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Supplementary: Optimal Rates of Sketched-regularized Algorithms for Least-squares
Regression over Hilbert Spaces

In this appendix, we first prove the lemmas stated in Section 4 and Corollary 5. We then review how the regression setting
considered in this paper covers non-parametric regression with kernel methods.

A. Proofs for Lemmas in Section 4 and Corollary 5

For notational simplicity, we denote
Ra(u) =1—Gx(u)u, (43)

and

N =to(T(T+M)7.
To proceed the proof, we need some basic operator inequalities.

Lemma 16. (Fujii et al., 1993) Let A and B be two positive bounded linear operators on a separable Hilbert space. Then
|A°B?|| < [|AB||®, when0 <s<1.

Lemma 17. Let Hy, Hs be two separable Hilbert spaces and S : Hy — Hs a compact operator. Then for any function
f10 18] = [0, 00],
f(ES")S = Sf(S*S).

Proof. The result can be proved using singular value decomposition of a compact operator. O

Lemma 18. Let A and B be two non-negative bounded linear operators on a separable Hilbert space with
max(||Al], | B||) < &2 for some non-negative k*. Then for any { > 0,

|AS = BC|| < Ce,ullA = B|*M, (44)
where
Cch o — 1 when ¢ <1, 45)
A 2CK%¢72  when ¢ > 1.

Proof. The proof is based on the fact that uS is operator monotone if 0 < ¢ < 1. While for ¢ > 1, the proof can be found in,
e.g., (Dicker et al., 2016). O

Lemma 19. Let X and A be bounded linear operators on a separable Hilbert space. Suppose that X = 0 and || A|| < 1.
Then for any s € [0, 1],

X*A°X < (X*AX)®.
Proof. Following from (Hansen, 1980) and the fact that the function u® with s € [0, 1] is operator monotone. O
A.1. Proof of Proposition 7

Adding and subtracting with the same term, and using the triangle inequality, we have
L7 (SpwX = Fr)llp < LTS, (WX —wr)llp + I1£74(Spwn = fa)llp-
Applying Part 1) of Lemma 6 to bound the last term, with 0 < a < (,

1£74(Spwk — fr)llp SILTOSH(wE — wi)ll, + RAS®
<[ LTS, T 5 ||| T2 (wE — wa)llir + RASTO

Using the spectral theorem for compact operators, £ = S,S;, and T = §7S,,, we have

|£7eS, T3] < 1,
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and thus
1£74(Spwk = fa)llp < IT77%wk — wa)llm + RAS

Adding and subtracting with the same term, and using the triangle inequality,
1™ (Spk = Fr)llp < IT27° @5 = Pan)lar + 7271 = Plonllr + RA"
Since P is an orthogonal projected operator and a € [0, 1], we have
|72 = P)oallm
=720 = P)' 721~ Planln
ST = P (= P)TRIT 2wallm

<IT2(I = P)|*7*)l(1 = P)T % |7 Re>C 7D+ A1
:Aé—aTRHQ(Cfl)Jr /\(4*1)—’

(where for the last second inequality, we used Lemma 16 and Part 2) of Lemma 6), and we subsequently get that
£ (Spwk = fr)llp < T2 (W] = Pwn)lli + 7RR*CTDACTD AL 4 RAC,
Since forallw € H, and a € [0, 3],
172wl <ITY T * TS "wla
1 g g1 1
S sl [T
—a|| 733 |1-2a)| 73

AT TP I I Tawl e

ATAY Y TAwlla
(where we used Lemma 16 for the last second inequality), we get

3—a 3 z - - — —a
1£7%(S,w% — fr)ll, S ATOAZ T A (wE — Pwy)||g + TR D+ AC—D-Al=a 4 RC—a, (46)

1
In what follows, we estimate || 7.3 (w% — Pwy )| a-

Introducing with (11), with P? = P,
1 1
ITa Wk = Pun)lla = [TAP(GA(PTP)PSLy — Pwy)|u-

Since for any w € H,

1
ITAPwll} = (PTaPw.whn < (PTeP + Nw,whi = |(PTP + ) dwlf},
and we thus get
1 1
ITAWE = Px)lli < U3 (G (U) PSzy — Peoy)|l,

where we denote
U=PTxP, Ux=U+\ 47)

Subtracting and adding with the same term, and applying the triangle inequality, with the notation R given by (43) and
P? = P, we have

1 1 1
ITA WS = Pox)lla < [[URGAU)P(SLy — TuPwy) |l + || Uy Ra(U) Pwy - (48)
~—_——

Term.A Term.B
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We will estimate the above two terms of the right-hand side.
Estimating ||Term.A | 5:
Note that

(U3 GAU) PTA) (U3 G U PTR)"
= U G\ (U) (U + APY)GU)UZ
= [UAQ,\(U)]Q

where we used P2 = P < T for the last inequality. Thus, combing with ||A| = ||A* Az,

L3 GAU) PTAI < [GA )]

Using the spectral theorem, with ||[U/|| < || 7x|| < 2 (implied by (6)), and then applying (12),

IUEGAUPTA] < sup |(u+ NGa(w)| < .

u€[0,k2]
Using the above inequality, and by a simple calculation,
1 1 _1 1
| Term Al <[Ug G @) PTA T (Siy — TxPws)ll < 7T (Siy — TPyl
Adding and subtracting with the same terms, and using the triangle inequality,
_1 _1
[Term. Al <7[|T* (Sxy = Tewa)la + 7 Tex* Tl = P)wn) |l
11 1 %
STIT NPT IT 2 (Sey = Txwn) |l +TH o (I = P)wx) ||
1 _1
STALT, 2 (Sxy = Tewn )l + 7l Te\* Tl = P)wr) |
1 _1
<TAF (Do + | T3 F (Twy - S*fH)IIH) + 7l Tex* T = P |
<TAF (s + [T S5 IS pwa — faallo) + 7l Tn? Tl = Plwos)ll.
_1
where we used 7 = S, S, for the last inequality. Applying Part 1) of Lemma 6 and || 7, *S;[| <1,

|Term. Ay < TA (Ag + RXS) + 7| T\ 2 T (I — P)wn) |- (49)

In what follows, we estimate ||7,,2 7x(/ — P)w,|| &, considering two different cases.
Case ( < 1.
We have

wu
-

1T Tl = Plosllir < I T TTx NTATS FIITSE (T = Phoslli < AF T3 (T = Pheox .

Since P is a projection operator, (I — P)? = I — P, and we thus have
ITes? TolI = Phnllir < AF|TE (I = P — PYTH [T 2eoallar < 7AF T2 (I — P)|AZRAST,
where for the last inequality, we used Part 2) of Lemma 6. Note that for any w € H with ||w||g = 1,
1
1T (I = P)ellfy = (T = P, (I = Pyw)ar = | T*(I = Palffy + M = Pyl < [IT*(T = P)* +A < As + A

It thus follows that .
ITE(I = P)llir < (A5 + V)2, (50)

and thus

to»—A

| T2 Tx(I — P)wy || < A (As + \)TRASL



Optimal Rates of Sketched-regularized Algorithms for Least-Squares Regression over Hilbert Spaces

Introducing the above into (49), we know that Term.A can be estimated as (¢ < 1)
1
[Term. Al < 7A7 (A + (7 + 1)RAC + 7RAA;) . (51)

Case ( > 1.
We first have

1T Tl = Pl <AFITs Tl = Pl

<AF (T3 (T =TI = Ploall + T3 T = Ponlln )

<A} (Ball(T = Pyorlli + I THT = Pynllar)
Since P is a projection operator, (I — P)? = I — P, we thus have

1T Tl = Pyl <AF (Aalll = PUITHIT 3wl + 1T = P = PYTH T Fenlln)
<AZ (kAL + As) [T 3walla,
where we used (3) for the last inequality. Applying Part 2) of Lemma 6, we get
1Tt Tl = Ploslir <AF (584 + Ag) i IR,
Introducing the above into (49), we get for ¢ > 1,
ITerm. Al <TA? (A2 4 RS + (kA + As) m2<<—1>R) . (52)

Estimating || Term.B|| z:

We estimate || Term.B|| g, considering two different cases.
Casel: ( < 1.

We first have

UE RA(U)PTE (UE RAU)PTE)" =UZ RAWU)U + ANP?)RAUUS
< (RA(Z’{)UA)27

where we used P? = P =< I for the last inequality. Thus, according to || A|| = |AA*| 2,

1 1
X RAU)PTAN < [IRAUUA-

Using the spectral theorem and (13), and noting that ||[U/|| < || P||?|/7x|| < k2 by (6), we get

[UZRAU)PTAI < sup  [Ra(u)(u+A)| < A

uw€[0,k2?]

Using the above inequality and by a direct calculation,

1 1 =1 1 1
ITerm Bl < U7 RAW)PTAINTE T2 IT 2wnllm < AAZ [T 2wnla
Applying Part 2) of Lemma 6, we get
1
|Term.B|[;y < TRAAZ. (53)
Applying the above and (51) into (48), we know that for any ¢ € [0, 1],

[ TA WS — Pox)|lar < TAZ (Ag + (27 + 1)RAC + TRAZNT) .

Using the above into (46), we can prove the first desired result.

Casell: ( > 1

We denote L

PTZ, Vx=V+A (54)

<
I
wa—t
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Noting that i = PT, P = Pﬂ% (P7f)*7 thus following from Lemma 17 (with f(u) = (u+ \)2R(u)) and P2 = P,
1 1 1 1 11

U RAQPTE | = U RA @) (PTHTE| = |(PTEVERAO T
Adding and subtracting with the same term, using the triangle inequality,

1 _1 11 | 11 | |

JUZ RA@)PT 2 | SIPT2VERAW)VE | + [IPTEV RAW)(TET = V)|
SIPTVRRAWVE T + IPT VI RAW) [T ™ = Ve
Using Lemma 18, with (6) and ||V|| < || Tx|| < K2,
I3 RAW)PT %] < [|PTZVERAWVIVE | + [ PTo V3 RA(V) |52 | Toe — V| DN

Using || A|| = ||A*A||z, P2 = P, the spectral theorem, and (13), for any s € [1,7],

IPTEVERAMWVV | =V RAWAVRAV)V |2

< sup [Ra(uw)ut”2 (u+A)2] < A
u€[0,k2]

and thus we get
U RAU)PTE ™ F[| < A 4 Ar2CD |, — |- DAL
Using Lemma 14, (I — P)? = I — P and ||A* A|| = || A||?, we have
1T = VI = 17 (1 = PYTE | < T = Tl + T3 = PYT? ] < g + s,
and we thus get
A2 RAU)PTE 2| < XS 4+ Ae2E25 (Ag 4 Ag) €N, (55)
Now we are ready to estimate || Term.B| . By some direct calculations and Part 2) of Lemma 6,
| Term.Bu < Uy RAQ)PT I T4 <wnll < U RAQOPT 4 7.
Adding and subtracting with the same term, and using the triangle inequality,
1 (-1 1 1 —1
| Term. Bl < 7R (U RAGOPTE |+ Ui RA@OIITS = T2 -
Using the spectral theorem, with [[U/|| < || Tx|| < 2 by (6) and (13),

ERAU)| = sup |Ra(u)(u+A\)Z| < A%,

u€]0,k2?]

and we thus get
ITerm Bl < 7R (JUi RAQOPT |+ AF T3 = 7)),
Applying Lemma 18, with (3) and (6),
|Term. Bl < 7R (I RA@)PT 2| + A a9+ AL
Introducing with (55),
ITerm.B||g < 7R (AC + 126D N (Ag 4 A5)CDA n<2<*3>+A%A§<*%>“) .
Introducing the above inequality and (52) into (48), noting that A; > 1 and k2 > 1, we know that for any ¢ > 1,
T2 (w8 — Pwy) | < TA? (A2 F2RAS + K2C TV R(kT AL + 7A5 + A(Ag + Ag)C—DAL ¢ A%Agf‘%’“)) :

Using the above into (46), and by a simple calculation, we can prove the second desired result.
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A.2. Proofs of Lemma 12

We first introduce the following basic probabilistic estimate.

Lemma 20. Let X1, , X, be a sequence of independently and identically distributed self-adjoint Hilbert-Schmidt
operators on a separable Hilbert space. Assume that E[X1] = 0, and || X1|| < B almost surely for some B > 0. Let V be a
positive trace-class operator such that E[X2] < V. Then with probability at least 1 — 6, (§ €]0, 1), there holds

2B3  [2]V|B AtrY
=1 .
sm N T Ple

The above lemma was first proved in (Hsu et al., 2014; Tropp, 2012) for the matrix case, and it was later extended to the
general operator case in (Minsker, 2011), see also (Rudi et al., 2015; Bach, 2015; Dicker et al., 2017). We refer to (Rudi
et al., 2015; Dicker et al., 2017) for the proof.

Using the above lemma, we can prove Lemma 12.

Proof of Lemma 12. We use Lemma 20 to prove the result. Let W = m~2 GSy. Denote the i-th row of G by a} for all
i € [m]. Using Tx = SiSx, we have

1

% * _% _% * —1 * 3 1 -
V(T = WW)TGE = T3 Sul = m ™ GIG)S T = — ),
mis

where we let ., |
Xi = Ton* SeI — a;a)) Sx Ty
Since a; ~ F, according to the isotropy property (26) of F/,
]E[Xl] = T_AES;(I — E[azaz]) T B

X XA\

Note that

_1
H7:<)\zsxal‘|H_ = Zal Tl Zlal T s -
H
Using Cauchy-Schwarz inequality and the bounded assumption (27),

ol
ol

1 1
1Tt Szanll < - flala ZH o EZ Tyl

According to tr(z ® ) = ||z||% and the definition of T, we know that the left-hand side is y/tr(7,,! 7x), and thus
1
1T Sxanllm < /(T To).
Therefore,
170" Sxanai Su Ty || < tr(Ty* SxanaiSuTy*) < | Ton” Sxau iy < t2(T50 T,
and by [la — E[a]|| < [l + E[a], X
|2 < 26:(T3 To).
Moreover, using E[a — E[a]]? < Ea?,

Nl=

BIAP) < BT Sianal ST P =Bl T Siaal T SanaiseT,
=<tr(T, 7')7';5 E[alal]sxf;%

=tr(T T Toex T

X

]
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Letting V = tr(7;_/\17;)’7;_/\17;, a simple calculation shows that
VI = tr(Ty Tl Ty Txll < (T3 T)-

— Tx
Also, ||7;)\17;c|| = Hq“*x I

[+
tr(V) (75 Tx) . < A )
= X =tr(T, Tx) | 1+ .
VI TS Tl * 7l
Applying Lemma 20, one can prove the desired result. O

A.3. Proof of Lemma 13
If A > || 7x/||, then the result follows trivially,

1 1
(I = P)T |1 < (I = PP Tl < i

We thus only need to consider the case A < || Tx||. Let M = m™1S;G*GSx and My = M + \I. Applying Lemma 12, we
know that there exists a subset U, of R™*" with measure at least 1 — §, such that

_ _ ANZ (X 2N (A
|72 (7 - T2 < W5 W8 va e, (56)

* 3m m

Using Condition (39),
Ne(N) < bynfY
With A < || 7x||, we have
40 (1 N|Tsl) _,  8byn®

B <log 5 < log 5

and, combining with (40),

NGB, 2NG08 _ 2

3m m -3
Thus,
_ 2
’7;,\1/2(7 M)7;,\1/2H < 3 VG e U,
Following from (Caponnetto & De Vito, 2007),
—1/2 1 1/2 2
1M PTAIP = ITAMT M TAIR = (- T (T - M)TR )72,

we get

1ML T2 <3, VG € Uy (57)

Let W = m~'/2GSx. As P is the projection operator onto range{W*},
P=W*WWW = W*(WW* +X\)"'W = WWW*W + N~ = M(M+X)~*
where for the last second equality, we used Lemma 17. Thus (Rudi et al., 2015),
I—-P=T—-MM+XN"'=XM+N"!

It thus follows that

T (I P)Té < AT (M + )72 < ATA(M + )7 T3,
Using || A*A||? = || A||* and the above,
I~ PYTE | = T2 (I~ )T || < AITADE +3) M T4l = A + X) 273 |1 (58)

Applying (57), one can prove the desired result.
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A.4. Proof of Lemma 14
Since P is a projection operator, (I — P)?> = I — P. Then
|A*(I — P)A"|| = ||A*(I — P)(I = P)A"|| < [|A*(I = P)|[I(I — P)A"||.

Moreover, by Lemma 16,
s log s 1 s
|A*(I = P)|| = [|A22*(I — P)**| < ||A2(I — P)[|**.

Similarly, ||(I — P)At|| < ||(I — P)Az|/%. Thus,

|A*(T = P)A'| < |AZ (I = P)|**|[(I = P)AZ|[** = [|(I - P)A% |20+,
Using ||D||* = || D* D,
1A°(1 = P)A|| < [I( = P)A(I = P)]["*.
Adding and subtracting with the same term, using the triangle inequality, and noting that || — P|| < land s +¢ < 1,

1A°(1 = P)A"|| <[|(Z — P)A(I — P)|["*
<(II = PY(A=B)(I = P)|[ + (I = P)BU - P)[)"*"
<|l[A=B|**" + (I = P)B(I - P)||**",

which leads to the desired result using ||D*D|| = || DD*||.

A.5. Proof of Lemma 15

To prove the result, we need the following concentration inequality.

Lemma 21. Let wy, - - - , Wy, be i.i.d random variables in a separable Hilbert space with norm || - ||. Suppose that there are
two positive constants B and o? such that

1
E[||w; — E[wi]||'] < 5Z!Bl*%?, Vi > 2. (59)

Then for any 0 < § < 1/2, the following holds with probability at least 1 — 0,

1 & B o 2
— m — E <2 —+ —)log=.
m;w [n]|| = (m—’—\/ﬁ) 0g5
In particular, (59) holds if
|lw1|| < B/2 a.s., and IE[leHQ} < o2 (60)

The above lemma is a reformulation of the concentration inequality for sums of Hilbert-space-valued random variables from
(Pinelis & Sakhanenko, 1986). We refer to (Smale & Zhou, 2007; Caponnetto & De Vito, 2007) for the detailed proof.

1

_1 _1
Proof of Lemma 15. We first use Lemma 21 to estimate tr(7, >(7x — 7)7, ?). Note that
b LNy h e LY
tr(Ty 27T, ):52”7; $j||H:EZ§ja
Jj=1 j=1

1
where we let §; = || T, 2|3 forall j € [n]. Besides, it is easy to see that

n

S|



Optimal Rates of Sketched-regularized Algorithms for Least-Squares Regression over Hilbert Spaces

Using Assumption (2),

[

1 K
&< Sl < 5

and

K2N(N)
T
Applying Lemma 21, we get that there exists a subset V7 of Z™ with measure at least 1 — 4, such that for all z € V7,

K2 _1
E[||&]%] < TE”,T)\ 2ay | <

5

1 2k2 K2ZN(N) 1 2
nA nA ©

(T (T =TT, ) <2 ( +

Combining with Lemma 8, taking the union bounds, rescaling J, and noting that

(Tl T) = (T T AT A T

SITETR P (T Ty %)
ST T 12 (T2 (T = TIT ) + N ).

we get that there exists a subset V' of Z™ with measure at least 1 — §, such that forall z € V,

tI‘((’E{ + /\)—17;) < 3an,6/2,7<0> <2 <2/@2 n 1{2/\/()\)) ] 4

TV T Og(s*N(A))’

which leads to the desired result using A < 1, n\ > 1 and Assumption 3. O

A.6. Proof for Corollary 5

Proof. Using a similar argument as that for (58), with W = S, where X = {x1,--- , ., }, we get for any n > 0,
I(7 = PYT> |1 <l (T +m) 2T + )" /2|17,
Letting n = %, and using Lemma 8, we get that with probability at least 1 — 6,

. 1. 3m7Y
I—-P)T2|?2 < Zlog ——.
I = P)T2|P < —log

Combining with Corollary 3, one can prove the desired result. O

B. Learning with Kernel Methods

Let the input space = be a closed subset of Euclidean space R¢, the output space Y C R. Let x be an unknown but fixed
Borel probability measure on = x Y. Assume that {(&;,y;)}/", are i.i.d. from the distribution . A reproducing kernel
K is a symmetric function K : Z X Z — R such that (K (u;, uj))f j—1 s positive semidefinite for any finite set of points

{u;}f_, in Z. The kernel K defines a reproducing kernel Hilbert space (RKHS) (H, || - || ) as the completion of the linear
span of the set { K¢(-) := K (&, -) : £ € Z} with respect to the inner product (K¢, K,) i := K (&, u). Forany f € Hg, the
reproducing property holds: f(§) = (K¢, f) k-

Example B.1 (Sobolev Spaces). Let X = [0, 1] and the kernel

1-2)y, z>y.

Then the kernel induces a Sobolev Space H = {f : X — R|f is absolutely continuous , f(0) = f(1) =0, f € L*(X)}.
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In learning with kernel methods, one considers the following minimization problem

inf / ()~ dutey)

feHK

Since f(§) = (K¢, f) x by the reproducing property, the above can be rewritten as

inf / Kk~ )l ).

feEHK

Letting X = { K, : £ € E} and defining another probability measure p(K¢,y) = u(§,y), the above reduces to the learning
setting in Section 2.



