
On the Spectrum of Random Features Maps of High Dimensional Data

Supplementary Material
On the Spectrum of Random Features Maps of High Dimensional Data

A. Proof of Theorem 1
To obtain the result presented in Theorem 1, we begin by recalling the expression of the average kernel matrix Φ, with

Φi,j = Φ(xi,xj) = EwGij = Ewσ(wTxi)σ(wTxj).

For w ∼ N (0, Ip), one resorts to the integral calculus for standard Gaussian distribution in Rp, which can be further
reduced to a double integral as shown in (Williams, 1997; Louart et al., 2018) and results in the expressions in Table 1.

Then, from the discussion in Section 2, we have the following expansions for xi ∈ Ca, xj ∈ Cb, with i 6= j,
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which further allows one to linearize the nonlinear function of xi,xj in Table 1 via a Taylor expansion to obtain an entry-wise
approximation of the key matrix Φ.

Nonetheless, this entry-wise approximation does not ensure a vanishing difference in terms of operator norm in the large p, T
regime under consideration. Taking the popular Marčenko–Pastur law (Marčenko & Pastur, 1967) for example: consider a
random matrix W ∈ Rn×p with i.i.d. standard Gaussian entries. Then, as n, p→∞ with n

p → c ∈ (0,∞), entry-wisely we
have that the entry (i, j) of the matrix 1

pWWT converge to 1 if i = j and 0 otherwise, meaning that the sample covariance
matrix 1

pWWT seemingly “converge to” an identity matrix (which is indeed the true population covariance). But it is well
known (Marčenko & Pastur, 1967) that the eigenvalue distribution of 1

pWWT converges (almost surely so) to a continuous
measure (the popular Marčenko–Pastur distribution) compactly supported on [(1−
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different from the eigenvalue distribution δx=1 of In.

As a consequence, a more careful control of the entry-wise expansion of Φ must be performed to ensure a vanishing
expansion error in terms of operator norm. To this end, we follow the previous work of (El Karoui et al., 2010; Couillet
et al., 2016) and consider the full matrix contribution.

In the following we proceed the aforementioned manipulations on the ReLU function as an example, derivations of other
functions follow the same procedure and are thus omitted.

Proof of σ(t) = ReLU(t). We start with the computation of Φ(a,b). For σ(t) = ReLU(t), with the classical Gram-
Schmidt process we obtain
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min(w̃Tã,w̃Tb̃)≥0
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where ã1 = ‖a‖, b̃1 = aTb
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‖a‖2‖b‖2 and we denote w̃ = [w̃1, w̃2]T, ã = [ã1, 0]T and b̃ = [b̃1, b̃2]T.
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With a simple geometric representation we observe
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1

2π

∫ π
2

θ0−π2
cos(θ)

(
b̃1 cos(θ) + b̃2 sin(θ)

)
d θ

∫
R+

r3e−
1
2 r

2

d r

=
1

2π
‖a‖‖b‖

(√
1− ∠(a,b)2 + ∠(a,b) arccos (−∠(a,b))

)
with ∠(a,b) ≡ aTb

‖a‖‖b‖ as Table 1.

For a second step, with the expressions in (3) and (4) we perform a Taylor expansion to get
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where we recall φi = ‖ωi‖2 − E‖ωi‖2 = ‖ωi‖2 − tr(Ca)/p that is of order O(p−1/2). Note that the third term
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As such, we conclude for σ(t) = ReLU(t) that
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Consequently we get the generic form for all functions σ(·) listed in Table 1 is given by
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where we recall the definition t ≡ {tr C◦a/
√
p}Ka=1. In particular, we have for the ReLU nonlinearity c0 = τ

2π , c1 = c7 =
1
4π , c2 = c8 = 1

4 , c3 = 1
8πτ , c4 = − 1

16πτ , c5 = 1
4πτ and c6 = 0.

We then observe that, for all functions σ(·) listed in Table 1, we have c7 = c1 and c8 = c2. Besides, using the fact that(
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and considering also the diagonal terms (with i = j) by adding the term c9IT , we finally get
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where we denote φ2 ≡ [φ2
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Recalling that for P ≡ IT − 1
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We further observe that, for all functions σ(·) listed in Table 1 we have c5 = 2c3 and let d0 = c7, d1 = c2, d2 = c3 = c5/2
we obtain the expression of Φ̃ in Theorem 1, which concludes the proof.


