
Supplementary Materials

for “Estimation of Markov Chain via Rank-Constrained Likelihood”

Xudong Li 1 Mengdi Wang 1 Anru Zhang 2

1. Proof of Proposition 1
Proof. Given xk = i, xk+1 is with discrete distribution Pi·. Thus, the log-likelihood of xk+1|xk = log(Pxk,xk+1

) =
〈log(P), exk

e>xk+1
〉. Then the negative log-likelihood given {x0, . . . , xn} is

−
n∑
k=1

log(Pxk,xk+1
) = −

n∑
k=1

〈log(P), exk
e>xk+1

〉 = −
p∑
i=1

p∑
j=1

nij log(Pij).

2. Proof of Theorem 1
Proof. Recall DKL(P,Q) =

∑p
i=1 µiDKL(Pi·, Qi·) =

∑p
j=1 µiPij log(Pij/Qij). For convenience, we also denote,

D̃(P,Q) =
1

n

n∑
k=1

〈log(P)− log(Q),Ek〉,

where Ek = eie
>
j if the k-th jump is from States i to j. Then (Ek)nk=1 be independent copies such that P (Ek = eie

>
j ) =

µiPij , and

L(P) = − 1

n

p∑
i,j=1

nij log(Pij) = − 1

n

n∑
k=1

log〈X,Ek〉

By the property of the programming,

D̃(P, P̂) =
1

n

n∑
k=1

〈log(P)− log(P̂),Ek〉 = L(P̂)− L(P) ≤ 0. (1)

Based on the assumption, rank(P) ∧ rank(P̂) ≤ r. For any Q with rank(Q) ≤ r, we must have rank(Q−P) ≤ 2r. Due
to the duality between operator and spectral norm,

‖Q−P‖∗ ≤
√

2r‖Q−P‖F . (2)

Next, we denote η = Cη
√

log p/n for some large constant Cη > 0, and introduce the following deterministic set in Rp×p,

C = {Q : α/p ≤ Qij ≤ β/p, rank(Q) ≤ r,DKL(P,Q) ≥ η} .
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We particularly aim to show next that

P

{
∀Q ∈ C,

∣∣∣D̃(P,Q)−DKL(P,Q)
∣∣∣ ≤ 1

2
DKL(P,Q) +

Cpr log(p)

n

}
≥ 1− Cp−c. (3)

In order to prove (3), we first split C as the union of the sets,

Cl =
{
Q ∈ C : 2l−1η ≤ DKL(P,Q) ≤ 2lη, rank(Q) ≤ r

}
, l = 1, 2, 3, . . . .

where η is to be determined later. Define

γl = sup
Q∈Cl

∣∣∣DKL(P,Q)− D̃(P,Q)
∣∣∣

= sup
Q∈Cl

∣∣∣∣∣ 1n
n∑
k=1

〈log(P)− log(Q),Ek〉 − E〈log(P)− log(Q),Ek〉

∣∣∣∣∣ .
Since | log(Pij)− log(Qij)| ≤ log(β/α), we apply a empirical process version of Hoeffding’s inequality (Theorem 14.2 in
(Bühlmann & Van De Geer, 2011)),

P
(
γl − E(γl) ≥ 2l−3 · η

)
≤ exp

(
− cn · 4l−3η2

(log(β/α))2

)
. (4)

for constant c > 0. We generate {εk}nk=1 as i.i.d. Rademacher random variables. By a symmetrization argument in empirical
process,

Eγl =E

(
sup
Q∈Cl

∣∣∣∣∣ 1n
n∑
k=1

〈log P− log Q,Ek〉 − E
1

n

n∑
k=1

〈log P− log Q,Ek〉

∣∣∣∣∣
)

≤2E

(
sup
Q∈Cl

∣∣∣∣∣ 1n
n∑
k=1

εk〈log P− log Q,Ek〉

∣∣∣∣∣
)
.

Let φk(t) = α/p · 〈log(P)− log(Q + t),Ek〉, then φk(0) = 0 and |φ′k(t)| ≤ 1 for all t if t+ Pij ≥ α/p. In other words,
φk,i,j is a contraction map for t ≥ mini,j(Pij − α/p). By concentration principle (Theorem 4.12 in (Ledoux & Talagrand,
2013)),

E(γl) ≤
2p

α
E

(
sup
Q∈Cl

∣∣∣∣∣ 1n
n∑
k=1

εkφk (〈Q−P,Ek〉)

∣∣∣∣∣
)

≤4p

α
E

(
sup
Q∈Cl

∣∣∣∣∣ 1n
n∑
k=1

εk〈Q−P,Ek〉

∣∣∣∣∣
)

≤4p

α
E

(
sup
Q∈Cl

∥∥∥∥∥ 1

n

n∑
k=1

εkEk

∥∥∥∥∥ · ‖Q−P‖∗

)

≤4p

α
E

∥∥∥∥∥ 1

n

n∑
k=1

εkEk

∥∥∥∥∥ · sup
Q∈Cl

‖Q−P‖∗

(5)

By rank(P) ∧ rank(Q) ≤ r and Lemma 5 in (Zhang & Wang, 2017),

sup
Q∈Cl

‖Q−P‖∗
(2)
≤ sup

Q∈Cl

√
2r‖Q−P‖F

≤

√√√√r(β/p)2

(α/p)

p∑
i=1

D(Pi·, Qi·) ≤
√
rβ2

α2
· 2lη.

(6)
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Then we evaluate E‖ 1
n

∑n
k=1 εkEk‖. Note that ‖Ek‖ ≤ 1,

‖
n∑
k=1

EE>k Ek‖ =n

∥∥∥∥∥∥
p∑
i=1

p∑
j=1

µiPij(eie
>
j )>(eie

>
j )

∥∥∥∥∥∥ = n

∥∥∥∥∥∥
p∑
j=1

(µ>P )jeje
>
j

∥∥∥∥∥∥
=n

∥∥∥∥∥∥
p∑
j=1

µjeje
>
j

∥∥∥∥∥∥ ≤ nµmax;

‖
n∑
k=1

EEkE
>
k ‖ =n

∥∥∥∥∥∥
p∑
i=1

p∑
j=1

µiPij(eie
>
j )(eie

>
j )>

∥∥∥∥∥∥ =

∥∥∥∥∥∥
p∑
i=1

p∑
j=1

µiPijeie
>
i

∥∥∥∥∥∥
=

∥∥∥∥∥∥
p∑
j=1

µjeje
>
j

∥∥∥∥∥∥ ≤ nµmax.

By Theorem 1 in (Tropp, 2016),

E

∥∥∥∥∥ 1

n

n∑
k=1

εkEk

∥∥∥∥∥ ≤ C
√
nµmax log p

n
+
C log p

n
≤ C

√
µmax log p

n
≤

√
β log p

np
. (7)

provided that n ≥ Cp log(p). Combining (4), (5), (6), and (7), we have

Eγl ≤ C
√
pr log p

n
· 2lη ≤ C2 pr log p

2n
+ 2l−3η,

P

(
γl ≥ 2l−2η +

Cpr log p

n

)
≤ exp

(
−cn · 4lη2

)
.

Now,

P

(
∃Q ∈ C,

∣∣∣D̃(P,Q)−DKL(P,Q)
∣∣∣ > 1

2
DKL(P,Q) +

Cpr log(p)

n

)
≤
∞∑
l=0

P

(
∃Q ∈ Cl,

∣∣∣D̃(P,Q)−DKL(P,Q)
∣∣∣ > 1

2
DKL(P,Q) +

Cpr log(p)

n

)

≤
∞∑
l=0

P

(
∃Q ∈ Cl, γl > 2l−2η +

Cpr log(p)

n

)

≤
∞∑
l=0

exp(−c · Cη · 4l log p) ≤ exp(−c · Cηl log(p)) ≤ Cp−c

provided reasonably large Cη > 0. Thus, we have obtained (3).

Finally, it remains to bound the errors for ‖P̂−P‖F and DKL(P, P̂) given (3). In fact, provided that (3) holds,

• if P̂ /∈ C, we have DKL(P, P̂) ≤ C
√

log p
n ;

• if P̂ ∈ C, by (3),

DKL(P, P̂) ≤ D̃(P, P̂) +
Cpr log p

n

(1)
≤ Cpr log p

n
.

To sum up, we must have

DKL(P, P̂) ≤ C
√

log p

n
+
Cpr log p

n
.
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with probability at least 1− Cp−c. For Frobenius norm error, we shall note that

‖P̂−P‖2F ≤
p∑
i=1

‖Pi· − P̂i·‖22 ≤
p∑
i=1

2β2

αp
DKL(Pi·, P̂i·)

≤
p∑
i=1

2β2

α2
µiDKL(Pi·, P̂i·) =

β2

α2
DKL(P, P̂).

Therefore, we have finished the proof for Theorem 1.

3. Proof of Theorem 2
Proof. Based on the proof of Theorem 1 in (Zhang & Wang, 2017), one has

inf
P̂

sup
P∈P̄

1

p

p∑
i=1

E‖P̂i· − Pi·‖1 ≥ c
(√

rp

n
∧ 1

)
,

where P̄ = {P ∈ P : 1/(2p) ≤ Pij ≤ 3/(2p)} ⊆ P . By Cauchy Schwarz inequality,

p∑
i=1

‖P̂i· − Pi·‖1 =

p∑
i,j=1

|P̂ij − Pij | ≤ p

√√√√ p∑
i,j=1

(P̂ij − Pij)2,

Thus,

inf
P̂

sup
P∈P

E
p∑
i=1

‖P̂i· − Pi·‖22 ≥

(
inf
P̂

sup
P∈P̄

E
p∑
i=1

1

p
‖P̂i· − Pi·‖1

)2

≥ c
(rp
n
∧ 1
)
≥ cpr

n
.

The lower bound for KL divergence essentially follows due to the inequalities between `2 and KL-divergence for bounded
vectors in Lemma 5 of (Zhang & Wang, 2017).

4. Proof of Theorem 3
Proof. Let Û⊥, V̂⊥ ∈ <p×(p−r) be the orthogonal complement of Û and V̂. Since U,V, Û, and V̂ are the leading left
and right singular vectors of P and P̂, we have

‖P̂−P‖F ≥‖Û>⊥(P̂−UU>P)‖F = ‖Û>⊥UU>P‖F ≥ ‖Û>⊥U‖F · σr(U>P) = ‖ sin Θ(Û,U)‖F · σr(P).

Similar argument also applies to ‖ sin Θ(V̂,V)‖. Thus,

max{‖ sin Θ(Û,U)‖F , ‖ sin Θ(V̂,V)‖F } ≤ min
{‖P̂−P‖F

σr(P)
,
√
r
}
.

The rest of the proof immediately follows from Theorem 1.

5. Proof of Proposition 2
Proof. Since rank(X∗c) ≤ r, we know that X∗c is in fact a feasible solution to the original problem (5) and ‖X∗c‖∗ −
‖X∗c‖(r) = 0. Therefore, for any feasible solution X to (5), it holds that

f(X∗c) = f(X∗c) + c(‖X∗c‖∗ − ‖X∗c‖(r))

≤ f(X) + c(‖X‖∗ − ‖X‖(r)) = f(X).

This completes the proof of the proposition.
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6. Proof of Theorem 5 (Convergence of sGS-ADMM)
Proof. In order to use (Li et al., 2016b, Theorem 3), we need to write problem (D) as following

min f∗(−Ξ)− 〈b, y〉+ δ(S | ‖S‖2 ≤ c) + α
2 ‖Z‖

2
F

s.t. F(Ξ) +A∗1(y) + G(S) + B∗1(Z) = W,

where F ,A1,G and B1 are linear operators such that for all (Ξ, y,S,Z) ∈ <p×p × <n × <p×p × <p×p, F(Ξ) = Ξ,
A∗1(y) = A∗(y), G(S) = S and B∗1(Z) = αZ. Clearly, F = G = I and B1 = αI where I : <p×p → <p×p is the identity
map. Therefore, we have A1A∗1 � 0 and FF∗ = GG∗ = I � 0. Note that if α > 0, B1B∗1 = α2I � 0. Hence, the
assumptions and conditions in (Li et al., 2016b, Theorem 3) are satisfied whenever α ≥ 0. The convergence results thus
follow directly.

7. Proof of Theorems 4 and 6
We only need to prove Theorem 6 as Theorem 4 is a special incidence. To prove Theorem 6,we first introduce the following
lemma.

Lemma 1. Suppose that {xk} is the sequence generated by Algorithm 3. Then θ(xk+1) ≤ θ(xk)− 1
2‖x

k+1 − xk‖2G+2T .

Proof. For any k ≥ 0, by the optimality condition of problem (10) at xk+1, we know that there exist ηk+1 ∈ ∂p(xk+1)
such that

0 = ∇g(xk) + (G + T )(xk+1 − xk) + ηk+1 − ξk = 0.

Then for any k ≥ 0, we deduce

θ(xk+1)− θ(xk) ≤ θ̂(xk+1;xk)− θ(xk)

= p(xk+1)− p(xk) + 〈xk+1 − xk,∇g(xk)− ξk〉
+ 1

2‖x
k+1 − xk‖2G

≤ 〈∇g(xk) + ηk+1 − ξk, xk+1 − xk〉+ 1
2‖x

k+1 − xk‖2G
= − 1

2‖x
k+1 − xk‖2G+2T .

This completes the proof of this lemma.

Now we are ready to prove Theorem 6.

Proof. From the optimality condition at xk+1, we have that

0 ∈ ∇g(xk) + (G + T )(xk+1 − xk) + ∂p(xk+1)− ξk.

Since xk+1 = xk, this implies that
0 ∈ ∇g(xk) + ∂p(xk)− ∂q(xk),

i.e., xk is a critical point. Observe that the sequence {θ(xk)} is non-increasing since

θ(xk+1) ≤ θ̂(xk+1;xk) ≤ θ̂(xk;xk) = θ(xk), k ≥ 0.

Suppose that there exists a subsequence {xkj} that converging to x̄, i.e., one of the accumulation points of {xk}. By Lemma
1 and the assumption that G + 2T � 0, we know that for all x ∈ X

θ̂(xkj+1 ;xkj+1) = θ(xkj+1)

≤θ(xkj+1) ≤ θ̂(xkj+1;xkj ) ≤ θ̂(x;xkj ).

By letting j →∞ in the above inequality, we obtain that

θ̂(x̄; x̄) ≤ θ̂(x; x̄).
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By the optimality condition of θ̂(x; x̄), we have that there exists ū ∈ ∂p(x̄) and v̄ ∈ ∂q(x̄) such that

0 ∈ ∇g(x̄) + ū− v̄

This implies that (∇g(x̄) + ∂p(x̄)) ∩ ∂q(x̄) 6= ∅. To establish the rest of this proposition, we obtain from Lemma 1 that

lim
t→+∞

1

2

t∑
i=0

‖xk+1 − xk‖2G+2T

≤ lim inf
t→+∞

(
θ(x0)− θ(xk+1)

)
≤ θ(x0) < +∞ ,

which implies limi→+∞ ‖xk+1 − xi‖G+2T = 0. The proof of this theorem is thus complete by the positive definiteness of
the operator G + 2T .

8. Discussions on G and T
Here, we discuss the roles of G and T . The majorization technique used to handle the smooth function g and the presence of
G are used to make the subproblems (10) in Algorithm (3) more amenable to efficient computations. As can be observed in
Theorem 6, the algorithm is convergent if G + 2T � 0. This indicates that instead of adding the commonly used positive
semidefinte or positive definite proximal terms, we allow T to be indefinite for better practical performance. Indeed, the
computational benefit of using indefinite proximal terms has been observed in (Gao & Sun, 2010; Li et al., 2016a). In fact,
the introduction of indefinite proximal terms in the DC algorithm is motivated by these numerical evidence. As far as we
know, Theorem 6 provides the first rigorous convergence proof of the introduction of the indefinite proximal terms in the
DC algorithms. The presence of G and T also helps to guarantee the existence of solutions for the subproblems (10). Since
G + 2T � 0 and G � 0, we have that 2G + 2T � 0, i.e., G + T � 0 (the reverse direction holds when T � 0). Hence,
G + 2T � 0 (G + 2T � 0) implies that subproblems (10) are (strongly) convex problems. Meanwhile, the choices of G and
T are very much problem dependent. The general principle is that G + T should be as small as possible while xk+1 is still
relatively easy to compute.
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