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Abstract
Understanding the learning dynamics of neural
networks is one of the key issues for the improve-
ment of optimization algorithms as well as for
the theoretical comprehension of why deep neu-
ral nets work so well today. In this paper, we
introduce a random matrix-based framework to
analyze the learning dynamics of a single-layer
linear network on a binary classification problem,
for data of simultaneously large dimension and
size, trained by gradient descent. Our results pro-
vide rich insights into common questions in neural
nets, such as overfitting, early stopping and the
initialization of training, thereby opening the door
for future studies of more elaborate structures and
models appearing in today’s neural networks.

1. Introduction
Deep neural networks trained with backpropagation have
commonly attained superhuman performance in applica-
tions of computer vision (Krizhevsky et al., 2012) and many
others (Schmidhuber, 2015) and are thus receiving an un-
precedented research interest. Despite the rapid growth
of the list of successful applications with these gradient-
based methods, our theoretical understanding, however, is
progressing at a more modest pace.

One of the salient features of deep networks today is that
they often have far more model parameters than the number
of training samples that they are trained on, but meanwhile
some of the models still exhibit remarkably good general-
ization performance when applied to unseen data of similar
nature, while others generalize poorly in exactly the same
setting. A satisfying explanation of this phenomenon would
be the key to more powerful and reliable network structures.
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Université Paris-Saclay, France; 2G-STATS Data Science Chair,
GIPSA-lab, University Grenobles-Alpes, France. Correspondence
to: Zhenyu Liao <zhenyu.liao@l2s.centralesupelec.fr>, Romain
Couillet <romain.couillet@centralesupelec.fr>.

Proceedings of the 35 th
International Conference on Machine

Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

To answer such a question, statistical learning theory has
proposed interpretations from the viewpoint of system com-
plexity (Vapnik, 2013; Bartlett & Mendelson, 2002; Poggio
et al., 2004). In the case of large numbers of parameters, it
is suggested to apply some form of regularization to ensure
good generalization performance. Regularizations can be
explicit, such as the dropout technique (Srivastava et al.,
2014) or the l2-penalization (weight decay) as reported in
(Krizhevsky et al., 2012); or implicit, as in the case of the
early stopping strategy (Yao et al., 2007) or the stochastic
gradient descent algorithm itself (Zhang et al., 2016).

Inspired by the recent line of works (Saxe et al., 2013; Ad-
vani & Saxe, 2017), in this article we introduce a random
matrix framework to analyze the training and, more impor-
tantly, the generalization performance of neural networks,
trained by gradient descent. Preliminary results established
from a toy model of two-class classification on a single-layer
linear network are presented, which, despite their simplicity,
shed new light on the understanding of many important as-
pects in training neural nets. In particular, we demonstrate
how early stopping can naturally protect the network against
overfitting, which becomes more severe as the number of
training sample approaches the dimension of the data. We
also provide a strict lower bound on the training sample
size for a given classification task in this simple setting. A
byproduct of our analysis implies that random initialization,
although commonly used in practice in training deep net-
works (Glorot & Bengio, 2010; Krizhevsky et al., 2012),
may lead to a degradation of the network performance.

From a more theoretical point of view, our analyses allow
one to evaluate any functional of the eigenvalues of the
sample covariance matrix of the data (or of the data rep-
resentation learned from previous layers in a deep model),
which is at the core of understanding many experimental
observations in today’s deep networks (Glorot & Bengio,
2010; Ioffe & Szegedy, 2015). Our results are envisioned
to generalize to more elaborate settings, notably to deeper
models that are trained with the stochastic gradient descent
algorithm, which is of more practical interest today due to
the tremendous size of the data.

Notations: Boldface lowercase (uppercase) characters stand
for vectors (matrices), and non-boldface for scalars respec-
tively. 0p is the column vector of zeros of size p, and Ip
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the p ⇥ p identity matrix. The notation (·)T denotes the
transpose operator. The norm k · k is the Euclidean norm for
vectors and the operator norm for matrices. =(·) denotes
the imaginary part of a complex number. For x 2 R, we
denote for simplicity (x)+ ⌘ max(x, 0).

In the remainder of the article, we introduce the problem
of interest and recall the results of (Saxe et al., 2013) in
Section 2. After a brief overview of basic concepts and
methods to be used throughout the article in Section 3, our
main results on the training and generalization performance
of the network are presented in Section 4, followed by a
thorough discussion in Section 5 and experiments on the
popular MNIST database (LeCun et al., 1998) in Section 6.
Section 7 concludes the article by summarizing the main
results and outlining future research directions.

2. Problem Statement
Let the training data x1, . . . ,xn 2 Rp be independent vec-
tors drawn from two distribution classes C1 and C2 of car-
dinality n1 and n2 (thus n1 + n2 = n), respectively. We
assume that the data vector xi of class Ca can be written as

xi = (�1)aµ+ zi

for a = {1, 2}, with µ 2 Rp and zi a Gaussian random
vector zi ⇠ N (0p, Ip). In the context of a binary classifica-
tion problem, one takes the label yi = �1 for xi 2 C1 and
yj = 1 for xj 2 C2 to distinguish the two classes.

We denote the training data matrix X =
⇥
x1, . . . ,xn

⇤
2

Rp⇥n by cascading all xi’s as column vectors and associated
label vector y 2 Rn. With the pair {X,y}, a classifier is
trained using “full-batch” gradient descent to minimize the
loss function L(w) given by

L(w) =
1

2n
kyT �wTXk2

so that for a new datum x̂, the output of the classifier is
ŷ = wTx̂, the sign of which is then used to decide the class
of x̂. The derivative of L with respective to w is given by

@L(w)

@w
= � 1

n
X(y �XTw).

The gradient descent algorithm (Boyd & Vandenberghe,
2004) takes small steps of size ↵ along the opposite direction

of the associated gradient, i.e., wt+1 = wt�↵
@L(w)
@w

��
w=wt

.

Following the previous works of (Saxe et al., 2013; Advani
& Saxe, 2017), when the learning rate ↵ is small, wt+1

and wt are close to each other so that by performing a
continuous-time approximation, one obtains the following
differential equation

@w(t)

@t
= �↵

@L(w)

@w
=

↵

n
X
�
y �XTw(t)

�

the solution of which is given explicitly by

w(t) = e
�↵t

n XXT

w0 +
⇣
Ip � e

�↵t
n XXT

⌘
(XXT)�1Xy

(1)
if one assumes that XXT is invertible (only possible in
the case p < n), with w0 ⌘ w(t = 0) the initializa-
tion of the weight vector; we recall the definition of the
exponential of a matrix 1

nXXT given by the power se-
ries e

1
nXXT

=
P1

k=0
1
k! (

1
nXXT)k = Ve

⇤VT, with the
eigendecomposition of 1

nXXT = V⇤VT and e
⇤ is a di-

agonal matrix with elements equal to the exponential of
the elements of ⇤. As t ! 1 the network “forgets” the
initialization w0 and results in the least-square solution
wLS ⌘ (XXT)�1Xy.

When p > n, XXT is no longer invertible. Assuming XTX

is invertible and writing Xy =
�
XXT

�
X
�
XTX

��1
y, the

solution is similarly given by

w(t) = e
�↵t

n XXT

w0 +X
⇣
In � e

�↵t
n XTX

⌘
(XTX)�1y

with the least-square solution wLS ⌘ X(XTX)�1y.

In the work of (Advani & Saxe, 2017) it is assumed that
X has i.i.d. entries and that there is no linking structure
between the data and associated targets in such a way that
the “true” weight vector w̄ to be learned is independent
of X so as to simplify the analysis. In the present work
we aim instead at exploring the capacity of the network to
retrieve the (mixture modeled) data structure and position
ourselves in a more realistic setting where w captures the
different statistical structures (between classes) of the pair
(X,y). Our results are thus of more guiding significance
for practical interests.

From (1) note that both e
�↵t

n XXT
and Ip � e

�↵t
n XXT

share
the same eigenvectors with the sample covariance matrix
1
nXXT, which thus plays a pivotal role in the network learn-
ing dynamics. More concretely, the projections of w0 and
wLS onto the eigenspace of 1

nXXT, weighted by func-
tions (exp(�↵t�i) or 1 � exp(�↵t�i)) of the associated
eigenvalue �i, give the temporal evolution of w(t) and con-
sequently the training and generalization performance of the
network. The core of our study therefore consists in deeply
understanding of the eigenpairs of this sample covariance
matrix, which has been largely investigated in the random
matrix literature (Bai & Silverstein, 2010).

3. Preliminaries
Throughout this paper, we will be relying on some basic yet
powerful concepts and methods from random matrix theory,
which shall be briefly highlighted in this section.
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3.1. Resolvent and deterministic equivalents

Consider an n⇥ n Hermitian random matrix M. We define
its resolvent QM(z), for z 2 C not an eigenvalue of M, as

QM(z) = (M� zIn)
�1

.

Through the Cauchy integral formula discussed in the fol-
lowing subsection, as well as its central importance in ran-
dom matrix theory, Q 1

nXXT(z) is the key object investigated
in this article.

For certain simple distributions of M, one may define a
so-called deterministic equivalent (Hachem et al., 2007;
Couillet & Debbah, 2011) Q̄M for QM, which is a de-
terministic matrix such that for all A 2 Rn⇥n and all
a,b 2 Rn of bounded (spectral and Euclidean, respec-
tively) norms, 1

n tr (AQM) � 1
n tr

�
AQ̄M

�
! 0 and

aT
�
QM � Q̄M

�
b ! 0 almost surely as n ! 1. As such,

deterministic equivalents allow to transfer random spectral
properties of M in the form of deterministic limiting quan-
tities and thus allows for a more detailed investigation.

3.2. Cauchy’s integral formula

First note that the resolvent QM(z) has the same eigenspace
as M, with associated eigenvalue �i replaced by 1

�i�z . As
discussed at the end of Section 2, our objective is to evalu-
ate functions of these eigenvalues, which reminds us of the
fundamental Cauchy’s integral formula, stating that for any
function f holomorphic on an open subset U of the complex
plane, one can compute f(�) by contour integration. More
concretely, for a closed positively (counter-clockwise) ori-
ented path � in U with winding number one (i.e., describing
a 360� rotation), one has, for � contained in the surface de-
scribed by �, 1

2⇡i

H
�

f(z)
z��dz = f(�) and 1

2⇡i

H
�

f(z)
z��dz = 0

if � lies outside the contour of �.

With Cauchy’s integral formula, one is able to evaluate
more sophisticated functionals of the random matrix M.
For example, for f(M) ⌘ aTeMb one has

f(M) = � 1

2⇡i

I

�
exp(z)aTQM(z)b dz

with � a positively oriented path circling around all the
eigenvalues of M. Moreover, from the previous subsection
one knows that the bilinear form aTQM(z)b is asymptot-
ically close to a non-random quantity aTQ̄M(z)b. One
thus deduces that the functional aTeMb has an asymp-
totically deterministic behavior that can be expressed as
� 1

2⇡i

H
� exp(z)a

TQ̄M(z)b dz.

This observation serves in the present article as the foun-
dation for the performance analysis of the gradient-based
classifier, as described in the following section.

4. Temporal Evolution of Training and
Generalization Performance

With the explicit expression of w(t) in (1), we now turn our
attention to the training and generalization performances of
the classifier as a function of the training time t. To this end,
we shall be working under the following assumptions.
Assumption 1 (Growth Rate). As n ! 1,

1.
p
n ! c 2 (0,1).

2. For a = {1, 2},
na
n ! ca 2 (0, 1).

3. kµk = O(1).

The above assumption ensures that the matrix 1
nXXT is of

bounded operator norm for all large n, p with probability
one (Bai & Silverstein, 1998).
Assumption 2 (Random Initialization). Let w0 ⌘ w(t =
0) be a random vector with i.i.d. entries of zero mean, vari-

ance �
2
/p for some � > 0 and finite fourth moment.

We first focus on the generalization performance, i.e., the
average performance of the trained classifier taking as input
an unseen new datum x̂ drawn from class C1 or C2.

4.1. Generalization Performance

To evaluate the generalization performance of the classifier,
we are interested in two types of misclassification rates, for
a new datum x̂ drawn from class C1 or C2, as

P(w(t)Tx̂ > 0 | x̂ 2 C1), P(w(t)Tx̂ < 0 | x̂ 2 C2).

Since the new datum x̂ is independent of w(t), w(t)Tx̂ is a
Gaussian random variable of mean ±w(t)Tµ and variance
kw(t)k2. The above probabilities can therefore be given via
the Q-function: Q(x) ⌘ 1p

2⇡

R1
x exp

⇣
�u2

2

⌘
du. We thus

resort to the computation of w(t)Tµ as well as w(t)Tw(t)
to evaluate the aforementioned classification error.

For µTw(t), with Cauchy’s integral formula we have

µTw(t) = µT
e
�↵t

n XXT

w0 + µT
⇣
Ip � e

�↵t
n XXT

⌘
wLS

= � 1

2⇡i

I

�
ft(z)µ

T

✓
1

n
XXT � zIp

◆�1

w0 dz

� 1

2⇡i

I

�

1� ft(z)

z
µT

✓
1

n
XXT � zIp

◆�1 1

n
Xy dz

with ft(z) ⌘ exp(�↵tz), for a positive closed path � cir-
cling around all eigenvalues of 1

nXXT. Note that the data
matrix X can be rewritten as

X = �µjT1 + µjT2 + Z = µyT + Z
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with Z ⌘
⇥
z1, . . . , zn

⇤
2 Rp⇥n of i.i.d. N (0, 1) entries

and ja 2 Rn the canonical vectors of class Ca such that
(ja)i = �xi2Ca . To isolate the deterministic vectors µ and
ja’s from the random Z in the expression of µTw(t), we
exploit Woodbury’s identity to obtain

✓
1

n
XXT � zIp

◆�1

= Q(z)�Q(z)
⇥
µ 1

nZy
⇤


µTQ(z)µ 1 + 1

nµ
TQ(z)Zy

⇤ �1 + 1
ny

TZTQ(z) 1nZy

��1 
µT

1
ny

TZT

�
Q(z)

where we denote the resolvent Q(z) ⌘
�
1
nZZ

T � zIp
��1,

a deterministic equivalent of which is given by

Q(z) $ Q̄(z) ⌘ m(z)Ip

with m(z) determined by the popular Marčenko–Pastur
equation (Marčenko & Pastur, 1967)

m(z) =
1� c� z

2cz
+

p
(1� c� z)2 � 4cz

2cz
(2)

where the branch of the square root is selected in such a
way that =(z) ·=m(z) > 0, i.e., for a given z there exists a
unique corresponding m(z).

Substituting Q(z) by the simple form deterministic equiv-
alent m(z)Ip, we are able to estimate the random vari-
able µTw(t) with a contour integral of some deterministic
quantities as n, p ! 1. Similar arguments also hold for
w(t)Tw(t), together leading to the following theorem.

Theorem 1 (Generalization Performance). Let Assump-

tions 1 and 2 hold. As n ! 1, with probability one

P(w(t)Tx̂ > 0 | x̂ 2 C1)�Q

✓
Ep
V

◆
! 0

P(w(t)Tx̂ < 0 | x̂ 2 C2)�Q

✓
Ep
V

◆
! 0

where

E ⌘ � 1

2⇡i

I

�

1� ft(z)

z

kµk2m(z) dz

(kµk2 + c)m(z) + 1

V ⌘ 1

2⇡i

I

�

"
1
z2 (1� ft(z))

2

(kµk2 + c)m(z) + 1
� �

2
f
2
t (z)m(z)

#
dz

with � a closed positively oriented path that contains all

eigenvalues of
1
nXXT

and the origin, ft(z) ⌘ exp(�↵tz)
and m(z) given by Equation (2).

Although derived from the case p < n, Theorem 1 also
applies when p > n. To see this, note that with Cauchy’s
integral formula, for z 6= 0 not an eigenvalue of 1

nXXT

(thus not of 1
nX

TX), one has X
�
1
nX

TX� zIn
��1

y =

�
1
nXXT � zIp

��1
Xy, which further leads to the same ex-

pressions as in Theorem 1. Since 1
nXXT and 1

nX
TX have

the same eigenvalues except for additional zero eigenvalues
for the larger matrix, the path � remains unchanged (as we
demand that � contains the origin) and hence Theorem 1
holds true for both p < n and p > n. The case p = n can
be obtained by continuity arguments.

4.2. Training performance

To compare generalization versus training performance, we
are now interested in the behavior of the classifier when
applied to the training set X. To this end, we consider the
random vector XTw(t) given by

XTw(t) = XT
e
�↵t

n XXT

w0+XT
⇣
Ip � e

�↵t
n XXT

⌘
wLS .

Note that the i-th entry of XTw(t) is given by the bilinear
form eTi X

Tw(t), with ei the canonical vector with unique
non-zero entry [ei]i = 1. With previous notations we have

eTi X
Tw(t)

= � 1

2⇡i

I

�
ft(z, t)e

T
i X

T

✓
1

n
XXT � zIp

◆�1

w0 dz

� 1

2⇡i

I

�

1� ft(z)

z
eTi

1

n
XT

✓
1

n
XXT � zIp

◆�1

Xy dz

which yields the following results.

Theorem 2 (Training Performance). Under the assumptions

and notations of Theorem 1, as n ! 1,

P(w(t)Txi > 0 | xi 2 C1)�Q

 
E⇤p

V⇤ � E2
⇤

!
! 0

P(w(t)Txi < 0 | xi 2 C2)�Q

 
E⇤p

V⇤ � E2
⇤

!
! 0

almost surely, with

E⇤ ⌘ 1

2⇡i

I

�

1� ft(z)

z

dz

(kµk2 + c)m(z) + 1

V⇤ ⌘ 1

2⇡i

I

�

"
1
z (1� ft(z))

2

(kµk2 + c)m(z) + 1
� �

2
f
2
t (z)zm(z)

#
dz.

In Figure 1 we compare finite dimensional simulations with
theoretical results obtained from Theorem 1 and 2 and ob-
serve a very close match, already for not too large n, p. As t
grows large, the generalization error first drops rapidly with
the training error, then goes up, although slightly, while
the training error continues to decrease to zero. This is
because the classifier starts to over-fit the training data
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Figure 1. Training and generalization performance for µ =
[2;0p�1], p = 256, n = 512, �2 = 0.1, ↵ = 0.01 and
c1 = c2 = 1/2. Results obtained by averaging over 50 runs.

X and performs badly on unseen ones. To avoid over-
fitting, one effectual approach is to apply regularization
strategies (Bishop, 2007), for example, to “early stop” (at
t = 100 for instance in the setting of Figure 1) in the
training process. However, this introduces new hyperpa-
rameters such as the optimal stopping time topt that is of
crucial importance for the network performance and is often
tuned through cross-validation in practice. Theorem 1 and 2
tell us that the training and generalization performances,
although being random themselves, have asymptotically
deterministic behaviors described by (E⇤, V⇤) and (E, V ),
respectively, which allows for a deeper understanding on
the choice of topt, since E, V are in fact functions of t via
ft(z) ⌘ exp(�↵tz).

Nonetheless, the expressions in Theorem 1 and 2 of contour
integrations are not easily analyzable nor interpretable. To
gain more insight, we shall rewrite (E, V ) and (E⇤, V⇤)
in a more readable way. First, note from Figure 2 that
the matrix 1

nXXT has (possibly) two types of eigenvalues:
those inside the main bulk (between �� ⌘ (1�

p
c)2 and

�+ ⌘ (1 +
p
c)2) of the Marčenko–Pastur distribution

⌫(dx) =

p
(x� ��)+(�+ � x)+

2⇡cx
dx+

✓
1� 1

c

◆+

�(x)

(3)
and a (possibly) isolated one1 lying away from [��,�+],
that shall be treated separately. We rewrite the path � (that
contains all eigenvalues of 1

nXXT) as the sum of two paths

1The existence (or absence) of outlying eigenvalues for the
sample covariance matrix has been largely investigated in the
random matrix literature and is related to the so-called “spiked
random matrix model”. We refer the reader to (Benaych-Georges
& Nadakuditi, 2011) for an introduction. The information carried
by these “isolated” eigenpairs also marks an important technical
difference to (Advani & Saxe, 2017) in which X is only composed
of noise terms.

�b and �s, that circle around the main bulk and the isolated
eigenvalue (if any), respectively. To handle the first integral
of �b, we use the fact that for any nonzero � 2 R, the limit
limz2Z!� m(z) ⌘ m̌(�) exists (Silverstein & Choi, 1995)
and follow the idea in (Bai & Silverstein, 2008) by choosing
the contour �b to be a rectangle with sides parallel to the
axes, intersecting the real axis at 0 and �+ and the horizontal
sides being a distance " ! 0 away from the real axis, to
split the contour integral into four single ones of m̌(x). The
second integral circling around �s can be computed with
the residue theorem. This together leads to the expressions
of (E, V ) and (E⇤, V⇤) as follows2

E =

Z
1� ft(x)

x
µ(dx) (4)

V =
kµk2 + c

kµk2

Z
(1� ft(x))2µ(dx)

x2
+ �

2

Z
f
2
t (x)⌫(dx)

(5)

E⇤ =
kµk2 + c

kµk2

Z
1� ft(x)

x
µ(dx) (6)

V⇤ =
kµk2 + c

kµk2

Z
(1� ft(x))2µ(dx)

x
+ �

2

Z
xf

2
t (x)⌫(dx)

(7)

where we recall ft(x) = exp(�↵tx), ⌫(x) given by (3) and
denote the measure

µ(dx) ⌘
p

(x� ��)+(�+ � x)+

2⇡(�s � x)
dx+

(kµk4 � c)+

kµk2 ��s(x)

(8)
as well as

�s = c+ 1 + kµk2 + c

kµk2 � (
p
c+ 1)2 (9)

with equality if and only if kµk2 =
p
c.

A first remark on the expressions of (4)-(7) is that E⇤ differs
from E only by a factor of kµk2+c

kµk2 . Also, both V and V⇤
are the sum of two parts: the first part that strongly depends
on µ and the second one that is independent of µ. One thus
deduces for kµk ! 0 that E ! 0 and

V !
Z

(1� ft(x))2

x2
⇢(dx) + �

2

Z
f
2
t (x)⌫(dx) > 0

with ⇢(dx) ⌘
p

(x���)+(�+�x)+

2⇡(c+1) dx and therefore the gen-
eralization performance goes to Q(0) = 0.5. On the other
hand, for kµk ! 1, one has Ep

V
! 1 and hence the

classifier makes perfect predictions.

In a more general context (i.e., for Gaussian mixture mod-
els with generic means and covariances as investigated in

2We defer the readers to Section A in Supplementary Material
for a detailed exposition of Theorem 1 and 2, as well as (4)-(7).
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(Benaych-Georges & Couillet, 2016), and obviously for
practical datasets), there may be more than one eigenvalue
of 1

nXXT lying outside the main bulk, which may not be
limited to the interval [��,�+]. In this case, the expression
of m(z), instead of being explicitly given by (2), may be
determined through more elaborate (often implicit) formula-
tions. While handling more generic models is technically
reachable within the present analysis scheme, the results are
much less intuitive. Similar objectives cannot be achieved
within the framework presented in (Advani & Saxe, 2017);
this conveys more practical interest to our results and the
proposed analysis framework.

0 1 2 3 4

Eigenvalues of 1
nXXT

Marčenko–Pastur distribution
Theory: �s given in (9)

0 1 2 3 4

Eigenvalues of 1
nXXT

Marčenko–Pastur distribution
Theory: �s given in (9)

Figure 2. Eigenvalue distribution of 1
nXXT for µ = [1.5;0p�1],

p = 512, n = 1024 and c1 = c2 = 1/2.

5. Discussions
In this section, with a careful inspection of (4) and (5), dis-
cussions will be made from several different aspects. First
of all, recall that the generalization performance is simply
given by Q

⇣
µTw(t)
kw(t)k

⌘
, with the term µTw(t)

kw(t)k describing the
alignment between w(t) and µ, therefore the best possible
generalization performance is simply Q(kµk). Nonetheless,
this “best” performance can never be achieved as long as
p/n ! c > 0, as described in the following remark.

Remark 1 (Optimal Generalization Performance). Note

that, with Cauchy–Schwarz inequality and the fact thatR
µ(dx) = kµk2 from (8), one has

E
2 

Z
(1� ft(x))2

x2
dµ(x) ·

Z
dµ(x)  kµk4

kµk2 + c
V

with equality in the right-most inequality if and only if

the variance �
2 = 0. One thus concludes that E/

p
V 

kµk2/
p
kµk2 + c and the best generalization performance

(lowest misclassification rate) is Q(kµk2/
p
kµk2 + c) and

can be attained only when �
2 = 0.

The above remark is of particular interest because, for a
given task (thus p,µ fixed) it allows one to compute the

minimum training data number n to fulfill a certain request
of classification accuracy.

As a side remark, note that in the expression of E/
p
V

the initialization variance �
2 only appears in V , meaning

that random initializations impair the generalization perfor-
mance of the network. As such, one should initialize with
�
2 very close, but not equal, to zero, to obtain symmetry

breaking between hidden units (Goodfellow et al., 2016) as
well as to mitigate the drop of performance due to large �

2.

In Figure 3 we plot the optimal generalization performance
with the corresponding optimal stopping time as functions
of �

2, showing that small initialization helps training in
terms of both accuracy and efficiency.

10�2 10�1 100
3

4

5

6

7

8
·10�2

�2

Optimal error rates

10�2 10�1 100
0

200

400

600

�2

Optimal stopping time

Figure 3. Optimal performance and corresponding stopping time
as functions of �2, with c = 1/2, kµk2 = 4 and ↵ = 0.01.

Although the integrals in (4) and (5) do not have nice closed
forms, note that, for t close to 0, with a Taylor expansion of
ft(x) ⌘ exp(�↵tx) around ↵tx = 0, one gets more inter-
pretable forms of E and V without integrals, as presented
in the following subsection.

5.1. Approximation for t close to 0

Taking t = 0, one has ft(x) = 1 and therefore E = 0,
V = �

2
R
⌫(dx) = �

2, with ⌫(dx) the Marčenko–Pastur
distribution given in (3). As a consequence, at the beginning
stage of training, the generalization performance is Q(0) =
0.5 for �2 6= 0 and the classifier makes random guesses.

For t not equal but close to 0, the Taylor expansion of
ft(x) ⌘ exp(�↵tx) around ↵tx = 0 gives

ft(x) ⌘ exp(�↵tx) ⇡ 1� ↵tx+O(↵2
t
2
x
2).

Making the substitution x = 1 + c � 2
p
c cos ✓ and with

the fact that
R ⇡
0

sin2 ✓
p+q cos ✓d✓ = p⇡

q2

⇣
1�

p
1� q2/p2

⌘
(see

for example 3.644-5 in (Gradshteyn & Ryzhik, 2014)), one
gets E = Ẽ +O(↵2

t
2) and V = Ṽ +O(↵2

t
2), where

Ẽ ⌘ ↵t

2
g(µ, c) +

(kµk4 � c)+

kµk2 ↵t = kµk2↵t
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Ṽ ⌘ kµk2 + c

kµk2
(kµk4 � c)+

kµk2 ↵
2
t
2 +

kµk2 + c

kµk2
↵
2
t
2

2
g(µ, c)

+ �
2(1 + c)↵2

t
2 � 2�2

↵t+

✓
1� 1

c

◆+

�
2

+
�
2

2c

�
1 + c� (1 +

p
c)|1�

p
c|
�

= (kµk2 + c+ c�
2)↵2

t
2 + �

2(↵t� 1)2

with g(µ, c) ⌘ kµk2+ c
kµk2 �

⇣
kµk+

p
c

kµk

⌘ ���kµk �
p
c

kµk

���

and consequently 1
2g(µ, c) +

(kµk4�c)+

kµk2 = kµk2. It is
interesting to note from the above calculation that, although
E and V seem to have different behaviors3 for kµk2 >

p
c

or c > 1, it is in fact not the case and the extra part of
kµk2 >

p
c (or c > 1) compensates for the singularity of

the integral, so that the generalization performance of the
classifier is a smooth function of both kµk2 and c.

Taking the derivative of Ẽp
Ṽ

with respect to t, one has

@

@t

Ẽp
Ṽ

=
↵(1� ↵t)�2

Ṽ 3/2

which implies that the maximum of Ẽp
Ṽ

is kµk2p
kµk2+c+c�2

and can be attained with t = 1/↵. Moreover, taking t = 0

in the above equation one gets @
@t

Ẽp
Ṽ

��
t=0

= ↵
� . Therefore,

large � is harmful to the training efficiency, which coincides
with the conclusion from Remark 1.

The approximation error arising from Taylor expansion can
be large for t away from 0, e.g., at t = 1/↵ the difference
E � Ẽ is of order O(1) and thus cannot be neglected.

5.2. As t ! 1: least-squares solution

As t ! 1, one has ft(x) ! 0 which results in the
least-square solution wLS = (XXT)�1Xy or wLS =
X(XTX)�1y and consequently

µTwLS

kwLSk
=

kµk2p
kµk2 + c

s

1�min

✓
c,
1

c

◆
. (10)

Comparing (10) with the expression in Remark 1, one ob-
serves that when t ! 1 the network becomes “over-trained”
and the performance drops by a factor of

p
1�min(c, c�1).

This becomes even worse when c gets close to 1, as is con-
sistent with the empirical findings in (Advani & Saxe, 2017).
However, the point c = 1 is a singularity for (10), but not for
Ep
V

as in (4) and (5). One may thus expect to have a smooth
and reliable behavior of the well-trained network for c close

3This phenomenon has been largely observed in random matrix
theory and is referred to as “phase transition”(Baik et al., 2005).

to 1, which is a noticeable advantage of gradient-based
training compared to simple least-square method. This co-
incides with the conclusion of (Yao et al., 2007) in which
the asymptotic behavior of solely n ! 1 is considered.

In Figure 4 we plot the generalization performance from
simulation (blue line), the approximation from Taylor ex-
pansion of ft(x) as described in Section 5.1 (red dashed
line), together with the performance of wLS (cyan dashed
line). One observes a close match between the result from
Taylor expansion and the true performance for t small, with
the former being optimal at t = 100 and the latter slowly
approaching the performance of wLS as t goes to infinity.

In Figure 5 we underline the case c = 1 by taking p = n =
512 with all other parameters unchanged from Figure 4.
One observes that the simulation curve (blue line) increases
much faster compared to Figure 4 and is supposed to end
up at 0.5, which is the performance of wLS (cyan dashed
line). This confirms a serious degradation of performance
for c close to 1 of the classical least-squares solution.
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Figure 4. Generalization performance for µ =
⇥
2;0p�1

⇤
, p =

256, n = 512, c1 = c2 = 1/2, �2 = 0.1 and ↵ = 0.01. Simula-
tion results obtained by averaging over 50 runs.

5.3. Special case for c = 0

One major interest of random matrix analysis is that the ratio
c appears constantly in the analysis. Taking c = 0 signifies
that we have far more training data than their dimension.
This results in both ��, �+ ! 1, �s ! 1 + kµk2 and

E ! kµk2 1� ft(1 + kµk2)
1 + kµk2

V ! kµk2
✓
1� ft(1 + kµk2)

1 + kµk2

◆2

+ �
2
f
2
t (1).

As a consequence, Ep
V

! kµk if �2 = 0. This can be
explained by the fact that with sufficient training data the
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Figure 5. Generalization performance for µ =
⇥
2;0p�1

⇤
, p =

512, n = 512, c1 = c2 = 1/2, �2 = 0.1 and ↵ = 0.01. Simula-
tion results obtained by averaging over 50 runs.

classifier learns to align perfectly to µ so that µTw(t)
kw(t)k = kµk.

On the other hand, with initialization �
2 6= 0, one always

has Ep
V

< kµk. But still, as t goes large, the network
forgets the initialization exponentially fast and converges to
the optimal w(t) that aligns to µ.

In particular, for �2 6= 0, we are interested in the optimal
stopping time by taking the derivative with respect to t,

@

@t

Ep
V

=
↵�

2kµk2

V 3/2

kµk2ft(1 + kµk2) + 1

1 + kµk2 f
2
t (1) > 0

showing that when c = 0, the generalization performance
continues to increase as t grows and there is in fact no
“over-training” in this case.
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Figure 6. Training and generalization performance for MNIST data
(number 1 and 7) with n = p = 784, c1 = c2 = 1/2, ↵ = 0.01
and �2 = 0.1. Results obtained by averaging over 100 runs.

6. Numerical Validations
We close this article with experiments on the popular
MNIST dataset (LeCun et al., 1998) (number 1 and 7). We
randomly select training sets of size n = 784 vectorized
images of dimension p = 784 and add artificially a Gaus-
sian white noise of �10dB in order to be more compliant
with our toy model setting. Empirical means and covari-
ances of each class are estimated from the full set of 13 007
MNIST images (6 742 images of number 1 and 6 265 of
number 7). The image vectors in each class are whitened
by pre-multiplying C�1/2

a and re-centered to have means of
±µ, with µ half of the difference between means from the
two classes. We observe an extremely close fit between our
results and the empirical simulations, as shown in Figure 6.

7. Conclusion
In this article, we established a random matrix approach
to the analysis of learning dynamics for gradient-based al-
gorithms on data of simultaneously large dimension and
size. With a toy model of Gaussian mixture data with ±µ
means and identity covariance, we have shown that the train-
ing and generalization performances of the network have
asymptotically deterministic behaviors that can be evaluated
via so-called deterministic equivalents and computed with
complex contour integrals (and even under the form of real
integrals in the present setting). The article can be gener-
alized in many ways: with more generic mixture models
(with the Gaussian assumption relaxed), on more appro-
priate loss functions (logistic regression for example), and
more advanced optimization methods.

In the present work, the analysis has been performed on the
“full-batch” gradient descent system. However, the most
popular method used today is in fact its “stochastic” version
(Bottou, 2010) where only a fixed-size (nbatch) randomly
selected subset (called a mini-batch) of the training data is
used to compute the gradient and descend one step along
with the opposite direction of this gradient in each iteration.
In this scenario, one of major concern in practice lies in
determining the optimal size of the mini-batch and its in-
fluence on the generalization performance of the network
(Keskar et al., 2016). This can be naturally linked to the
ratio nbatch/p in the random matrix analysis.

Deep networks that are of more practical interests, however,
need more efforts. As mentioned in (Saxe et al., 2013; Ad-
vani & Saxe, 2017), in the case of multi-layer networks,
the learning dynamics depend, instead of each eigenmode
separately, on the coupling of different eigenmodes from
different layers. To handle this difficulty, one may add extra
assumptions of independence between layers as in (Choro-
manska et al., 2015) so as to study each layer separately and
then reassemble to retrieve the results of the whole network.
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