Supplementary Material

The Dynamics of Learning: A Random Matrix Approach

A. Proofs

A.1. Proofs of Theorem 1 and 2

Proof. We start with the proof of Theorem 1, since

$$
\begin{aligned}
& \boldsymbol{\mu}^{\top} \mathbf{w}(t)=\boldsymbol{\mu}^{\top} e^{-\frac{\alpha t}{n} \mathbf{X} \mathbf{X}^{\top}} \mathbf{w}_{0}+\boldsymbol{\mu}^{\top}\left(\mathbf{I}_{p}-e^{-\frac{\alpha t}{n} \mathbf{X} \mathbf{X}^{\top}}\right) \mathbf{w}_{L S} \\
& =-\frac{1}{2 \pi i} \oint_{\gamma} f_{t}(z) \boldsymbol{\mu}^{\top}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1} \mathbf{w}_{0} d z-\frac{1}{2 \pi i} \oint_{\gamma} \frac{1-f_{t}(z)}{z} \boldsymbol{\mu}^{\top}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1} \frac{1}{n} \mathbf{X} \mathbf{y} d z
\end{aligned}
$$

with $\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}=\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}+\left[\begin{array}{ll}\boldsymbol{\mu} & \frac{1}{n} \mathbf{Z} \mathbf{y}\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}\boldsymbol{\mu}^{\top} \\ \frac{1}{n} \mathbf{y}^{\top} \mathbf{Z}^{\top}\end{array}\right]$ and therefore

$$
\left(\frac{1}{n} \mathbf{X X}^{\top}-z \mathbf{I}_{p}\right)^{-1}=\mathbf{Q}(z)-\mathbf{Q}(z)\left[\begin{array}{cc}
\boldsymbol{\mu} & \frac{1}{n} \mathbf{Z} \mathbf{y}
\end{array}\right]\left[\begin{array}{cc}
\boldsymbol{\mu}^{\top} \mathbf{Q}(z) \boldsymbol{\mu} & 1+\frac{1}{n} \boldsymbol{\mu}^{\top} \mathbf{Q}(z) \mathbf{Z} \mathbf{y} \\
1+\frac{1}{n} \boldsymbol{\mu}^{\top} \mathbf{Q}(z) \mathbf{Z} \mathbf{y} & -1+\frac{1}{n} \mathbf{y}^{\top} \mathbf{Z}^{\top} \mathbf{Q}(z) \frac{1}{n} \mathbf{Z} \mathbf{y}
\end{array}\right]^{-1}\left[\begin{array}{c}
\boldsymbol{\mu}^{\top} \\
\frac{1}{n} \mathbf{y}^{\top} \mathbf{Z}^{\top}
\end{array}\right] \mathbf{Q}(z)
$$

We thus resort to the computation of the bilinear form $\mathbf{a}^{\top} \mathbf{Q}(z) \mathbf{b}$, for which we plug-in the deterministic equivalent of $\mathbf{Q}(z) \leftrightarrow \overline{\mathbf{Q}}(z)=m(z) \mathbf{I}_{p}$ to obtain the following estimations

$$
\begin{aligned}
\boldsymbol{\mu}^{\top} \mathbf{Q}(z) \boldsymbol{\mu} & =\|\boldsymbol{\mu}\|^{2} m(z) \\
\frac{1}{n} \boldsymbol{\mu}^{\top} \mathbf{Q}(z) \mathbf{Z} \mathbf{y} & =o(1) \\
\frac{1}{n^{2}} \mathbf{y}^{\top} \mathbf{Z}^{\top} \mathbf{Q}(z) \mathbf{Z} \mathbf{y} & =\frac{1}{n^{2}} \mathbf{y}^{\top} \tilde{\mathbf{Q}}(z) \mathbf{Z}^{\top} \mathbf{Z} \mathbf{y}=\frac{1}{n} \mathbf{y}^{\top} \tilde{\mathbf{Q}}(z)\left(\frac{1}{n} \mathbf{Z}^{\top} \mathbf{Z}-z \mathbf{I}_{n}+z \mathbf{I}_{n}\right) \mathbf{y} \\
& =\frac{1}{n}\|\mathbf{y}\|^{2}+z \frac{1}{n} \mathbf{y}^{\top} \tilde{\mathbf{Q}}(z) \mathbf{y}=1+z \frac{1}{n} \operatorname{tr} \tilde{\mathbf{Q}}(z)=1+z \tilde{m}(z)
\end{aligned}
$$

with the co-resolvent $\tilde{\mathbf{Q}}(z)=\left(\frac{1}{n} \mathbf{Z}^{\top} \mathbf{Z}-z \mathbf{I}_{n}\right)^{-1}, m(z)$ the unique solution of the Marčenko-Pastur equation (2) and $\tilde{m}(z)=\frac{1}{n} \operatorname{tr} \tilde{\mathbf{Q}}(z)+o(1)$ such that

$$
c m(z)=\tilde{m}(z)+\frac{1}{z}(1-c)
$$

which is a direct result of the fact that both $\mathbf{Z}^{\top} \mathbf{Z}$ and $\mathbf{Z} \mathbf{Z}^{\top}$ have the same eigenvalues except for the additional zeros eigenvalues for the larger matrix (which essentially depends on the sign of $1-c$).
We thus get, with the Schur complement lemma,

$$
\begin{aligned}
\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1} & =\mathbf{Q}(z)-\mathbf{Q}(z)\left[\begin{array}{cc}
\boldsymbol{\mu} & \frac{1}{n} \mathbf{Z} \mathbf{y}
\end{array}\right]\left[\begin{array}{cc}
\|\boldsymbol{\mu}\|^{2} m(z) & 1 \\
1 & z \tilde{m}(z)
\end{array}\right]^{-1}\left[\begin{array}{c}
\boldsymbol{\mu}^{\top} \\
\frac{1}{n} \mathbf{y}^{\top} \mathbf{Z}^{\top}
\end{array}\right] \mathbf{Q}(z)+o(1) \\
& =\mathbf{Q}(z)-\frac{\mathbf{Q}(z)}{z\|\boldsymbol{\mu}\|^{2} m(z) \tilde{m}(z)-1}\left[\begin{array}{cc}
\boldsymbol{\mu} & \frac{1}{n} \mathbf{Z} \mathbf{y}
\end{array}\right]\left[\begin{array}{cc}
z \tilde{m}(z) & -1 \\
-1 & \|\boldsymbol{\mu}\|^{2} m(z)
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{\mu}^{\top} \\
\frac{1}{n} \mathbf{y}^{\top} \mathbf{Z}^{\top}
\end{array}\right] \mathbf{Q}(z)+o(1)
\end{aligned}
$$

and the term $\boldsymbol{\mu}^{\top}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1} \frac{1}{n} \mathbf{X} \mathbf{y}$ is therefore given by

$$
\begin{aligned}
& \boldsymbol{\mu}^{\top}\left(\frac{1}{n} \mathbf{X X}^{\top}-z \mathbf{I}_{p}\right)^{-1} \frac{1}{n} \mathbf{X} \mathbf{y}=\|\boldsymbol{\mu}\|^{2} m(z)-\frac{\left[\|\boldsymbol{\mu}\|^{2} m(z)\right.}{z\|\boldsymbol{\mu}\|^{2} m(z) \tilde{m}(z)-1}\left[\begin{array}{cc}
z \tilde{m}(z) & -1 \\
-1 & \|\boldsymbol{\mu}\|^{2} m(z)
\end{array}\right]\left[\begin{array}{c}
\|\boldsymbol{\mu}\|^{2} m(z) \\
1+z \tilde{m}(z)
\end{array}\right]+o(1) \\
& =\frac{\|\boldsymbol{\mu}\|^{2} m(z) z \tilde{m}(z)}{\|\boldsymbol{\mu}\|^{2} m(z) z \tilde{m}(z)-1}+o(1)=\frac{\|\boldsymbol{\mu}\|^{2}(z m(z)+1)}{1+\|\boldsymbol{\mu}\|^{2}(z m(z)+1)}+o(1)=\frac{\|\boldsymbol{\mu}\|^{2} m(z)}{\left(\|\boldsymbol{\mu}\|^{2}+c\right) m(z)+1}+o(1)
\end{aligned}
$$

where we use the fact that $\tilde{m}(z)=c m(z)-\frac{1}{z}(1-c)$ and $(z m(z)+1)(c m(z)+1)=m$ from (2), while the term $\boldsymbol{\mu}^{\top}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1} \mathbf{w}_{0}=O\left(n^{-\frac{1}{2}}\right)$ due to the independence of \mathbf{w}_{0} with respect to \mathbf{Z} and can be check with a careful application of Lyapunov's central limit theorem (Billingsley, 2008).

Following the same arguments we have

$$
\begin{aligned}
& \mathbf{w}(t)^{\top} \mathbf{w}(t)=-\frac{1}{2 \pi i} \oint_{\gamma} f_{t}^{2}(z) \mathbf{w}_{0}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1} \mathbf{w}_{0} d z-\frac{1}{\pi i} \oint_{\gamma} \frac{f_{t}(z)\left(1-f_{t}(z)\right)}{z} \mathbf{w}_{0}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\boldsymbol{\top}}-z \mathbf{I}_{p}\right)^{-1} \frac{1}{n} \mathbf{X} \mathbf{y} d z \\
& -\frac{1}{2 \pi i} \oint_{\gamma} \frac{\left(1-f_{t}(z)\right)^{2}}{z^{2}} \frac{1}{n} \mathbf{y}^{\boldsymbol{\top}} \mathbf{X}^{\boldsymbol{\top}}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\boldsymbol{\top}}-z \mathbf{I}_{p}\right)^{-1} \frac{1}{n} \mathbf{X} \mathbf{y} d z
\end{aligned}
$$

together with

$$
\begin{aligned}
\mathbf{w}_{0}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1} \mathbf{w}_{0} & =\sigma^{2} m(z)+o(1) \\
\mathbf{w}_{0}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1} \frac{1}{n} \mathbf{X} \mathbf{y}^{\top} & =o(1) \\
\frac{1}{n} \mathbf{y}^{\top} \mathbf{X}^{\top}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-z \mathbf{I}_{p}\right)^{-1} \frac{1}{n} \mathbf{X} \mathbf{y} & =1-\frac{1}{\left(\|\boldsymbol{\mu}\|^{2}+c\right) m(z)+1}+o(1)
\end{aligned}
$$

It now remains to replace the different terms in $\boldsymbol{\mu}^{\top} \mathbf{w}(t)$ and $\mathbf{w}(t)^{\top} \mathbf{w}(t)$ by their asymptotic approximations. To this end, first note that all aforementioned approximations can be summarized as the fact that, for a generic $h(z)$, we have, as $n \rightarrow \infty$,

$$
h(z)-\bar{h}(z) \rightarrow 0
$$

almost surely for all z not an eigenvalue of $\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$. Therefore, there exists a probability one set Ω_{z} on which $h(z)$ is uniformly bounded for all large n, with a bound independent of z. Then by the Theorem of "no eigenvalues outside the support" (see for example (Bai \& Silverstein, 1998)) we know that, with probability one, for all n, p large, no eigenvalue of $\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}$ appears outside the interval $\left[\lambda_{-}, \lambda_{+}\right]$, where we recall $\lambda_{-} \equiv(1-\sqrt{c})^{2}$ and $\lambda_{+} \equiv(1+\sqrt{c})^{2}$. As such, the set of intersection $\Omega=\cap_{z_{i}} \Omega_{z_{i}}$ for a finitely many z_{i}, is still a probability one set. Finally by Vitali convergence theorem, together with the analyticity of the function under consideration, we conclude the proof of Theorem 1. The proof of Theorem 2 follows exactly the same line of arguments and is thus omitted here.

A.2. Detailed Derivation of (4)-(7)

Figure 7. Eigenvalue distribution of $\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$ for $\boldsymbol{\mu}=\left[1.5 ; \mathbf{0}_{p-1}\right], p=512, n=1024$ and $c_{1}=c_{2}=1 / 2$.
We first determine the location of the isolated eigenvalue λ (as shown in Figure 2). More concretely, we would like to find λ an eigenvalue of $\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$ that lies outside the support of Marčenko-Pastur distribution (in fact, not an eigenvalue of $\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}$).

Solving the following equation for $\lambda \in \mathbb{R}$,

$$
\begin{aligned}
& \operatorname{det}\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\top}-\lambda \mathbf{I}_{p}\right)=0 \\
& \Leftrightarrow \operatorname{det}\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-\lambda \mathbf{I}_{p}+\left[\begin{array}{ll}
\boldsymbol{\mu} & \frac{1}{n} \mathbf{Z} \mathbf{y}
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{\mu}^{\top} \\
\frac{1}{n} \mathbf{y}^{\top} \mathbf{Z}^{\top}
\end{array}\right]\right)=0 \\
& \Leftrightarrow \operatorname{det}\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-\lambda \mathbf{I}_{p}\right) \operatorname{det}\left(\mathbf{I}_{p}+\mathbf{Q}(\lambda)\left[\begin{array}{ll}
\boldsymbol{\mu} & \frac{1}{n} \mathbf{Z} \mathbf{y}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{\mu}^{\top} \\
\frac{1}{n} \mathbf{y}^{\top} \mathbf{Z}^{\top}
\end{array}\right]\right)=0 \\
& \Leftrightarrow \operatorname{det}\left(\mathbf{I}_{2}+\left[\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{\mu}^{\top} \\
\frac{1}{n} \mathbf{y}^{\top} \mathbf{Z}^{\top}
\end{array}\right] \mathbf{Q}(\lambda)\left[\begin{array}{ll}
\boldsymbol{\mu} & \frac{1}{n} \mathbf{Z} \mathbf{y}
\end{array}\right]\right)=0 \\
& \Leftrightarrow \operatorname{det}\left[\begin{array}{cc}
\|\boldsymbol{\mu}\|^{2} m(\lambda)+1 & 1+z \tilde{m}(\lambda) \\
\|\boldsymbol{\mu}\|^{2} m(\lambda) & 1
\end{array}\right]+o(1)=0 \\
& \Leftrightarrow 1+\left(\|\boldsymbol{\mu}\|^{2}+c\right) m(\lambda)+o(1)=0
\end{aligned}
$$

where we recall the definition $\mathbf{Q}(\lambda) \equiv\left(\frac{1}{n} \mathbf{Z} \mathbf{Z}^{\top}-\lambda \mathbf{I}_{p}\right)^{-1}$ and use the fact that $\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})$ as well as the Sylvester's determinant identity $\operatorname{det}\left(\mathbf{I}_{p}+\mathbf{A B}\right)=\operatorname{det}\left(\mathbf{I}_{n}+\mathbf{B A}\right)$ for \mathbf{A}, \mathbf{B} of appropriate dimension. Together with (2) we deduce the (empirical) isolated eigenvalue $\lambda=\lambda_{s}+o(1)$ with

$$
\lambda_{s}=c+1+\|\boldsymbol{\mu}\|^{2}+\frac{c}{\|\boldsymbol{\mu}\|^{2}}
$$

which in fact gives the asymptotic location of the isolated eigenvalue as $n \rightarrow \infty$. In the following, we may thus use λ_{s} instead of λ throughout the computation. By splitting the path γ into $\gamma_{b}+\gamma_{s}$ that circles respectively around the main bulk between $\left[\lambda_{-}, \lambda_{+}\right]$and the isolated eigenvalue λ_{s}, we easily deduce, with the residual theorem that $E=E_{\gamma_{b}}+E_{\gamma_{s}}$ with

$$
\begin{align*}
E_{\gamma_{s}} & =-\frac{1}{2 \pi i} \oint_{\gamma_{s}} \frac{1-f_{t}(z)}{z} \frac{\|\boldsymbol{\mu}\|^{2} m(z)}{1+\left(\|\boldsymbol{\mu}\|^{2}+c\right) m(z)} d z=-\operatorname{Res} \frac{1-f_{t}(z)}{z} \frac{\|\boldsymbol{\mu}\|^{2} m(z)}{1+\left(\|\boldsymbol{\mu}\|^{2}+c\right) m(z)} \\
& =-\lim _{z \rightarrow \lambda_{s}}\left(z-\lambda_{s}\right) \frac{1-f_{t}(z)}{z} \frac{\|\boldsymbol{\mu}\|^{2} m(z)}{1+\left(\|\boldsymbol{\mu}\|^{2}+c\right) m(z)}=-\frac{1-f_{t}\left(\lambda_{s}\right)}{\lambda_{s}} \frac{\|\boldsymbol{\mu}\|^{2} m\left(\lambda_{s}\right)}{\left(\|\boldsymbol{\mu}\|^{2}+c\right) m^{\prime}\left(\lambda_{s}\right)} \\
& =-\frac{\|\boldsymbol{\mu}\|^{2}}{\|\boldsymbol{\mu}\|^{2}+c} \frac{1-f_{t}\left(\lambda_{s}\right)}{\lambda_{s}} \frac{1-c-\lambda_{s}-2 c \lambda_{s} m\left(\lambda_{s}\right)}{c m\left(\lambda_{s}\right)+1}=\left(\|\boldsymbol{\mu}\|^{2}-\frac{c}{\|\boldsymbol{\mu}\|^{2}}\right) \frac{1-f_{t}\left(\lambda_{s}\right)}{\lambda_{s}} \tag{11}
\end{align*}
$$

with $m^{\prime}(z)$ the derivative of $m(z)$ with respect to z and is obtained by taking the derivative of (2).
We now move on to handle the contour integration γ_{b} in the computation of $E_{\gamma_{b}}$. We follow the idea in (Bai \& Silverstein, 2008) and choose the contour γ_{b} to be a rectangle with sides parallel to the axes, intersecting the real axis at 0 and λ_{+}(in fact at $-\epsilon$ and $\lambda_{+}+\epsilon$ so that the functions under consideration remain analytic) and the horizontal sides being a distance $\varepsilon \rightarrow 0$ away from the real axis. Since for nonzero $x \in \mathbb{R}$, the $\operatorname{limit}^{\lim _{z \in \mathbb{Z}} \rightarrow x} m(z) \equiv \check{m}(x)$ exists (Silverstein \& Choi, 1995) and is given by

$$
\check{m}(x)=\frac{1-c-x}{2 c x} \pm \frac{i}{2 c x} \sqrt{4 c x-(1-c-x)^{2}}=\frac{1-c-x}{2 c x} \pm \frac{i}{2 c x} \sqrt{\left(x-\lambda_{-}\right)\left(\lambda_{+}-x\right)}
$$

with the branch of \pm is determined by the imaginary part of z such that $\Im(z) \cdot \Im m(z)>0$ and we recall $\lambda_{-} \equiv(1-\sqrt{c})^{2}$ and $\lambda_{+} \equiv(1+\sqrt{c})^{2}$. For simplicity we denote

$$
\Re \check{m}=\frac{1-c-x}{2 c x}, \Im \check{m}=\frac{1}{2 c x} \sqrt{\left(x-\lambda_{-}\right)\left(\lambda_{+}-x\right)}
$$

and therefore

$$
\begin{aligned}
E_{\gamma_{b}} & =-\frac{1}{2 \pi i} \oint_{\gamma_{b}} \frac{1-f_{t}(z)}{z} \frac{\|\boldsymbol{\mu}\|^{2} m(z)}{1+\left(\|\boldsymbol{\mu}\|^{2}+c\right) m(z)} d z \\
& =-\frac{\|\boldsymbol{\mu}\|^{2}}{\pi i} \int_{\lambda_{-}}^{\lambda_{+}} \frac{1-f_{t}(x)}{x} \Im\left[\frac{\Re \check{m}-i \Im \check{m}}{1+\left(\|\boldsymbol{\mu}\|^{2}+c\right)(\Re \check{m}-i \Im \check{m})}\right] d x \\
& =-\frac{\|\boldsymbol{\mu}\|^{2}}{\pi i} \int_{\lambda_{-}}^{\lambda_{+}} \frac{1-f_{t}(x)}{x} \Im\left[\frac{\Re \check{m}+\frac{\|\boldsymbol{\mu}\|^{2}+c}{c x}-i \Im \check{m}}{1+2\left(\|\boldsymbol{\mu}\|^{2}+c\right) \Re \check{m}+\frac{\left.\|\boldsymbol{\mu}\|^{2}+c\right)^{2}}{c x}}\right] d x
\end{aligned}
$$

with $z=x \pm i \varepsilon$ and $\varepsilon \rightarrow 0$ (on different sides of the real axis) and the fact that $(\Re \check{m})^{2}+(\Im \check{m})^{2}=\frac{1}{c x}$. We take the imaginary part and result in

$$
\begin{equation*}
E_{\gamma_{b}}=\frac{\|\boldsymbol{\mu}\|^{2}}{\pi} \int_{\lambda_{-}}^{\lambda_{+}} \frac{1-f_{t}(x)}{x} \frac{\Im \check{m}}{1+2\left(\|\boldsymbol{\mu}\|^{2}+c\right) \Re \check{m}+\frac{\left(\|\boldsymbol{\mu}\|^{2}+c\right)^{2}}{c x}} d x=\frac{1}{2 \pi} \int_{\lambda_{-}}^{\lambda_{+}} \frac{1-f_{t}(x)}{x} \frac{\sqrt{4 c x-(1-c-x)^{2}}}{\lambda_{s}-x} d x \tag{12}
\end{equation*}
$$

where we recall the definition $\lambda_{s} \equiv c+1+\|\boldsymbol{\mu}\|^{2}+\frac{c}{\|\boldsymbol{\mu}\|^{2}}$. Ultimately we assemble (11) and (12) to get the expression in (4). The derivations of (5)-(7) follow the same arguments and are thus omitted here.

