otherwise, B′B′′ ≥ B and we perform this substitution
along with a = 1 which gives the similar bound∫ y

z

F (x)dx ≥
(
B′(Ω(1) · ξ)t+1

(t+ 1)! · (t+ 1)

)
.

Together, these bounds imply that we always have∫ y

z

F (x)dx ≥
(
B′ · (Ω(1) · ξ)t+1 ·min[(B′/B)t+2, 1]

(t+ 1)! · (t+ 1)

)
.

This allows us to prove the following lemma, which lower
bounds how much mass F can put on any interval which is
moderately large. Formally:

Lemma C.11. Fix C ≥ 1 ≥ γ ≥ δ > 0. Let K =
Ω(1) · (δe−C2

/C)O(1) be the K for which Lemma 4.3 is
always true with those parameters. Let µ∗, µ̂ be so that
µ̂ 6∈ Opt(δ), µ̂, µ∗ ∈ Sep(γ), and µ∗, µ̂ ∈ B(C). Then,
there is a ξ = Ω(1) · (δ/C)O(1)e−C

2

)O(1) such that for
any interval I of length |I| ≥ ξ which satisfies I ∩ [−C −
2
√

log(100/K), C + 2
√

log(100/K)] 6= ∅ and on which
F (µ̂, x) is nonnegative, we have∫

I

|F (µ̂, x)|dx ≥ Ω(1) · (δe−C
2

/C)O(1)ξO(1) .

Proof. By Lemma C.9 with C in that lemma set to
C + 2

√
log(100/K), we get a lower bound of Ω(1) ·

(δe−C
2

/C)O(1) on the magnitude of at least one of the 0th

through 3rd derivatives of F (µ̂, x) with respect to x. Set ξ
equal to a sufficiently small (nonzero) constant times this
value.

By Fact C.1 there exists a constant B such that the mag-
nitude of the fifth derivative of F (µ̂, x) with respect to x—
which is a linear combination of four fifth derivatives of
Gaussians with constant coefficients—is at most B.

By Lemma C.10 applied to F (µ̂, x) as a function of x, we
have

∫
I
F (µ̂, x)dx ≥ Ω(1) · ξ6.

Now we can prove Lemma 4.4.

Proof of Lemma 4.4. Let A = [C − 2
√

log(100/K), C +

2
√

log(100/K)] where K = Ω(1) · (δe−C2

/C)O(1) is the
K for which Lemma 4.3 is always true with those parame-
ters.

Let Z± denote the set of all x ∈ A for which F (µ̂′, x) and
F (µ̂, x) have different nonzero signs. Let Z+ denote the
subset of Z± where F (µ̂′, x) > 0 > F (µ̂, x) and Z−

denote the subset where F (µ̂′, x) < 0 < µ̂, x). Then
Z± = Z+ ∪ Z− and Z+, Z− are disjoint and Lebesgue-
measurable. If vol(Z+) ≤ vol(Z−), switch µ̂ and µ̂′ so
that vol(Z+) ≥ vol(Z−).

Note that Z+ can be obtained by making cuts in the real line
at the zeros of F (µ̂′, x), F (µ̂, x), and F (µ̂′, x) − F (µ̂, x),
then taking the union of some subset of the open intervals
induced by these cuts. By Theorem A.2, the total number of
such intervals is O(1). Thus, Z+ is the union of a constant
number of open intervals. By similar arguments, Z− is also
the union of a constant number of open intervals.

We now prove that vol(Z+), Z−1 ≤ O(1) · ‖µ̂′ − µ̂‖Θ(1)
1 ·

(δe−C
2

/C)−O(1). Since vol(Z+) ≥ vol(Z−), it suffices to
prove vol(Z+) ≤ O(1) · ‖µ̂′ − µ̂‖Θ(1)

1 · (δe−C2

/C)−O(1).
Note also that by Lemma C.2, each of these intervals has
mass under F (µ̂′, x) at most

∫
R |F (µ̂′, x)− F (µ̂, x)|dx ≤

O(1) · ‖µ̂′ − µ̂‖1. By Lemma C.11 and Lemma 4.3, each
of these intervals has length at most O(1) · ‖µ̂′ − µ̂‖Θ(1)

1 ·
(δe−C

2

/C)−O(1). Since there are at most a constant number
of such intervals, this is also a bound on vol(Z+) (and
vol(Z−)).

Let Y denote the set of x ∈ A on which both F (µ̂, x) and
F (µ̂′, x) are nonnegative. Let X,X ′ denote the x 6∈ A
for which F (µ̂, x) and F (µ̂′, x) are respectively positive.
Let W,W ′ denote, respectively, the sets of endpoints of
the union of the optimal discriminators for µ̂, µ̂′. Then the
union of the optimal discriminators for µ̂, µ̂′ are respectively
Y ∪ Z− ∪X ∪W and Y ∪ Z+ ∪X ′ ∪W ′. Furthermore,
each of these two unions is given by some constant number
of closed intervals and more specifically, that X,X ′ each
contain at most two intervals by Lemma A.2. Thus, we have
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for any i that∣∣∣∣∣ ∂

∂µ̂i
TV(µ∗, µ̂)

∣∣∣∣µ̂′
µ̂

∣∣∣∣∣
=

∣∣∣∣∣∣
∫

Y ∪Z+∪W ′∪X′

d

dx
e(x−µ̂′i)

2/2dx−
∫

Y ∪Z−∪W∪X

d

dx
e(x−µ̂i)2/2dx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫

Y ∪Z+∪W ′∪X′

d

dx
e(x−µ̂i)2/2dx−

∫
Y ∪Z−∪W∪X

d

dx
e(x−µ̂i)2/2dx

∣∣∣∣∣∣
+O(1) · |µ̂′i − µ̂i| ,

by Lipschitzness, and so∣∣∣∣∣ ∂

∂µ̂i
TV(µ∗, µ̂)

∣∣∣∣µ̂′
µ̂

∣∣∣∣∣
=

∣∣∣∣∣∣
∫

Z+∪X′

d

dx
e(x−µ̂i)2/2dx−

∫
Z−∪X

d

dx
e(x−µ̂i)2/2dx

∣∣∣∣∣∣
+O(1) · |µ̂′i − µ̂i|

≤

∣∣∣∣∣∣
∫
Z+

d

dx
e(x−µ̂i)2/2dx± 4

100
·K

−
∫
Z−

d

dx
e(x−µ̂i)2/2dx± 4

100
·K

∣∣∣∣∣∣
+O(1) · |µ̂′i − µ̂i|

≤

∣∣∣∣∣∣
∫
Z+

d

dx
e(x−µ̂i)2/2dx

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
Z−

d

dx
e(x−µ̂i)2/2dx

∣∣∣∣∣∣
+

8

100
·K +O(1) · |µ̂′i − µ̂i|

≤ 2vol(Z+)

∣∣∣∣sup
x∈R

d

dx
e(x−µ̂i)2/2

∣∣∣∣+
8

100
·K +O(1) · |µ̂′i − µ̂i|

≤ O(1) · ‖µ̂′ − µ̂‖Θ(1)
2 · (δe−C

2

/C)−O(1) +
8

100
·K .

This bound also upper bounds ‖∇fµ∗(µ̂′) − ∇fµ∗(µ̂)‖2
up to a constant factor. Thus, if we choose our step to
have magnitude ‖µ̂′ − µ̂‖2 ≤ Ω(1) · (δe−C2

/C)O(1) with
appropriate choices of constants, we get

‖∇fµ∗(µ̂′)−∇fµ∗(µ̂)‖2 ≤ K/2 ≤ ‖∇fµ∗(µ̂)‖2/2 ,

as claimed

C.6. Proof of Lemma 4.5

We now prove Lemma 3.4, which forbids mode collapse.

Proof of Lemma 4.5. Since η ≤ δ, if |µ̂1 − µ̂2| > 2δ then
clearly µ̂′ ∈ Sep(δ), since the gradient is at most a constant

since the function is Lipschitz. Thus assume WLOG that
|µ̂1 − µ̂2| ≤ 2δ ≤ γ/50. There are now six cases:

Case 1: µ̂1 ≤ µ∗1 ≤ µ∗2 ≤ µ̂2 This case cannot happen
since we assume |µ̂1 − µ̂2| ≤ 2δ ≤ γ/50.

Case 2: µ∗1 ≤ µ̂1 ≤ µ̂2 ≤ µ∗2 In this case, by Lemma C.6,
we know F is negative at −∞ and at +∞. Since
clearly F ≥ 0 when x ∈ [µ∗1, µ

∗
2], by Theorem A.2

and continuity, the discriminator intervals must be of
the form (−∞, r], [`,∞) for some r ≤ µ̂1 ≤ µ̂2 ≤
`. Thus, the update to µ̂i is (up to a constant factor
of
√

2π) given by e−(`−µ̂i)2/2 − e−(r−µ̂i)2/2. The
functionQ(x) = e−(`−x)2/2−e−(r−x)2/2 is monotone
on x ∈ [r, `], and thus µ̂i must actually move away
from each other in this scenario.

Case 3: µ∗1 ≤ µ̂1 ≤ µ∗2 ≤ µ̂2 In this case we must have
|µ∗2 − µ̂1| ≤ 2δ and similarly |µ∗2 − µ̂2| ≤ 2δ. We
claim that in this case, the discriminator must be an in-
finitely long interval (−∞,m] for some m ≤ µ̂1. This
is equivalent to showing that the function F (µ̂, x) has
only one zero, and this zero occurs at some m ≤ µ̂1.
This implies the lemma in this case since then the up-
date to µ̂1 and µ̂2 are then in the same direction, and
moreover, the magnitude of the update to µ̂1 is larger,
by inspection.

We first claim that there are no zeros in the interval
[µ̂1, µ̂2]. Indeed, in this interval, we have that

√
2πDµ̂(x) ≥ 2e−(γ/50)2/2

= 2e−γ
2/5000

≥ 2

(
1− γ2

5000
+O(γ4)

)
≥ 2

(
1− γ2

10

)
,

but
√

2πDµ∗(x) ≤ 1 + e−(γ−2δ)2/2

= 1 + e−(49γ/50)2/2

≤ 2− γ2

2
.

Hence Gµ̂(x) ≥ Gµ∗(x) for all x ∈ [µ̂1, µ̂2], and so
there are no zeros in this interval. Clearly there are
no zeros of F when x ≥ µ̂2, because in that regime
e−(x−µ̂i)2/2 ≥ e−(x−µ∗i )2/2 for i = 1, 2. Similarly
there are no zeros of F when x ≤ µ∗1. Thus all zeros
of F must occur in the interval [−µ∗1, µ̂1].

We now claim that there are no zeroes of F on the
interval [α+10δ, µ̂1], where α = (µ∗1 +µ̂1)/2. Indeed,



On the Limitations of First-Order Approximation in GAN Dynamics

on this interval, we have
√

2πF (µ̂, x)

= e−(x−µ∗1)2/2 − e−(x−µ̂2)2/2 + e−(x−µ∗1)2/2 − e−(x−µ̂1)2/2

≤ e−(x−µ∗1)2/2 − e−(x−µ̂2)2/2 < 0 ,

where the first line follows since moving µ∗2 to µ̂1 only
increases the value of the function on this interval, and
the final line is negative as long as x > (µ∗1 + µ̂2)/2,
which is clearly satisfied by our choice of parameters.
By a similar logic (moving µ̂2 to µ∗2), we get that on the
interval [µ∗1, α− 10δ], the function is strictly positive.
Thus all zeros of F must occur in the interval [α −
10δ, α+ 10δ].

We now claim that in this interval, the function F is
strictly decreasing, and thus has exactly one zero (it has
at least one zero because the function changes sign).
The derivative of F with respect to x is given by

√
2π
∂F

∂x
(µ̂, x)

= (µ∗1 − x)e−(x−µ∗1)2/2 − (µ̂2 − x)e−(x−µ̂2)2/2

+ (µ∗2 − x)e−(x−µ∗2)2/2 − (µ̂2 − x)e−(x−µ̂1)2/2 .

By Taylor’s theorem, we have

(µ∗1 − x)e−(x−µ∗1)2/2 − (µ̂2 − x)e−(x−µ̂2)2/2

= −2re−α
2/2 +O

(
H2(δ)e−(r−10δ)2/2δ2

)
,

where H2 is the second (probabilist’s) Hermite polyno-
mial, and r = |µ∗1 − α|. On the other hand, by another
application of Taylor’s theorem, we also have

(µ∗2 − x)e−(x−µ∗2)2/2 − (µ̂2 − x)e−(x−µ̂1)2/2

= O
(
δH2(δ)e−(r−10δ)2/2

)
.

Thus, altogether we have

√
2π
∂F

∂x
(µ̂, x)

≤ −2re−α
2/2

+O
(
δH2(δ)e−(r−10δ)2/2

)
< 0

by our choice of δ, and since r = γ/2 > δ/25.

Case 4: µ̂1 ≤ µ∗1 ≤ µ̂2 ≤ µ∗2 This case is symmetric to
Case 3, and so we omit it.

Case 5: µ∗1 ≤ µ∗2 ≤ µ̂1 ≤ µ̂2 In this case, we proceed as in
the proof of Theorem A.2. If the Gaussians were suffi-
ciently skinny, then by the same logic as in the proof of
Theorem A.2, there is exactly one zero crossing. The
lemma then follows in this case by Theorem A.1.

Case 6: µ̂1 ≤ µ̂2 ≤ µ∗1 ≤ µ∗2 This case is symmetric to
Case 5.

This completes the proof.

C.7. Proof of Lemma 4.6

We also show that no terribly divergent behavior can occur.
Formally, we show that if the true means are within some
bounded box, then the generators will never leave a slightly
larger box.

Proof of Lemma 4.6. If µ̂ ∈ B(C), then since f is Lips-
chitz and η is sufficiently small, clearly µ̂′ ∈ B(C). Thus,
assume that there is an i = 1, 2 so that |µ̂i| > C, and let µ̂1

be the largest such i in magnitude. WLOG take µ̂2 > 0. In
particular, this implies that µ̂2 > µ∗i for all i = 1, 2. There
are now 3 cases, depending on the position of µ̂1.

Case 1: µ̂1 ≥ µ∗2: Here, as in Case 2 in Lemma 4.5, the
optimal discriminator is of the form (−∞, r] for some
r ≤ µ̂1, µ̂2. In particular, the update step will be

µ̂′i = µ̂i − ηe−(r−µ̂i)2/2 < µ̂i .

Thus, in this case our update moves us in the negative
direction. By our choice of η, this implies that 0 ≤
µ̂′2 < µ̂′2. Moreover, since µ̂1 ≥ µ∗2, this implies that
|µ̂1| ≤ C, and thus |µ̂′1| ≤ 2C. Therefore in this case
we stay within the box.

Case 2: µ∗1 ≤ µ̂1 ≤ µ∗2: As in Case 1, we know that µ̂1

cannot leave the box after a single update, as |µ̂1| ≤ C.
Thus it suffices to show that µ̂2 moves in the negative
direction. By Lemma C.6, we know there is a discrim-
inator interval at −∞, and there is no discriminator
interval at ∞. Moreover, in this case, we know that
F (µ̂, x) ≥ 0 for all x ≥ µ̂2. Thus, all discriminators
must be to the left of µ̂2. Therefore, the update to µ̂2

is given by

µ̂′2 = µ̂2

− η
(
e−(r2−µ̂2)2/2 − e−(`2−µ̂2)2/2 + e−(r1−µ̂2)2/2

)
,

for some r1 ≤ `2 ≤ r2 ≤ µ̂′2. Clearly this update has
the property that 0 ≤ µ̂′2 < µ̂2, and so the new iterate
stays within the box.

Case 3: µ̂1 ≤ µ∗2 In this case we must prove that neither
µ̂1 nor µ̂2 leave the box. The two arguments are sym-
metric, so we will focus on µ̂2. Since η is small, we
may assume that µ̂2 > 3C/2, as otherwise µ̂′2 can-
not leave the box. As in Case 1, it suffices to show
that the endpoints of the discriminator intervals are
all less than µ̂2. But in this case, we have that for all
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x ≥ µ̂′2, the value of the true distribution at x is at
most 2e−(x−C)2/2, and the value of the discriminator
is at e−(x−µ̂′2)2/2 ≥ e−(x−1.5C)2/2. By direct calcu-
lation, this is satisfied for any choice of C satisfying
2e5C2/8 < e3C2/4, which is satisfied for C ≥ 3.

D. Single Gaussian
Although our proof of the two Gaussian case implies the sin-
gle Gaussian case, it is possible to prove the single Gaussian
case in a somewhat simpler fashion, while still illustrating
several of the high-level components of the overall proof
structure. Therefore, we sketch how to do so, in hopes that
it provides additional intuition for the proof for a mixture of
two Gaussians.

In order to prove convergence, we can use the following.

1. The fact that the gradient is only discontinuous on a
measure 0 set of points.

2. An absolute lower bound on the magnitude of the gra-
dient from below over all points that are not close to
the optimal solution that we might encounter over the
course of the algorithm

3. An upper bound on how much the gradient can change
if we move a certain distance.

Then, as long as we take steps that are small enough to
guarantee that the gradient never changes by more than half
the absolute lower bound, we will get by Lemma 4.2 that
we always make progress towards the optimum solution in
function value unless we are already close to the optimal
solution.

The proof of these facts is substantially simplified in the
single Gaussian case. Suppose we have a true univariate
Gaussian distribution with unit variance and mean µ∗, along
with a generator distribution with unit variance and mean µ̂.
Then the optimal discriminator for this pair of distributions
starts at the midpoint between their means and goes in the
direction of the true distribution off to∞ or−∞. Therefore,
unless the generator mean is within one step length of the
true mean, it cannot move away from the true mean. One can
also argue that the gradient of µ̂ with respect to the optimal
discriminator (ie., the gradient of total variation distance)
is only discontinuous when µ̂ = µ∗, and has magnitude
roughly e(µ̂−(µ̂+µ∗)/2)2/2 for µ̂ 6= µ∗. This implies the first
two items. For the last item, note that the midpoint ez

2/2,
which implies the gradient is Lipschitz as long as we are not
at the optimal solution, which gives bounds on how much
the gradient can change if we move a certain distance.

The preceding discussion implies convergence for an ap-
propriately chosen step size, and all this can be made fully
quantitative if one works out the quantitative versions of the
statements in the preceding argument.

This analysis is simpler the the two Gaussians analysis in
several respects. In particular, the proofs of the second
two items are substantially more involved and require many
separate steps. For example, in the two Gaussian case, the
gradient can be 0 if mode collapse happens, so we have to
directly prove both that mode collapse does not happen and
that the gradient is large if mode collapse doesn’t happen
and we aren’t too close to the optimal solution, which is a
substantially more involved condition to prove. Addition-
ally, the gradient in the two Guassian case does not seem to
be Lipschitz away from the optimum like it is in the single
Gaussian case. Instead, we will have to use a weaker con-
dition which is considerably more difficult to reason about.
This is further complicated by the fact that the optimal dis-
criminators can move in a discontinuous fashion when we
vary the generator means.


