Supplementary Materials

for "Estimation of Markov Chain via Rank-Constrained Likelihood"

Xudong Li ${ }^{1}$ Mengdi Wang ${ }^{1}$ Anru Zhang ${ }^{2}$

1. Proof of Proposition 1

Proof. Given $x_{k}=i, x_{k+1}$ is with discrete distribution \mathbf{P}_{i}. Thus, the log-likelihood of $x_{k+1} \mid x_{k}=\log \left(P_{x_{k}, x_{k+1}}\right)=$ $\left\langle\log (\mathbf{P}), e_{x_{k}} e_{x_{k+1}}^{\top}\right\rangle$. Then the negative log-likelihood given $\left\{x_{0}, \ldots, x_{n}\right\}$ is

$$
-\sum_{k=1}^{n} \log \left(P_{x_{k}, x_{k+1}}\right)=-\sum_{k=1}^{n}\left\langle\log (\mathbf{P}), e_{x_{k}} e_{x_{k+1}}^{\top}\right\rangle=-\sum_{i=1}^{p} \sum_{j=1}^{p} n_{i j} \log \left(P_{i j}\right)
$$

2. Proof of Theorem 1

Proof. Recall $D_{K L}(\mathbf{P}, \mathbf{Q})=\sum_{i=1}^{p} \mu_{i} D_{K L}\left(P_{i}, Q_{i .}\right)=\sum_{j=1}^{p} \mu_{i} P_{i j} \log \left(P_{i j} / Q_{i j}\right)$. For convenience, we also denote,

$$
\tilde{D}(\mathbf{P}, \mathbf{Q})=\frac{1}{n} \sum_{k=1}^{n}\left\langle\log (\mathbf{P})-\log (\mathbf{Q}), \mathbf{E}_{k}\right\rangle
$$

where $\mathbf{E}_{k}=e_{i} e_{j}^{\top}$ if the k-th jump is from States i to j. Then $\left(\mathbf{E}_{k}\right)_{k=1}^{n}$ be independent copies such that $P\left(\mathbf{E}_{k}=e_{i} e_{j}^{\top}\right)=$ $\mu_{i} P_{i j}$, and

$$
L(\mathbf{P})=-\frac{1}{n} \sum_{i, j=1}^{p} n_{i j} \log \left(P_{i j}\right)=-\frac{1}{n} \sum_{k=1}^{n} \log \left\langle\mathbf{X}, \mathbf{E}_{k}\right\rangle
$$

By the property of the programming,

$$
\begin{equation*}
\tilde{D}(\mathbf{P}, \hat{\mathbf{P}})=\frac{1}{n} \sum_{k=1}^{n}\left\langle\log (\mathbf{P})-\log (\hat{\mathbf{P}}), \mathbf{E}_{k}\right\rangle=L(\hat{\mathbf{P}})-L(\mathbf{P}) \leq 0 \tag{1}
\end{equation*}
$$

Based on the assumption, $\operatorname{rank}(\mathbf{P}) \wedge \operatorname{rank}(\hat{\mathbf{P}}) \leq r$. For any \mathbf{Q} with $\operatorname{rank}(\mathbf{Q}) \leq r$, we must have $\operatorname{rank}(\mathbf{Q}-\mathbf{P}) \leq 2 r$. Due to the duality between operator and spectral norm,

$$
\begin{equation*}
\|\mathbf{Q}-\mathbf{P}\|_{*} \leq \sqrt{2 r}\|\mathbf{Q}-\mathbf{P}\|_{F} \tag{2}
\end{equation*}
$$

Next, we denote $\eta=C_{\eta} \sqrt{\log p / n}$ for some large constant $C_{\eta}>0$, and introduce the following deterministic set in $\mathbb{R}^{p \times p}$,

$$
\mathcal{C}=\left\{\mathbf{Q}: \alpha / p \leq Q_{i j} \leq \beta / p, \operatorname{rank}(Q) \leq r, D_{K L}(\mathbf{P}, \mathbf{Q}) \geq \eta\right\}
$$

[^0]We particularly aim to show next that

$$
\begin{equation*}
P\left\{\forall \mathbf{Q} \in \mathcal{C}, \quad\left|\tilde{D}(\mathbf{P}, \mathbf{Q})-D_{K L}(\mathbf{P}, \mathbf{Q})\right| \leq \frac{1}{2} D_{K L}(\mathbf{P}, \mathbf{Q})+\frac{C p r \log (p)}{n}\right\} \geq 1-C p^{-c} \tag{3}
\end{equation*}
$$

In order to prove (3), we first split \mathcal{C} as the union of the sets,

$$
\mathcal{C}_{l}=\left\{\mathbf{Q} \in \mathcal{C}: 2^{l-1} \eta \leq D_{K L}(\mathbf{P}, \mathbf{Q}) \leq 2^{l} \eta, \operatorname{rank}(Q) \leq r\right\}, \quad l=1,2,3, \ldots
$$

where η is to be determined later. Define

$$
\begin{aligned}
\gamma_{l} & =\sup _{\mathbf{Q} \in \mathcal{C}_{l}}\left|D_{K L}(\mathbf{P}, \mathbf{Q})-\tilde{D}(\mathbf{P}, \mathbf{Q})\right| \\
& =\sup _{\mathbf{Q} \in \mathcal{C}_{l}}\left|\frac{1}{n} \sum_{k=1}^{n}\left\langle\log (\mathbf{P})-\log (\mathbf{Q}), \mathbf{E}_{k}\right\rangle-\mathbb{E}\left\langle\log (\mathbf{P})-\log (\mathbf{Q}), \mathbf{E}_{k}\right\rangle\right| .
\end{aligned}
$$

Since $\left|\log \left(P_{i j}\right)-\log \left(Q_{i j}\right)\right| \leq \log (\beta / \alpha)$, we apply a empirical process version of Hoeffding's inequality (Theorem 14.2 in (Bühlmann \& Van De Geer, 2011)),

$$
\begin{equation*}
P\left(\gamma_{l}-\mathbb{E}\left(\gamma_{l}\right) \geq 2^{l-3} \cdot \eta\right) \leq \exp \left(-\frac{c n \cdot 4^{l-3} \eta^{2}}{(\log (\beta / \alpha))^{2}}\right) \tag{4}
\end{equation*}
$$

for constant $c>0$. We generate $\left\{\varepsilon_{k}\right\}_{k=1}^{n}$ as i.i.d. Rademacher random variables. By a symmetrization argument in empirical process,

$$
\begin{aligned}
\mathbb{E} \gamma_{l} & =\mathbb{E}\left(\sup _{\mathbf{Q} \in \mathcal{C}_{l}}\left|\frac{1}{n} \sum_{k=1}^{n}\left\langle\log \mathbf{P}-\log \mathbf{Q}, \mathbf{E}_{k}\right\rangle-\mathbb{E} \frac{1}{n} \sum_{k=1}^{n}\left\langle\log \mathbf{P}-\log \mathbf{Q}, \mathbf{E}_{k}\right\rangle\right|\right) \\
& \leq 2 \mathbb{E}\left(\sup _{\mathbf{Q} \in \mathcal{C}_{l}}\left|\frac{1}{n} \sum_{k=1}^{n} \varepsilon_{k}\left\langle\log \mathbf{P}-\log \mathbf{Q}, \mathbf{E}_{k}\right\rangle\right|\right)
\end{aligned}
$$

Let $\phi_{k}(t)=\alpha / p \cdot\left\langle\log (\mathbf{P})-\log (\mathbf{Q}+t), \mathbf{E}_{k}\right\rangle$, then $\phi_{k}(0)=0$ and $\left|\phi_{k}^{\prime}(t)\right| \leq 1$ for all t if $t+P_{i j} \geq \alpha / p$. In other words, $\phi_{k, i, j}$ is a contraction map for $t \geq \min _{i, j}\left(P_{i j}-\alpha / p\right)$. By concentration principle (Theorem 4.12 in (Ledoux \& Talagrand, 2013)),

$$
\begin{align*}
\mathbb{E}\left(\gamma_{l}\right) & \leq \frac{2 p}{\alpha} \mathbb{E}\left(\sup _{\mathbf{Q} \in \mathcal{C}_{l}}\left|\frac{1}{n} \sum_{k=1}^{n} \varepsilon_{k} \phi_{k}\left(\left\langle\mathbf{Q}-\mathbf{P}, \mathbf{E}_{k}\right\rangle\right)\right|\right) \\
& \leq \frac{4 p}{\alpha} \mathbb{E}\left(\sup _{\mathbf{Q} \in \mathcal{C}_{l}}\left|\frac{1}{n} \sum_{k=1}^{n} \varepsilon_{k}\left\langle\mathbf{Q}-\mathbf{P}, \mathbf{E}_{k}\right\rangle\right|\right) \tag{5}\\
& \leq \frac{4 p}{\alpha} \mathbb{E}\left(\sup _{\mathbf{Q} \in \mathcal{C}_{l}}\left\|\frac{1}{n} \sum_{k=1}^{n} \varepsilon_{k} \mathbf{E}_{k}\right\| \cdot\|\mathbf{Q}-\mathbf{P}\|_{*}\right) \\
& \leq \frac{4 p}{\alpha} \mathbb{E}\left\|\frac{1}{n} \sum_{k=1}^{n} \varepsilon_{k} \mathbf{E}_{k}\right\| \cdot \sup _{\mathbf{Q} \in \mathcal{C}_{l}}\|\mathbf{Q}-\mathbf{P}\|_{*}
\end{align*}
$$

By $\operatorname{rank}(\mathbf{P}) \wedge \operatorname{rank}(\mathbf{Q}) \leq r$ and Lemma 5 in (Zhang \& Wang, 2017),

$$
\begin{align*}
& \sup _{\mathbf{Q} \in \mathcal{C}_{l}}\|\mathbf{Q}-\mathbf{P}\|_{*} \stackrel{(2)}{\leq} \sup _{\mathbf{Q} \in \mathcal{C}_{l}} \sqrt{2 r}\|\mathbf{Q}-\mathbf{P}\|_{F} \\
\leq & \sqrt{\frac{r(\beta / p)^{2}}{(\alpha / p)} \sum_{i=1}^{p} D\left(P_{i .}, Q_{i} .\right)} \leq \sqrt{\frac{r \beta^{2}}{\alpha^{2}} \cdot 2^{l} \eta} . \tag{6}
\end{align*}
$$

Then we evaluate $\mathbb{E}\left\|\frac{1}{n} \sum_{k=1}^{n} \varepsilon_{k} \mathbf{E}_{k}\right\|$. Note that $\left\|\mathbf{E}_{k}\right\| \leq 1$,

$$
\begin{aligned}
\left\|\sum_{k=1}^{n} \mathbb{E} \mathbf{E}_{k}^{\top} \mathbf{E}_{k}\right\| & =n\left\|\sum_{i=1}^{p} \sum_{j=1}^{p} \mu_{i} P_{i j}\left(e_{i} e_{j}^{\top}\right)^{\top}\left(e_{i} e_{j}^{\top}\right)\right\|=n\left\|\sum_{j=1}^{p}\left(\mu^{\top} P\right)_{j} e_{j} e_{j}^{\top}\right\| \\
& =n\left\|\sum_{j=1}^{p} \mu_{j} e_{j} e_{j}^{\top}\right\| \leq n \mu_{\max } ; \\
\left\|\sum_{k=1}^{n} \mathbb{E} \mathbf{E}_{k} \mathbf{E}_{k}^{\top}\right\| & =n\left\|\sum_{i=1}^{p} \sum_{j=1}^{p} \mu_{i} P_{i j}\left(e_{i} e_{j}^{\top}\right)\left(e_{i} e_{j}^{\top}\right)^{\top}\right\|=\left\|\sum_{i=1}^{p} \sum_{j=1}^{p} \mu_{i} P_{i j} e_{i} e_{i}^{\top}\right\| \\
& =\left\|\sum_{j=1}^{p} \mu_{j} e_{j} e_{j}^{\top}\right\| \leq n \mu_{\max } .
\end{aligned}
$$

By Theorem 1 in (Tropp, 2016),

$$
\begin{equation*}
\mathbb{E}\left\|\frac{1}{n} \sum_{k=1}^{n} \varepsilon_{k} \mathbf{E}_{k}\right\| \leq \frac{C \sqrt{n \mu_{\max } \log p}}{n}+\frac{C \log p}{n} \leq C \sqrt{\frac{\mu_{\max } \log p}{n}} \leq \sqrt{\frac{\beta \log p}{n p}} . \tag{7}
\end{equation*}
$$

provided that $n \geq C p \log (p)$. Combining (4), (5), (6), and (7), we have

$$
\begin{gathered}
\mathbb{E} \gamma_{l} \leq C \sqrt{\frac{p r \log p}{n} \cdot 2^{l} \eta} \leq C^{2} \frac{p r \log p}{2 n}+2^{l-3} \eta \\
P\left(\gamma_{l} \geq 2^{l-2} \eta+\frac{C p r \log p}{n}\right) \leq \exp \left(-c n \cdot 4^{l} \eta^{2}\right)
\end{gathered}
$$

Now,

$$
\begin{aligned}
& P\left(\exists \mathbf{Q} \in \mathcal{C}, \quad\left|\tilde{D}(\mathbf{P}, \mathbf{Q})-D_{K L}(\mathbf{P}, \mathbf{Q})\right|>\frac{1}{2} D_{K L}(\mathbf{P}, \mathbf{Q})+\frac{C p r \log (p)}{n}\right) \\
\leq & \sum_{l=0}^{\infty} P\left(\exists \mathbf{Q} \in \mathcal{C}_{l}, \quad\left|\tilde{D}(\mathbf{P}, \mathbf{Q})-D_{K L}(\mathbf{P}, \mathbf{Q})\right|>\frac{1}{2} D_{K L}(\mathbf{P}, \mathbf{Q})+\frac{C p r \log (p)}{n}\right) \\
\leq & \sum_{l=0}^{\infty} P\left(\exists \mathbf{Q} \in \mathcal{C}_{l}, \quad \gamma_{l}>2^{l-2} \eta+\frac{C p r \log (p)}{n}\right) \\
\leq & \sum_{l=0}^{\infty} \exp \left(-c \cdot C_{\eta} \cdot 4^{l} \log p\right) \leq \exp \left(-c \cdot C_{\eta} l \log (p)\right) \leq C p^{-c}
\end{aligned}
$$

provided reasonably large $C_{\eta}>0$. Thus, we have obtained (3).
Finally, it remains to bound the errors for $\|\hat{\mathbf{P}}-\mathbf{P}\|_{F}$ and $D_{K L}(\mathbf{P}, \hat{\mathbf{P}})$ given (3). In fact, provided that (3) holds,

- if $\hat{\mathbf{P}} \notin \mathcal{C}$, we have $D_{K L}(\mathbf{P}, \hat{\mathbf{P}}) \leq C \sqrt{\frac{\log p}{n}}$;
- if $\hat{\mathbf{P}} \in \mathcal{C}$, by (3),

$$
D_{K L}(\mathbf{P}, \hat{\mathbf{P}}) \leq \tilde{D}(\mathbf{P}, \hat{\mathbf{P}})+\frac{C p r \log p}{n} \stackrel{(1)}{\leq} \frac{C p r \log p}{n}
$$

To sum up, we must have

$$
D_{K L}(\mathbf{P}, \hat{\mathbf{P}}) \leq C \sqrt{\frac{\log p}{n}}+\frac{C p r \log p}{n}
$$

with probability at least $1-C p^{-c}$. For Frobenius norm error, we shall note that

$$
\begin{aligned}
\|\hat{\mathbf{P}}-\mathbf{P}\|_{F}^{2} & \leq \sum_{i=1}^{p}\left\|P_{i} .-\hat{P}_{i} \cdot\right\|_{2}^{2} \leq \sum_{i=1}^{p} \frac{2 \beta^{2}}{\alpha p} D_{K L}\left(P_{i}, \hat{P}_{i .}\right) \\
& \leq \sum_{i=1}^{p} \frac{2 \beta^{2}}{\alpha^{2}} \mu_{i} D_{K L}\left(P_{i} ., \hat{P}_{i} .\right)=\frac{\beta^{2}}{\alpha^{2}} D_{K L}(\mathbf{P}, \hat{\mathbf{P}})
\end{aligned}
$$

Therefore, we have finished the proof for Theorem 1.

3. Proof of Theorem 2

Proof. Based on the proof of Theorem 1 in (Zhang \& Wang, 2017), one has

$$
\inf _{\widehat{\mathbf{P}}} \sup _{\mathbf{P} \in \overline{\mathcal{P}}} \frac{1}{p} \sum_{i=1}^{p} \mathbb{E}\left\|\widehat{P}_{i} .-P_{i} \cdot\right\|_{1} \geq c\left(\sqrt{\frac{r p}{n}} \wedge 1\right)
$$

where $\overline{\mathcal{P}}=\left\{\mathbf{P} \in \mathcal{P}: 1 /(2 p) \leq P_{i j} \leq 3 /(2 p)\right\} \subseteq \mathcal{P}$. By Cauchy Schwarz inequality,

$$
\sum_{i=1}^{p}\left\|\widehat{P}_{i .}-P_{i} .\right\|_{1}=\sum_{i, j=1}^{p}\left|\widehat{P}_{i j}-P_{i j}\right| \leq p \sqrt{\sum_{i, j=1}^{p}\left(\widehat{P}_{i j}-P_{i j}\right)^{2}}
$$

Thus,

$$
\inf _{\widehat{\mathbf{P}}} \sup _{\mathbf{P} \in \mathcal{P}} \mathbb{E} \sum_{i=1}^{p}\left\|\widehat{P}_{i} .-P_{i} \cdot\right\|_{2}^{2} \geq\left(\inf _{\widehat{\mathbf{P}}} \sup _{\mathbf{P} \in \overline{\mathcal{P}}} \mathbb{E} \sum_{i=1}^{p} \frac{1}{p}\left\|\widehat{P}_{i .}-P_{i} \cdot\right\|_{1}\right)^{2} \geq c\left(\frac{r p}{n} \wedge 1\right) \geq \frac{c p r}{n}
$$

The lower bound for KL divergence essentially follows due to the inequalities between ℓ_{2} and KL-divergence for bounded vectors in Lemma 5 of (Zhang \& Wang, 2017).

4. Proof of Theorem 3

Proof. Let $\hat{\mathbf{U}}_{\perp}, \hat{\mathbf{V}}_{\perp} \in \Re^{p \times(p-r)}$ be the orthogonal complement of $\hat{\mathbf{U}}$ and $\hat{\mathbf{V}}$. Since $\mathbf{U}, \mathbf{V}, \hat{\mathbf{U}}$, and $\hat{\mathbf{V}}$ are the leading left and right singular vectors of \mathbf{P} and $\hat{\mathbf{P}}$, we have

$$
\|\hat{\mathbf{P}}-\mathbf{P}\|_{F} \geq\left\|\hat{\mathbf{U}}_{\perp}^{\top}\left(\hat{\mathbf{P}}-\mathbf{U U}^{\top} \mathbf{P}\right)\right\|_{F}=\left\|\hat{\mathbf{U}}_{\perp}^{\top} \mathbf{U} \mathbf{U}^{\top} \mathbf{P}\right\|_{F} \geq\left\|\hat{\mathbf{U}}_{\perp}^{\top} \mathbf{U}\right\|_{F} \cdot \sigma_{r}\left(\mathbf{U}^{\top} \mathbf{P}\right)=\|\sin \Theta(\hat{\mathbf{U}}, \mathbf{U})\|_{F} \cdot \sigma_{r}(\mathbf{P})
$$

Similar argument also applies to $\|\sin \Theta(\hat{\mathbf{V}}, \mathbf{V})\|$. Thus,

$$
\max \left\{\|\sin \Theta(\hat{\mathbf{U}}, \mathbf{U})\|_{F},\|\sin \Theta(\hat{\mathbf{V}}, \mathbf{V})\|_{F}\right\} \leq \min \left\{\frac{\|\hat{\mathbf{P}}-\mathbf{P}\|_{F}}{\sigma_{r}(\mathbf{P})}, \sqrt{r}\right\}
$$

The rest of the proof immediately follows from Theorem 1.

5. Proof of Proposition 2

Proof. Since $\operatorname{rank}\left(\mathbf{X}_{c}^{*}\right) \leq r$, we know that \mathbf{X}_{c}^{*} is in fact a feasible solution to the original problem (5) and $\left\|\mathbf{X}_{c}^{*}\right\|_{*}-$ $\left\|\mathbf{X}_{c}^{*}\right\|_{(r)}=0$. Therefore, for any feasible solution X to (5), it holds that

$$
\begin{aligned}
f\left(\mathbf{X}_{c}^{*}\right) & =f\left(\mathbf{X}_{c}^{*}\right)+c\left(\left\|\mathbf{X}_{c}^{*}\right\|_{*}-\left\|\mathbf{X}_{c}^{*}\right\|_{(r)}\right) \\
& \leq f(\mathbf{X})+c\left(\|\mathbf{X}\|_{*}-\|\mathbf{X}\|_{(r)}\right)=f(\mathbf{X})
\end{aligned}
$$

This completes the proof of the proposition.

6. Proof of Theorem 5 (Convergence of sGS-ADMM)

Proof. In order to use (Li et al., 2016b, Theorem 3), we need to write problem (D) as following

$$
\begin{aligned}
\min & f^{*}(-\boldsymbol{\Xi})-\langle b, y\rangle+\delta\left(\mathbf{S} \mid\|\mathbf{S}\|_{2} \leq c\right)+\frac{\alpha}{2}\|\mathbf{Z}\|_{F}^{2} \\
\mathrm{s.t.} & \mathcal{F}(\boldsymbol{\Xi})+\mathcal{A}_{1}^{*}(y)+\mathcal{G}(\mathbf{S})+\mathcal{B}_{1}^{*}(\mathbf{Z})=\mathbf{W}
\end{aligned}
$$

where $\mathcal{F}, \mathcal{A}_{1}, \mathcal{G}$ and \mathcal{B}_{1} are linear operators such that for all $(\boldsymbol{\Xi}, y, \mathbf{S}, \mathbf{Z}) \in \Re^{p \times p} \times \Re^{n} \times \Re^{p \times p} \times \Re^{p \times p}, \mathcal{F}(\boldsymbol{\Xi})=\boldsymbol{\Xi}$, $\mathcal{A}_{1}^{*}(y)=\mathcal{A}^{*}(y), \mathcal{G}(\mathbf{S})=\mathbf{S}$ and $\mathcal{B}_{1}^{*}(\mathbf{Z})=\alpha \mathbf{Z}$. Clearly, $\mathcal{F}=\mathcal{G}=\mathcal{I}$ and $\mathcal{B}_{1}=\alpha \mathcal{I}$ where $\mathcal{I}: \Re^{p \times p} \rightarrow \Re^{p \times p}$ is the identity map. Therefore, we have $\mathcal{A}_{1} \mathcal{A}_{1}^{*} \succ 0$ and $\mathcal{F} \mathcal{F}^{*}=\mathcal{G} \mathcal{G}^{*}=\mathcal{I} \succ 0$. Note that if $\alpha>0, \mathcal{B}_{1} \mathcal{B}_{1}^{*}=\alpha^{2} \mathcal{I} \succ 0$. Hence, the assumptions and conditions in (Li et al., 2016b, Theorem 3) are satisfied whenever $\alpha \geq 0$. The convergence results thus follow directly.

7. Proof of Theorems 4 and 6

We only need to prove Theorem 6 as Theorem 4 is a special incidence. To prove Theorem 6,we first introduce the following lemma.
Lemma 1. Suppose that $\left\{x^{k}\right\}$ is the sequence generated by Algorithm 3. Then $\theta\left(x^{k+1}\right) \leq \theta\left(x^{k}\right)-\frac{1}{2}\left\|x^{k+1}-x^{k}\right\|_{\mathcal{G}+2 \mathcal{T}}^{2}$.
Proof. For any $k \geq 0$, by the optimality condition of problem (10) at x^{k+1}, we know that there exist $\eta^{k+1} \in \partial p\left(x^{k+1}\right)$ such that

$$
0=\nabla g\left(x^{k}\right)+(\mathcal{G}+\mathcal{T})\left(x^{k+1}-x^{k}\right)+\eta^{k+1}-\xi^{k}=0
$$

Then for any $k \geq 0$, we deduce

$$
\begin{aligned}
& \theta\left(x^{k+1}\right)-\theta\left(x^{k}\right) \leq \widehat{\theta}\left(x^{k+1} ; x^{k}\right)-\theta\left(x^{k}\right) \\
= & p\left(x^{k+1}\right)-p\left(x^{k}\right)+\left\langle x^{k+1}-x^{k}, \nabla g\left(x^{k}\right)-\xi^{k}\right\rangle \\
& +\frac{1}{2}\left\|x^{k+1}-x^{k}\right\|_{\mathcal{G}}^{2} \\
\leq & \left\langle\nabla g\left(x^{k}\right)+\eta^{k+1}-\xi^{k}, x^{k+1}-x^{k}\right\rangle+\frac{1}{2}\left\|x^{k+1}-x^{k}\right\|_{\mathcal{G}}^{2} \\
= & -\frac{1}{2}\left\|x^{k+1}-x^{k}\right\|_{\mathcal{G}+2 \mathcal{T}}^{2} .
\end{aligned}
$$

This completes the proof of this lemma.
Now we are ready to prove Theorem 6.
Proof. From the optimality condition at x^{k+1}, we have that

$$
0 \in \nabla g\left(x^{k}\right)+(\mathcal{G}+\mathcal{T})\left(x^{k+1}-x^{k}\right)+\partial p\left(x^{k+1}\right)-\xi^{k}
$$

Since $x^{k+1}=x^{k}$, this implies that

$$
0 \in \nabla g\left(x^{k}\right)+\partial p\left(x^{k}\right)-\partial q\left(x^{k}\right)
$$

i.e., x^{k} is a critical point. Observe that the sequence $\left\{\theta\left(x^{k}\right)\right\}$ is non-increasing since

$$
\theta\left(x^{k+1}\right) \leq \widehat{\theta}\left(x^{k+1} ; x^{k}\right) \leq \widehat{\theta}\left(x^{k} ; x^{k}\right)=\theta\left(x^{k}\right), \quad k \geq 0
$$

Suppose that there exists a subsequence $\left\{x^{k_{j}}\right\}$ that converging to \bar{x}, i.e., one of the accumulation points of $\left\{x^{k}\right\}$. By Lemma 1 and the assumption that $\mathcal{G}+2 \mathcal{T} \succeq 0$, we know that for all $x \in \mathbb{X}$

$$
\begin{aligned}
& \widehat{\theta}\left(x^{k_{j+1}} ; x^{k_{j+1}}\right)=\theta\left(x^{k_{j+1}}\right) \\
& \leq \theta\left(x^{k_{j}+1}\right) \leq \widehat{\theta}\left(x^{k_{j}+1} ; x^{k_{j}}\right) \leq \widehat{\theta}\left(x ; x^{k_{j}}\right)
\end{aligned}
$$

By letting $j \rightarrow \infty$ in the above inequality, we obtain that

$$
\widehat{\theta}(\bar{x} ; \bar{x}) \leq \widehat{\theta}(x ; \bar{x})
$$

By the optimality condition of $\widehat{\theta}(x ; \bar{x})$, we have that there exists $\bar{u} \in \partial p(\bar{x})$ and $\bar{v} \in \partial q(\bar{x})$ such that

$$
0 \in \nabla g(\bar{x})+\bar{u}-\bar{v}
$$

This implies that $(\nabla g(\bar{x})+\partial p(\bar{x})) \cap \partial q(\bar{x}) \neq \emptyset$. To establish the rest of this proposition, we obtain from Lemma 1 that

$$
\begin{aligned}
& \lim _{t \rightarrow+\infty} \frac{1}{2} \sum_{i=0}^{t}\left\|x^{k+1}-x^{k}\right\|_{\mathcal{G}+2 \mathcal{T}}^{2} \\
\leq & \liminf _{t \rightarrow+\infty}\left(\theta\left(x^{0}\right)-\theta\left(x^{k+1}\right)\right) \leq \theta\left(x^{0}\right)<+\infty
\end{aligned}
$$

which implies $\lim _{i \rightarrow+\infty}\left\|x^{k+1}-x^{i}\right\|_{\mathcal{G}+2 \mathcal{T}}=0$. The proof of this theorem is thus complete by the positive definiteness of the operator $\mathcal{G}+2 \mathcal{T}$.

8. Discussions on \mathcal{G} and \mathcal{T}

Here, we discuss the roles of \mathcal{G} and \mathcal{T}. The majorization technique used to handle the smooth function g and the presence of \mathcal{G} are used to make the subproblems (10) in Algorithm (3) more amenable to efficient computations. As can be observed in Theorem 6, the algorithm is convergent if $\mathcal{G}+2 \mathcal{T} \succeq 0$. This indicates that instead of adding the commonly used positive semidefinte or positive definite proximal terms, we allow \mathcal{T} to be indefinite for better practical performance. Indeed, the computational benefit of using indefinite proximal terms has been observed in (Gao \& Sun, 2010; Li et al., 2016a). In fact, the introduction of indefinite proximal terms in the DC algorithm is motivated by these numerical evidence. As far as we know, Theorem 6 provides the first rigorous convergence proof of the introduction of the indefinite proximal terms in the DC algorithms. The presence of \mathcal{G} and \mathcal{T} also helps to guarantee the existence of solutions for the subproblems (10). Since $\mathcal{G}+2 \mathcal{T} \succeq 0$ and $\mathcal{G} \succeq 0$, we have that $2 \mathcal{G}+2 \mathcal{T} \succeq 0$, i.e., $\mathcal{G}+\mathcal{T} \succeq 0$ (the reverse direction holds when $\mathcal{T} \succeq 0$). Hence, $\mathcal{G}+2 \mathcal{T} \succeq 0(\mathcal{G}+2 \mathcal{T} \succ 0)$ implies that subproblems (10) are (strongly) convex problems. Meanwhile, the choices of \mathcal{G} and \mathcal{T} are very much problem dependent. The general principle is that $\mathcal{G}+\mathcal{T}$ should be as small as possible while x^{k+1} is still relatively easy to compute.

References

Bühlmann, Peter and Van De Geer, Sara. Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer Science \& Business Media, 2011.

Gao, Yan and Sun, Defeng. A majorized penalty approach for calibrating rank constrained correlation matrix problems. technical reprot, 2010.

Ledoux, Michel and Talagrand, Michel. Probability in Banach Spaces: Isoperimetry and Processes. Springer Science \& Business Media, 2013.

Li, Min, Sun, Defeng, and Toh, Kim-Chuan. A majorized ADMM with indefinite proximal terms for linearly constrained convex composite optimization. SIAM Journal on Optimization, 26(2):922-950, 2016a.

Li, Xudong, Sun, Defeng, and Toh, Kim-Chuan. A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions. Mathematical Programming, 155(1-2):333-373, 2016b.

Tropp, Joel A. The expected norm of a sum of independent random matrices: An elementary approach. In High Dimensional Probability VII, pp. 173-202. Springer, 2016.

Zhang, Anru and Wang, Mengdi. Spectral state compression of Markov processes. arXiv preprint arXiv:1802.02920, 2017.

[^0]: ${ }^{1}$ Department of Operations Research and Financial Engineering, Princeton University, Sherrerd Hall, Princeton, NJ 08544 ${ }^{2}$ Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706. Correspondence to: Xudong Li xudongl@princeton.edu, Mengdi Wang < mengdiw@ princeton.edu $>$, Anru Zhang < anruzhang@stat.wisc.edu $>$.

 Proceedings of the $35^{\text {th }}$ International Conference on Machine Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018 by the author(s).

