Supplementary: Optimal Rates of Sketched-regularized Algorithms for Least-squares Regression over Hilbert Spaces

In this appendix, we first prove the lemmas stated in Section 4 and Corollary 5. We then review how the regression setting considered in this paper covers non-parametric regression with kernel methods.

A. Proofs for Lemmas in Section 4 and Corollary 5

For notational simplicity, we denote

$$
\begin{equation*}
\mathcal{R}_{\lambda}(u)=1-\mathcal{G}_{\lambda}(u) u \tag{43}
\end{equation*}
$$

and

$$
\mathcal{N}(\lambda)=\operatorname{tr}\left(\mathcal{T}(\mathcal{T}+\lambda)^{-1}\right)
$$

To proceed the proof, we need some basic operator inequalities.
Lemma 16. (Fujii et al., 1993) Let A and B be two positive bounded linear operators on a separable Hilbert space. Then

$$
\left\|A^{s} B^{s}\right\| \leq\|A B\|^{s}, \quad \text { when } 0 \leq s \leq 1
$$

Lemma 17. Let H_{1}, H_{2} be two separable Hilbert spaces and $\mathcal{S}: H_{1} \rightarrow H_{2}$ a compact operator. Then for any function $f:[0,\|\mathcal{S}\|] \rightarrow[0, \infty[$,

$$
f\left(\mathcal{S S}{ }^{*}\right) \mathcal{S}=\mathcal{S} f\left(\mathcal{S}^{*} \mathcal{S}\right)
$$

Proof. The result can be proved using singular value decomposition of a compact operator.
Lemma 18. Let A and B be two non-negative bounded linear operators on a separable Hilbert space with $\max (\|A\|,\|B\|) \leq \kappa^{2}$ for some non-negative κ^{2}. Then for any $\zeta>0$,

$$
\begin{equation*}
\left\|A^{\zeta}-B^{\zeta}\right\| \leq C_{\zeta, \kappa}\|A-B\|^{\zeta \wedge 1} \tag{44}
\end{equation*}
$$

where

$$
C_{\zeta, \kappa}= \begin{cases}1 & \text { when } \zeta \leq 1 \tag{45}\\ 2 \zeta \kappa^{2 \zeta-2} & \text { when } \zeta>1\end{cases}
$$

Proof. The proof is based on the fact that u^{ζ} is operator monotone if $0<\zeta \leq 1$. While for $\zeta \geq 1$, the proof can be found in, e.g., (Dicker et al., 2016).

Lemma 19. Let X and A be bounded linear operators on a separable Hilbert space. Suppose that $X \succeq 0$ and $\|A\| \leq 1$. Then for any $s \in[0,1]$,

$$
X^{*} A^{s} X \leq\left(X^{*} A X\right)^{s}
$$

Proof. Following from (Hansen, 1980) and the fact that the function u^{s} with $s \in[0,1]$ is operator monotone.

A.1. Proof of Proposition 7

Adding and subtracting with the same term, and using the triangle inequality, we have

$$
\left\|\mathcal{L}^{-a}\left(\mathcal{S}_{\rho} \omega_{\lambda}^{\mathbf{Z}}-f_{H}\right)\right\|_{\rho} \leq\left\|\mathcal{L}^{-a} \mathcal{S}_{\rho}\left(\omega_{\lambda}^{\mathbf{Z}}-\omega_{\lambda}\right)\right\|_{\rho}+\left\|\mathcal{L}^{-a}\left(\mathcal{S}_{\rho} \omega_{\lambda}-f_{H}\right)\right\|_{\rho}
$$

Applying Part 1) of Lemma 6 to bound the last term, with $0 \leq a \leq \zeta$,

$$
\begin{aligned}
\left\|\mathcal{L}^{-a}\left(\mathcal{S}_{\rho} \omega_{\lambda}^{\mathbf{Z}}-f_{H}\right)\right\|_{\rho} & \leq\left\|\mathcal{L}^{-a} \mathcal{S}_{\rho}\left(\omega_{\lambda}^{\mathbf{Z}}-\omega_{\lambda}\right)\right\|_{\rho}+R \lambda^{\zeta-a} \\
& \leq\left\|\mathcal{L}^{-a} \mathcal{S}_{\rho} \mathcal{T}^{a-\frac{1}{2}}\right\|\left\|\mathcal{T}^{\frac{1}{2}-a}\left(\omega_{\lambda}^{\mathbf{Z}}-\omega_{\lambda}\right)\right\|_{H}+R \lambda^{\zeta-a}
\end{aligned}
$$

Using the spectral theorem for compact operators, $\mathcal{L}=\mathcal{S}_{\rho} \mathcal{S}_{\rho}^{*}$, and $\mathcal{T}=\mathcal{S}_{\rho}^{*} \mathcal{S}_{\rho}$, we have

$$
\left\|\mathcal{L}^{-a} \mathcal{S}_{\rho} \mathcal{T}^{a-\frac{1}{2}}\right\| \leq 1
$$

and thus

$$
\left\|\mathcal{L}^{-a}\left(\mathcal{S}_{\rho} \omega_{\lambda}^{\mathbf{z}}-f_{H}\right)\right\|_{\rho} \leq\left\|\mathcal{T}^{\frac{1}{2}-a}\left(\omega_{\lambda}^{\mathbf{z}}-\omega_{\lambda}\right)\right\|_{H}+R \lambda^{\zeta-a}
$$

Adding and subtracting with the same term, and using the triangle inequality,

$$
\left\|\mathcal{L}^{-a}\left(\mathcal{S}_{\rho} \omega_{\lambda}^{\mathbf{z}}-f_{H}\right)\right\|_{\rho} \leq\left\|\mathcal{T}^{\frac{1}{2}-a}\left(\omega_{\lambda}^{\mathbf{z}}-P \omega_{\lambda}\right)\right\|_{H}+\left\|\mathcal{T}^{\frac{1}{2}-a}(I-P) \omega_{\lambda}\right\|_{H}+R \lambda^{\zeta-a}
$$

Since P is an orthogonal projected operator and $a \in\left[0, \frac{1}{2}\right]$, we have

$$
\begin{aligned}
& \left\|\mathcal{T}^{\frac{1}{2}-a}(I-P) \omega_{\lambda}\right\|_{H} \\
= & \left\|\mathcal{T}^{\frac{1}{2}(1-2 a)}(I-P)^{1-2 a}(I-P) \omega_{\lambda}\right\|_{H} \\
\leq & \left\|\mathcal{T}^{\frac{1}{2}(1-2 a)}(I-P)^{1-2 a}\right\|\left\|(I-P) \mathcal{T}^{\frac{1}{2}}\right\|\left\|\mathcal{T}^{-\frac{1}{2}} \omega_{\lambda}\right\|_{H} \\
\leq & \left\|\mathcal{T}^{\frac{1}{2}}(I-P)\right\|^{1-2 a}\left\|(I-P) \mathcal{T}^{\frac{1}{2}}\right\| \tau R \kappa^{2(\zeta-1)_{+}} \lambda^{(\zeta-1)_{-}} \\
= & \Delta_{5}^{1-a} \tau R \kappa^{2(\zeta-1)_{+}} \lambda^{(\zeta-1)_{-}},
\end{aligned}
$$

(where for the last second inequality, we used Lemma 16 and Part 2) of Lemma 6), and we subsequently get that

$$
\left\|\mathcal{L}^{-a}\left(\mathcal{S}_{\rho} \omega_{\lambda}^{\mathbf{z}}-f_{H}\right)\right\|_{\rho} \leq\left\|\mathcal{T}^{\frac{1}{2}-a}\left(\omega_{\lambda}^{\mathbf{z}}-P \omega_{\lambda}\right)\right\|_{H}+\tau R \kappa^{2(\zeta-1)_{+}} \lambda^{(\zeta-1)-} \Delta_{5}^{1-a}+R \lambda^{\zeta-a}
$$

Since for all $\omega \in H$, and $a \in\left[0, \frac{1}{2}\right]$,

$$
\begin{aligned}
\left\|\mathcal{T}^{\frac{1}{2}-a} \omega\right\|_{H} & \leq\left\|\mathcal{T}_{\lambda}^{\frac{1}{2}-a} \mathcal{T}_{\mathbf{x} \lambda}^{a-\frac{1}{2}}\right\|\left\|\mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}-a} \omega\right\|_{H} \\
& \leq \lambda^{-a}\left\|\mathcal{T}_{\lambda}^{\frac{1}{2}-a} \mathcal{T}_{\mathbf{x} \lambda}^{a-\frac{1}{2}}\right\|\left\|\mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}} \omega\right\|_{H} \\
& \leq \lambda^{-a}\left\|\mathcal{T}_{\lambda}^{\frac{1}{2}} \mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}}\right\|\left\|^{1-2 a}\right\| \mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}} \omega \|_{H} \\
& \leq \lambda^{-a} \Delta_{1}^{\frac{1}{2}-a}\left\|\mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}} \omega\right\|_{H}
\end{aligned}
$$

(where we used Lemma 16 for the last second inequality), we get

$$
\begin{equation*}
\left\|\mathcal{L}^{-a}\left(\mathcal{S}_{\rho} \omega_{\lambda}^{\mathbf{z}}-f_{H}\right)\right\|_{\rho} \leq \lambda^{-a} \Delta_{1}^{\frac{1}{2}-a}\left\|\mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}}\left(\omega_{\lambda}^{\mathbf{z}}-P \omega_{\lambda}\right)\right\|_{H}+\tau R \kappa^{2(\zeta-1)_{+}} \lambda^{(\zeta-1)_{-}} \Delta_{5}^{1-a}+R \lambda^{\zeta-a} \tag{46}
\end{equation*}
$$

In what follows, we estimate $\left\|\mathcal{T}_{\mathbf{x}}^{\frac{1}{2}}\left(\omega_{\lambda}^{\mathbf{z}}-P \omega_{\lambda}\right)\right\|_{H}$.
Introducing with (11), with $P^{2}=P$,

$$
\left\|\mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}}\left(\omega_{\lambda}^{\mathbf{z}}-P \omega_{\lambda}\right)\right\|_{H}=\left\|\mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}} P\left(\mathcal{G}_{\lambda}\left(P \mathcal{T}_{\mathbf{x}} P\right) P \mathcal{S}_{\mathbf{x}}^{*} \mathbf{y}-P \omega_{\lambda}\right)\right\|_{H}
$$

Since for any $\omega \in H$,

$$
\left\|\mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}} P \omega\right\|_{H}^{2}=\left\langle P \mathcal{T}_{\mathbf{x} \lambda} P \omega, \omega\right\rangle_{H} \leq\left\langle\left(P \mathcal{T}_{\mathbf{x}} P+\lambda\right) \omega, \omega\right\rangle_{H}=\left\|\left(P \mathcal{T}_{\mathbf{x}} P+\lambda\right)^{\frac{1}{2}} \omega\right\|_{H}^{2}
$$

and we thus get

$$
\left\|\mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}}\left(\omega_{\lambda}^{\mathbf{z}}-P \omega_{\lambda}\right)\right\|_{H} \leq\left\|\mathcal{U}_{\lambda}^{\frac{1}{2}}\left(\mathcal{G}_{\lambda}(\mathcal{U}) P \mathcal{S}_{\mathbf{x}}^{*} \mathbf{y}-P \omega_{\lambda}\right)\right\|_{H}
$$

where we denote

$$
\begin{equation*}
\mathcal{U}=P \mathcal{T}_{\mathbf{x}} P, \quad \mathcal{U}_{\lambda}=\mathcal{U}+\lambda \tag{47}
\end{equation*}
$$

Subtracting and adding with the same term, and applying the triangle inequality, with the notation \mathcal{R}_{λ} given by (43) and $P^{2}=P$, we have

$$
\begin{equation*}
\left\|\mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}}\left(\omega_{\lambda}^{\mathbf{z}}-P \omega_{\lambda}\right)\right\|_{H} \leq\|\underbrace{\mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{G}_{\lambda}(\mathcal{U}) P\left(\mathcal{S}_{\mathbf{x}}^{*} \mathbf{y}-\mathcal{T}_{\mathbf{x}} P \omega_{\lambda}\right)}_{\text {Term. }}\|_{H}+\|\underbrace{\mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{U}) P \omega_{\lambda}}_{\text {Term.B }}\|_{H} \tag{48}
\end{equation*}
$$

We will estimate the above two terms of the right-hand side.
Estimating $\|$ Term. A $\|_{H}$:
Note that

$$
\begin{aligned}
& \left(\mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{G}_{\lambda}(\mathcal{U}) P \mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}}\right)\left(\mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{G}_{\lambda}(\mathcal{U}) P \mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}}\right)^{*} \\
& =\mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{G}_{\lambda}(\mathcal{U})\left(\mathcal{U}+\lambda P^{2}\right) \mathcal{G}_{\lambda}(\mathcal{U}) \mathcal{U}_{\lambda}^{\frac{1}{2}} \\
& \preceq\left[\mathcal{U}_{\lambda} \mathcal{G}_{\lambda}(\mathcal{U})\right]^{2},
\end{aligned}
$$

where we used $P^{2}=P \preceq I$ for the last inequality. Thus, combing with $\|A\|=\left\|A^{*} A\right\|^{\frac{1}{2}}$,

$$
\left\|\mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{G}_{\lambda}(\mathcal{U}) P \mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}}\right\| \leq\left\|\mathcal{U}_{\lambda} \mathcal{G}_{\lambda}(\mathcal{U})\right\|
$$

Using the spectral theorem, with $\|\mathcal{U}\| \leq\left\|\mathcal{T}_{\mathbf{x}}\right\| \leq \kappa^{2}$ (implied by (6)), and then applying (12),

$$
\left\|\mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{G}_{\lambda}(\mathcal{U}) P \mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}}\right\| \leq \sup _{u \in\left[0, \kappa^{2}\right]}\left|(u+\lambda) \mathcal{G}_{\lambda}(u)\right| \leq \tau
$$

Using the above inequality, and by a simple calculation,

$$
\| \text { Term. } \mathbf{A}\left\|_{H} \leq\right\| \mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{G}_{\lambda}(\mathcal{U}) P \mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}}\| \| \mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}}\left(\mathcal{S}_{\mathbf{x}}^{*} \mathbf{y}-\mathcal{T}_{\mathbf{x}} P \omega_{\lambda}\right)\|\leq \tau\| \mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}}\left(\mathcal{S}_{\mathbf{x}}^{*} \mathbf{y}-\mathcal{T}_{\mathbf{x}} P \omega_{\lambda}\right) \|
$$

Adding and subtracting with the same terms, and using the triangle inequality,

$$
\begin{aligned}
\| \text { Term. } \mathbf{A} \|_{H} & \left.\leq \tau\left\|\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}}\left(\mathcal{S}_{\mathbf{x}}^{*} \mathbf{y}-\mathcal{T}_{\mathbf{x}} \omega_{\lambda}\right)\right\|_{H}+\tau \| \mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{T}_{\mathbf{x}}(I-P) \omega_{\lambda}\right) \|_{H} \\
& \left.\leq \tau\left\|\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{T}_{\lambda}^{\frac{1}{2}}\right\|\left\|\mathcal{T}_{\lambda}^{-\frac{1}{2}}\left(\mathcal{S}_{\mathbf{x}}^{*} \mathbf{y}-\mathcal{T}_{\mathbf{x}} \omega_{\lambda}\right)\right\|_{H}+\tau \| \mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{T}_{\mathbf{x}}(I-P) \omega_{\lambda}\right) \|_{H} \\
& \left.\leq \tau \Delta_{1}^{\frac{1}{2}}\left\|\mathcal{T}_{\lambda}^{-\frac{1}{2}}\left(\mathcal{S}_{\mathbf{x}}^{*} \mathbf{y}-\mathcal{T}_{\mathbf{x}} \omega_{\lambda}\right)\right\|_{H}+\tau \| \mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{T}_{\mathbf{x}}(I-P) \omega_{\lambda}\right) \|_{H} \\
& \left.\leq \tau \Delta_{1}^{\frac{1}{2}}\left(\Delta_{2}+\left\|\mathcal{T}_{\lambda}^{-\frac{1}{2}}\left(\mathcal{T}_{\lambda}-\mathcal{S}_{\rho}^{*} f_{H}\right)\right\|_{H}\right)+\tau \| \mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{T}_{\mathbf{x}}(I-P) \omega_{\lambda}\right) \|_{H} \\
& \left.\leq \tau \Delta_{1}^{\frac{1}{2}}\left(\Delta_{2}+\left\|\mathcal{T}_{\lambda}^{-\frac{1}{2}} \mathcal{S}_{\rho}^{*}\right\|\left\|\mathcal{S}_{\rho} \omega_{\lambda}-f_{H}\right\|_{\rho}\right)+\tau \| \mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{T}_{\mathbf{x}}(I-P) \omega_{\lambda}\right) \|_{H},
\end{aligned}
$$

where we used $\mathcal{T}=\mathcal{S}_{\rho}^{*} \mathcal{S}_{\rho}$ for the last inequality. Applying Part 1) of Lemma 6 and $\left\|\mathcal{T}_{\lambda}^{-\frac{1}{2}} \mathcal{S}_{\rho}^{*}\right\| \leq 1$,

$$
\begin{equation*}
\left.\| \text { Term. } \mathbf{A}\left\|_{H} \leq \tau \Delta_{1}^{\frac{1}{2}}\left(\Delta_{2}+R \lambda^{\zeta}\right)+\tau\right\| \mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{T}_{\mathbf{x}}(I-P) \omega_{\lambda}\right) \|_{H} \tag{49}
\end{equation*}
$$

In what follows, we estimate $\left\|\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{T}_{\mathbf{x}}(I-P) \omega_{\lambda}\right\|_{H}$, considering two different cases.
Case $\zeta \leq 1$.
We have

$$
\left\|\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{T}_{\mathbf{x}}(I-P) \omega_{\lambda}\right\|_{H} \leq\left\|\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{T}_{\mathbf{x}} \mathcal{T}_{\mathbf{x} \lambda}^{\frac{-1}{2}}\right\|\left\|\mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}} \mathcal{T}_{\lambda}^{-\frac{1}{2}}\right\|\left\|\mathcal{T}_{\lambda}^{\frac{1}{2}}(I-P) \omega_{\lambda}\right\|_{H} \leq \Delta_{1}^{\frac{1}{2}}\left\|\mathcal{T}_{\lambda}^{\frac{1}{2}}(I-P) \omega_{\lambda}\right\|_{H}
$$

Since P is a projection operator, $(I-P)^{2}=I-P$, and we thus have

$$
\left\|\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{T}_{\mathbf{x}}(I-P) \omega_{\lambda}\right\|_{H} \leq \Delta_{1}^{\frac{1}{2}}\left\|\mathcal{T}_{\lambda}^{\frac{1}{2}}(I-P)\right\|\left\|(I-P) \mathcal{T}^{\frac{1}{2}}\right\|\left\|\mathcal{T}^{-\frac{1}{2}} \omega_{\lambda}\right\|_{H} \leq \tau \Delta_{1}^{\frac{1}{2}}\left\|\mathcal{T}_{\lambda}^{\frac{1}{2}}(I-P)\right\| \Delta_{5}^{\frac{1}{2}} R \lambda^{\zeta-1}
$$

where for the last inequality, we used Part 2) of Lemma 6 . Note that for any $\omega \in H$ with $\|\omega\|_{H}=1$,
$\left\|\mathcal{T}_{\lambda}^{\frac{1}{2}}(I-P) \omega\right\|_{H}^{2}=\left\langle\mathcal{T}_{\lambda}(I-P) \omega,(I-P) \omega\right\rangle_{H}=\left\|\mathcal{T}^{\frac{1}{2}}(I-P) \omega\right\|_{H}^{2}+\lambda\|(I-P) \omega\|_{H}^{2} \leq\left\|\mathcal{T}^{\frac{1}{2}}(I-P)\right\|^{2}+\lambda \leq \Delta_{5}+\lambda$.
It thus follows that

$$
\begin{equation*}
\left\|\mathcal{T}_{\lambda}^{\frac{1}{2}}(I-P)\right\|_{H} \leq\left(\Delta_{5}+\lambda\right)^{\frac{1}{2}} \tag{50}
\end{equation*}
$$

and thus

$$
\left\|\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{T}_{\mathbf{x}}(I-P) \omega_{\lambda}\right\|_{H} \leq \Delta_{1}^{\frac{1}{2}}\left(\Delta_{5}+\lambda\right) \tau R \lambda^{\zeta-1}
$$

Introducing the above into (49), we know that Term. A can be estimated as $(\zeta \leq 1)$

$$
\begin{equation*}
\| \text { Term. } \mathbf{A} \|_{H} \leq \tau \Delta_{1}^{\frac{1}{2}}\left(\Delta_{2}+(\tau+1) R \lambda^{\zeta}+\tau R \lambda^{\zeta-1} \Delta_{5}\right) \tag{51}
\end{equation*}
$$

Case $\zeta \geq 1$.
We first have

$$
\begin{aligned}
\left\|\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{T}_{\mathbf{x}}(I-P) \omega_{\lambda}\right\|_{H} & \left.\leq \Delta_{1}^{\frac{1}{2}} \| \mathcal{T}_{\lambda}^{-\frac{1}{2}} \mathcal{T}_{\mathbf{x}}(I-P) \omega_{\lambda}\right) \|_{H} \\
& \leq \Delta_{1}^{\frac{1}{2}}\left(\left\|\mathcal{T}_{\lambda}^{-\frac{1}{2}}\left(\mathcal{T}_{\mathbf{x}}-\mathcal{T}\right)(I-P) \omega_{\lambda}\right\|_{H}+\left\|\mathcal{T}_{\lambda}^{-\frac{1}{2}} \mathcal{T}(I-P) \omega_{\lambda}\right\|_{H}\right) \\
& \leq \Delta_{1}^{\frac{1}{2}}\left(\Delta_{4}\left\|(I-P) \omega_{\lambda}\right\|_{H}+\left\|\mathcal{T}^{\frac{1}{2}}(I-P) \omega_{\lambda}\right\|_{H}\right)
\end{aligned}
$$

Since P is a projection operator, $(I-P)^{2}=I-P$, we thus have

$$
\begin{aligned}
\left\|\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{T}_{\mathbf{x}}(I-P) \omega_{\lambda}\right\|_{H} & \leq \Delta_{1}^{\frac{1}{2}}\left(\Delta_{4}\|I-P\|\left\|\mathcal{T}^{\frac{1}{2}}\right\|\left\|\mathcal{T}^{-\frac{1}{2}} \omega_{\lambda}\right\|_{H}+\left\|\mathcal{T}^{\frac{1}{2}}(I-P)\right\|\left\|(I-P) \mathcal{T}^{\frac{1}{2}}\right\|\left\|\mathcal{T}^{-\frac{1}{2}} \omega_{\lambda}\right\|_{H}\right) \\
& \leq \Delta_{1}^{\frac{1}{2}}\left(\kappa \Delta_{4}+\Delta_{5}\right)\left\|\mathcal{T}^{-\frac{1}{2}} \omega_{\lambda}\right\|_{H}
\end{aligned}
$$

where we used (3) for the last inequality. Applying Part 2) of Lemma 6, we get

$$
\left\|\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{T}_{\mathbf{x}}(I-P) \omega_{\lambda}\right\|_{H} \leq \Delta_{1}^{\frac{1}{2}}\left(\kappa \Delta_{4}+\Delta_{5}\right) \tau \kappa^{2(\zeta-1)} R
$$

Introducing the above into (49), we get for $\zeta \geq 1$,

$$
\begin{equation*}
\| \text { Term. } \mathbf{A} \|_{H} \leq \tau \Delta_{1}^{\frac{1}{2}}\left(\Delta_{2}+R \lambda^{\zeta}+\left(\kappa \Delta_{4}+\Delta_{5}\right) \tau \kappa^{2(\zeta-1)} R\right) \tag{52}
\end{equation*}
$$

Estimating $\|$ Term.B $\|_{H}$:
We estimate $\|$ Term. $\mathbf{B} \|_{H}$, considering two different cases.
Case I: $\zeta \leq 1$.
We first have

$$
\begin{aligned}
\mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{U}) P \mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}}\left(\mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{U}) P \mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}}\right)^{*} & =\mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{U})\left(\mathcal{U}+\lambda P^{2}\right) \mathcal{R}_{\lambda}(\mathcal{U}) \mathcal{U}_{\lambda}^{\frac{1}{2}} \\
& \preceq\left(\mathcal{R}_{\lambda}(\mathcal{U}) \mathcal{U}_{\lambda}\right)^{2}
\end{aligned}
$$

where we used $P^{2}=P \preceq I$ for the last inequality. Thus, according to $\|A\|=\left\|A A^{*}\right\|^{\frac{1}{2}}$,

$$
\left\|\mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{U}) P \mathcal{T}_{\mathbf{x}}^{\frac{1}{2}}\right\| \leq\left\|\mathcal{R}_{\lambda}(\mathcal{U}) \mathcal{U}_{\lambda}\right\|
$$

Using the spectral theorem and (13), and noting that $\|\mathcal{U}\| \leq\|P\|^{2}\left\|\mathcal{T}_{\mathbf{x}}\right\| \leq \kappa^{2}$ by (6), we get

$$
\left\|\mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{U}) P \mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}}\right\| \leq \sup _{u \in\left[0, \kappa^{2}\right]}\left|\mathcal{R}_{\lambda}(u)(u+\lambda)\right| \leq \lambda
$$

Using the above inequality and by a direct calculation,

$$
\| \text { Term.B }\left\|_{H} \leq\right\| \mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{U}) P \mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}}\| \| \mathcal{T}_{\mathbf{x} \lambda}^{\frac{-1}{2}} \mathcal{T}_{\lambda}^{\frac{1}{2}}\| \| \mathcal{T}^{-\frac{1}{2}} \omega_{\lambda}\left\|_{H} \leq \lambda \Delta_{1}^{\frac{1}{2}}\right\| \mathcal{T}^{-\frac{1}{2}} \omega_{\lambda} \|_{H}
$$

Applying Part 2) of Lemma 6, we get

$$
\begin{equation*}
\| \text { Term. } \mathbf{B} \|_{H} \leq \tau R \lambda^{\zeta} \Delta_{1}^{\frac{1}{2}} \tag{53}
\end{equation*}
$$

Applying the above and (51) into (48), we know that for any $\zeta \in[0,1]$,

$$
\left\|\mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}}\left(\omega_{\lambda}^{\mathbf{z}}-P \omega_{\lambda}\right)\right\|_{H} \leq \tau \Delta_{1}^{\frac{1}{2}}\left(\Delta_{2}+(2 \tau+1) R \lambda^{\zeta}+\tau R \Delta_{5} \lambda^{\zeta-1}\right)
$$

Using the above into (46), we can prove the first desired result.
Case II: $\zeta \geq 1$
We denote

$$
\begin{equation*}
\mathcal{V}=\mathcal{T}_{\mathbf{x}}^{\frac{1}{2}} P \mathcal{T}_{\mathbf{x}}^{\frac{1}{2}}, \quad \mathcal{V}_{\lambda}=\mathcal{V}+\lambda \tag{54}
\end{equation*}
$$

Noting that $\mathcal{U}=P \mathcal{T}_{\mathbf{x}} P=P \mathcal{T}_{\mathbf{x}}^{\frac{1}{2}}\left(P \mathcal{T}_{\mathbf{x}}^{\frac{1}{2}}\right)^{*}$, thus following from Lemma $17\left(\right.$ with $\left.f(u)=(u+\lambda)^{\frac{1}{2}} \mathcal{R}_{\lambda}(u)\right)$ and $P^{2}=P$,

$$
\left\|\mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{U}) P \mathcal{T}_{\mathbf{x}}^{\zeta-\frac{1}{2}}\right\|=\left\|\mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{U})\left(P \mathcal{T}_{\mathbf{x}}^{\frac{1}{2}}\right) \mathcal{T}_{\mathbf{x}}^{\zeta-1}\right\|=\left\|\left(P \mathcal{T}_{\mathbf{x}}^{\frac{1}{2}}\right) \mathcal{V}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{V}) \mathcal{T}_{\mathbf{x}}^{\zeta-1}\right\|
$$

Adding and subtracting with the same term, using the triangle inequality,

$$
\begin{aligned}
\left\|\mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{U}) P \mathcal{T}_{\mathbf{x}}^{\zeta-\frac{1}{2}}\right\| & \leq\left\|P \mathcal{T}_{\mathbf{x}}^{\frac{1}{2}} \mathcal{V}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{V}) \mathcal{V}^{\zeta-1}\right\|+\left\|P \mathcal{T}_{\mathbf{x}}^{\frac{1}{2}} \mathcal{V}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{V})\left(\mathcal{T}_{\mathbf{x}}^{\zeta-1}-\mathcal{V}^{\zeta-1}\right)\right\| \\
& \leq\left\|P \mathcal{T}_{\mathbf{x}}^{\frac{1}{2}} \mathcal{V}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{V}) \mathcal{V}^{\zeta-1}\right\|+\left\|P \mathcal{T}_{\mathbf{x}}^{\frac{1}{2}} \mathcal{V}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{V})\right\|\left\|\mathcal{T}_{\mathbf{x}}^{\zeta-1}-\mathcal{V}^{\zeta-1}\right\|
\end{aligned}
$$

Using Lemma 18, with (6) and $\|\mathcal{V}\| \leq\left\|\mathcal{T}_{\mathbf{x}}\right\| \leq \kappa^{2}$,

$$
\left\|\mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{U}) P \mathcal{T}_{\mathbf{x}}^{\zeta-\frac{1}{2}}\right\| \leq\left\|P \mathcal{T}_{\mathbf{x}}^{\frac{1}{2}} \mathcal{V}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{V}) \mathcal{V}^{\zeta-1}\right\|+\left\|P \mathcal{T}_{\mathbf{x}}^{\frac{1}{2}} \mathcal{V}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{V})\right\| \kappa^{2(\zeta-2)_{+}}\left\|\mathcal{T}_{\mathbf{x}}-\mathcal{V}\right\|^{(\zeta-1) \wedge 1}
$$

Using $\|A\|=\left\|A^{*} A\right\|^{\frac{1}{2}}, P^{2}=P$, the spectral theorem, and (13), for any $s \in[1, \tau]$,

$$
\begin{aligned}
\left\|P \mathcal{T}_{\mathbf{x}}^{\frac{1}{2}} \mathcal{V}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{V}) \mathcal{V}^{s-1}\right\| & =\left\|\mathcal{V}^{s-1} \mathcal{R}_{\lambda}(\mathcal{V}) \mathcal{V}_{\lambda} \mathcal{V} \mathcal{R}_{\lambda}(\mathcal{V}) \mathcal{V}^{s-1}\right\|^{\frac{1}{2}} \\
& \leq \sup _{u \in\left[0, \kappa^{2}\right]}\left|\mathcal{R}_{\lambda}(u) u^{s-\frac{1}{2}}(u+\lambda)^{\frac{1}{2}}\right| \leq \lambda^{s}
\end{aligned}
$$

and thus we get

$$
\left\|\mathcal{U}_{\lambda}^{\frac{1}{2}-a} \mathcal{R}_{\lambda}(\mathcal{U}) P \mathcal{T}_{\mathbf{x}}^{\zeta-\frac{1}{2}}\right\| \leq \lambda^{\zeta}+\lambda \kappa^{2(\zeta-2)_{+}}\left\|\mathcal{T}_{\mathbf{x}}-\mathcal{V}\right\|^{(\zeta-1) \wedge 1}
$$

Using Lemma 14, $(I-P)^{2}=I-P$ and $\left\|A^{*} A\right\|=\|A\|^{2}$, we have

$$
\left\|\mathcal{T}_{\mathbf{x}}-\mathcal{V}\right\|=\left\|\mathcal{T}_{\mathbf{x}}^{\frac{1}{2}}(I-P) \mathcal{T}_{\mathbf{x}}^{\frac{1}{2}}\right\| \leq\left\|\mathcal{T}_{\mathbf{x}}-\mathcal{T}\right\|+\left\|\mathcal{T}^{\frac{1}{2}}(I-P) \mathcal{T}^{\frac{1}{2}}\right\| \leq \Delta_{3}+\Delta_{5}
$$

and we thus get

$$
\begin{equation*}
\left\|\mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{U}) P \mathcal{T}_{\mathbf{x}}^{\zeta-\frac{1}{2}}\right\| \leq \lambda^{\zeta}+\lambda \kappa^{2(\zeta-2)_{+}}\left(\Delta_{3}+\Delta_{5}\right)^{(\zeta-1) \wedge 1} \tag{55}
\end{equation*}
$$

Now we are ready to estimate $\|$ Term. $\mathbf{B} \|_{H}$. By some direct calculations and Part 2) of Lemma 6,

$$
\| \text { Term. } \mathbf{B}\left\|_{H} \leq\right\| \mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{U}) P \mathcal{T}^{\zeta-\frac{1}{2}}\| \| \mathcal{T}^{\frac{1}{2}-\zeta} \omega_{\lambda}\left\|_{H} \leq\right\| \mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{U}) P \mathcal{T}^{\zeta-\frac{1}{2}} \| \tau R
$$

Adding and subtracting with the same term, and using the triangle inequality,

$$
\| \text { Term. } \mathbf{B} \|_{H} \leq \tau R\left(\left\|\mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{U}) P \mathcal{T}_{\mathbf{x}}^{\zeta-\frac{1}{2}}\right\|+\left\|\mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{U})\right\|\left\|\mathcal{T}^{\zeta-\frac{1}{2}}-\mathcal{T}_{\mathbf{x}}^{\zeta-\frac{1}{2}}\right\|\right)
$$

Using the spectral theorem, with $\|\mathcal{U}\| \leq\left\|\mathcal{T}_{\mathbf{x}}\right\| \leq \kappa^{2}$ by (6) and (13),

$$
\left\|\mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{U})\right\|=\sup _{\left.u \in] 0, \kappa^{2}\right]}\left|\mathcal{R}_{\lambda}(u)(u+\lambda)^{\frac{1}{2}}\right| \leq \lambda^{\frac{1}{2}}
$$

and we thus get

$$
\| \text { Term. } \mathbf{B} \|_{H} \leq \tau R\left(\left\|\mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{U}) P \mathcal{T}_{\mathbf{x}}^{\zeta-\frac{1}{2}}\right\|+\lambda^{\frac{1}{2}}\left\|\mathcal{T}^{\zeta-\frac{1}{2}}-\mathcal{T}_{\mathbf{x}}^{\zeta-\frac{1}{2}}\right\|\right)
$$

Applying Lemma 18, with (3) and (6),

$$
\| \text { Term.B } \|_{H} \leq \tau R\left(\left\|\mathcal{U}_{\lambda}^{\frac{1}{2}} \mathcal{R}_{\lambda}(\mathcal{U}) P \mathcal{T}_{\mathbf{x}}^{\zeta-\frac{1}{2}}\right\|+\lambda^{\frac{1}{2}} \kappa^{(2 \zeta-3)_{+}} \Delta_{3}^{\left(\zeta-\frac{1}{2}\right) \wedge 1}\right)
$$

Introducing with (55),

$$
\| \text { Term.B } \|_{H} \leq \tau R\left(\lambda^{\zeta}+\kappa^{2(\zeta-2)_{+}} \lambda\left(\Delta_{3}+\Delta_{5}\right)^{(\zeta-1) \wedge 1}+\kappa^{(2 \zeta-3)_{+}} \lambda^{\frac{1}{2}} \Delta_{3}^{\left(\zeta-\frac{1}{2}\right) \wedge 1}\right)
$$

Introducing the above inequality and (52) into (48), noting that $\Delta_{1} \geq 1$ and $\kappa^{2} \geq 1$, we know that for any $\zeta \geq 1$,

$$
\left\|\mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}}\left(\omega_{\lambda}^{\mathbf{z}}-P \omega_{\lambda}\right)\right\|_{H} \leq \tau \Delta_{1}^{\frac{1}{2}}\left(\Delta_{2}+2 R \lambda^{\zeta}+\kappa^{2(\zeta-1)} R\left(\kappa \tau \Delta_{4}+\tau \Delta_{5}+\lambda\left(\Delta_{3}+\Delta_{5}\right)^{(\zeta-1) \wedge 1}+\lambda^{\frac{1}{2}} \Delta_{3}^{\left(\zeta-\frac{1}{2}\right) \wedge 1}\right)\right)
$$

Using the above into (46), and by a simple calculation, we can prove the second desired result.

A.2. Proofs of Lemma 12

We first introduce the following basic probabilistic estimate.
Lemma 20. Let $\mathcal{X}_{1}, \cdots, \mathcal{X}_{m}$ be a sequence of independently and identically distributed self-adjoint Hilbert-Schmidt operators on a separable Hilbert space. Assume that $\mathbb{E}\left[\mathcal{X}_{1}\right]=0$, and $\left\|\mathcal{X}_{1}\right\| \leq B$ almost surely for some $B>0$. Let \mathcal{V} be a positive trace-class operator such that $\mathbb{E}\left[\mathcal{X}_{1}^{2}\right] \preccurlyeq \mathcal{V}$. Then with probability at least $1-\delta,(\delta \in] 0,1[)$, there holds

$$
\left\|\frac{1}{m} \sum_{i=1}^{m} \mathcal{X}_{i}\right\| \leq \frac{2 B \beta}{3 m}+\sqrt{\frac{2\|\mathcal{V}\| \beta}{m}}, \quad \beta=\log \frac{4 \operatorname{tr} \mathcal{V}}{\|\mathcal{V}\| \delta}
$$

The above lemma was first proved in (Hsu et al., 2014; Tropp, 2012) for the matrix case, and it was later extended to the general operator case in (Minsker, 2011), see also (Rudi et al., 2015; Bach, 2015; Dicker et al., 2017). We refer to (Rudi et al., 2015; Dicker et al., 2017) for the proof.
Using the above lemma, we can prove Lemma 12.
Proof of Lemma 12. We use Lemma 20 to prove the result. Let $W=m^{-\frac{1}{2}} \mathbf{G} \mathcal{S}_{\mathbf{x}}$. Denote the i-th row of \mathbf{G} by \mathbf{a}_{i}^{*} for all $i \in[m]$. Using $\mathcal{T}_{\mathbf{x}}=\mathcal{S}_{\mathbf{x}}^{*} \mathcal{S}_{\mathbf{x}}$, we have

$$
\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}}\left(\mathcal{T}_{\mathbf{x}}-W^{*} W\right) \mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}}=\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{S}_{\mathbf{x}}^{*}\left(I-m^{-1} \mathbf{G}^{*} \mathbf{G}\right) \mathcal{S}_{\mathbf{x}} \mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}}=\frac{1}{m} \sum_{i=1}^{m} \mathcal{X}_{i}
$$

where we let

$$
\mathcal{X}_{i}=\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{S}_{\mathbf{x}}^{*}\left(I-\mathbf{a}_{i} \mathbf{a}_{i}^{*}\right) \mathcal{S}_{\mathbf{x}} \mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}}
$$

Since $\mathbf{a}_{1} \sim F$, according to the isotropy property (26) of F,

$$
\mathbb{E}\left[\mathcal{X}_{1}\right]=\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{S}_{\mathbf{x}}^{*}\left(I-\mathbb{E}\left[\mathbf{a}_{i} \mathbf{a}_{i}^{*}\right]\right) \mathcal{S}_{\mathbf{x}} \mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}}=0
$$

Note that

$$
\left\|\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{S}_{\mathbf{x}}^{*} \mathbf{a}_{1}\right\|_{H}=\frac{1}{n}\left\|\sum_{j=1}^{n} \mathbf{a}_{1}(j) \mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} x_{j}\right\|_{H} \leq \frac{1}{n} \sum_{j=1}^{n}\left|\mathbf{a}_{1}(j)\right|\left\|\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} x_{j}\right\|_{H}
$$

Using Cauchy-Schwarz inequality and the bounded assumption (27),

$$
\left\|\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{S}_{\mathbf{x}}^{*} \mathbf{a}_{1}\right\|_{H} \leq \frac{1}{n}\left\|\mathbf{a}_{1}\right\|_{2}\left(\sum_{j=1}^{n}\left\|\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} x_{j}\right\|_{H}^{2}\right)^{\frac{1}{2}} \leq\left(\frac{1}{n} \sum_{j=1}^{n}\left\|\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} x_{j}\right\|_{H}^{2}\right)^{\frac{1}{2}}
$$

According to $\operatorname{tr}(x \otimes x)=\|x\|_{H}^{2}$ and the definition of $\mathcal{T}_{\mathbf{x}}$, we know that the left-hand side is $\sqrt{\operatorname{tr}\left(\mathcal{T}_{\mathbf{x} \lambda}^{-1} \mathcal{T}_{\mathbf{x}}\right)}$, and thus

$$
\left\|\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{S}_{\mathbf{x}}^{*} \mathbf{a}_{1}\right\|_{H} \leq \sqrt{\operatorname{tr}\left(\mathcal{T}_{\mathbf{x} \lambda}^{-1} \mathcal{T}_{\mathbf{x}}\right)}
$$

Therefore,

$$
\left\|\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{S}_{\mathbf{x}}^{*} \mathbf{a}_{1} \mathbf{a}_{1}^{*} \mathcal{S}_{\mathbf{x}} \mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}}\right\| \leq \operatorname{tr}\left(\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{S}_{\mathbf{x}}^{*} \mathbf{a}_{1} \mathbf{a}_{1}^{*} \mathcal{S}_{\mathbf{x}} \mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}}\right) \leq\left\|\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{S}_{\mathbf{x}}^{*} \mathbf{a}_{1}\right\|_{H}^{2} \leq \operatorname{tr}\left(\mathcal{T}_{\mathbf{x} \lambda}^{-1} \mathcal{T}_{\mathbf{x}}\right)
$$

and by $\|a-\mathbb{E}[a]\| \leq\|a\|+\mathbb{E}\|a\|$,

$$
\left\|\mathcal{X}_{1}\right\| \leq 2 \operatorname{tr}\left(\mathcal{T}_{\mathbf{x} \lambda}^{-1} \mathcal{T}_{\mathbf{x}}\right)
$$

Moreover, using $\mathbb{E}[a-\mathbb{E}[a]]^{2} \preceq \mathbb{E} a^{2}$,

$$
\begin{aligned}
\mathbb{E}\left[\mathcal{X}_{1}^{2}\right] \preceq \mathbb{E}\left[\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{S}_{\mathbf{x}}^{*} \mathbf{a}_{1} \mathbf{a}_{1}^{*} \mathcal{S}_{\mathbf{x}} \mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}}\right]^{2} & =\mathbb{E}\left[\left\|\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{S}_{\mathbf{x}}^{*} \mathbf{a}_{1}\right\|_{H}^{2} \mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{S}_{\mathbf{x}}^{*} \mathbf{a}_{1} \mathbf{a}_{1}^{*} \mathcal{S}_{\mathbf{x}} \mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}}\right] \\
& \preceq \operatorname{tr}\left(\mathcal{T}_{\mathbf{x} \lambda}^{-1} \mathcal{T}_{\mathbf{x}}\right) \mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{S}_{\mathbf{x}}^{*} \mathbb{E}\left[\mathbf{a}_{1} \mathbf{a}_{1}^{*} \mathcal{S}_{\mathbf{x}} \mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}}\right. \\
& =\operatorname{tr}\left(\mathcal{T}_{\mathbf{x} \lambda}^{-1} \mathcal{T}_{\mathbf{x}}\right) \mathcal{T}_{\mathbf{x} \lambda}^{-1} \mathcal{T}_{\mathbf{x}}
\end{aligned}
$$

Letting $\mathcal{V}=\operatorname{tr}\left(\mathcal{T}_{\mathbf{x} \lambda}^{-1} \mathcal{T}_{\mathbf{x}}\right) \mathcal{T}_{\mathbf{x} \lambda}^{-1} \mathcal{T}_{\mathbf{x}}$, a simple calculation shows that

$$
\|\mathcal{V}\|=\operatorname{tr}\left(\mathcal{T}_{\mathbf{x} \lambda}^{-1} \mathcal{T}_{\mathbf{x}}\right)\left\|\mathcal{T}_{\mathbf{x} \lambda}^{-1} \mathcal{T}_{\mathbf{x}}\right\| \leq \operatorname{tr}\left(\mathcal{T}_{\mathbf{x} \lambda}^{-1} \mathcal{T}_{\mathbf{x}}\right)
$$

Also, $\left\|\mathcal{T}_{\mathbf{x} \lambda}^{-1} \mathcal{T}_{\mathbf{x}}\right\|=\frac{\left\|\mathcal{T}_{\mathbf{x}}\right\|}{\left\|\mathcal{T}_{\mathbf{x}}\right\|+\lambda}$,

$$
\frac{\operatorname{tr}(\mathcal{V})}{\|\mathcal{V}\|}=\frac{\operatorname{tr}\left(\mathcal{T}_{\mathbf{x} \lambda}^{-1} \mathcal{T}_{\mathbf{x}}\right)}{\left\|\mathcal{T}_{\mathbf{x} \lambda}^{-1} \mathcal{T}_{\mathbf{x}}\right\|}=\operatorname{tr}\left(\mathcal{T}_{\mathbf{x} \lambda}^{-1} \mathcal{T}_{\mathbf{x}}\right)\left(1+\frac{\lambda}{\left\|\mathcal{T}_{\mathbf{x}}\right\|}\right)
$$

Applying Lemma 20, one can prove the desired result.

A.3. Proof of Lemma 13

If $\lambda \geq\left\|\mathcal{T}_{\mathbf{x}}\right\|$, then the result follows trivially,

$$
\left\|(I-P) \mathcal{T}_{\mathbf{x}}^{\frac{1}{2}}\right\|^{2} \leq\|(I-P)\|^{2}\left\|\mathcal{T}_{\mathbf{x}}\right\| \leq \frac{1}{n^{\theta}}
$$

We thus only need to consider the case $\lambda \leq\left\|\mathcal{T}_{\mathbf{x}}\right\|$. Let $M=m^{-1} \mathcal{S}_{\mathbf{x}}^{*} \mathbf{G}^{*} \mathbf{G} \mathcal{S}_{\mathbf{x}}$ and $M_{\lambda}=M+\lambda I$. Applying Lemma 12, we know that there exists a subset $U_{\mathbf{x}}$ of $\mathbb{R}^{m \times n}$ with measure at least $1-\delta$, such that

$$
\begin{equation*}
\left\|\mathcal{T}_{\mathbf{x} \lambda}^{-1 / 2}\left(\mathcal{T}_{\mathbf{x}}-M\right) \mathcal{T}_{\mathbf{x} \lambda}^{-1 / 2}\right\| \leq \frac{4 \mathcal{N}_{\mathbf{x}}(\lambda) \beta}{3 m}+\sqrt{\frac{2 \mathcal{N}_{\mathbf{x}}(\lambda) \beta}{m}}, \quad \forall \mathbf{G} \in U_{\mathbf{x}} \tag{56}
\end{equation*}
$$

Using Condition (39),

$$
\mathcal{N}_{\mathbf{x}}(\lambda) \leq b_{\gamma} n^{\theta \gamma}
$$

With $\lambda \leq\left\|\mathcal{T}_{\mathbf{x}}\right\|$, we have

$$
\beta \leq \log \frac{4 b_{\gamma} n^{\theta \gamma}\left(1+\lambda /\left\|\mathcal{T}_{\mathbf{x}}\right\|\right)}{\delta} \leq \log \frac{8 b_{\gamma} n^{\theta \gamma}}{\delta}
$$

and, combining with (40),

$$
\frac{4 \mathcal{N}_{\mathbf{x}}(\lambda) \beta}{3 m}+\sqrt{\frac{2 \mathcal{N}_{\mathbf{x}}(\lambda) \beta}{m}} \leq \frac{2}{3}
$$

Thus,

$$
\left\|\mathcal{T}_{\mathbf{x} \lambda}^{-1 / 2}(\mathcal{T}-M) \mathcal{T}_{\mathbf{x} \lambda}^{-1 / 2}\right\| \leq \frac{2}{3}, \quad \forall \mathbf{G} \in U_{\mathbf{x}}
$$

Following from (Caponnetto \& De Vito, 2007),

$$
\left\|M_{\lambda}^{-1 / 2} \mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}}\right\|^{2}=\left\|\mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}} M_{\lambda}^{-1} \mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}}\right\|^{2}=\left\|\left(I-\mathcal{T}_{\mathbf{x} \lambda}^{-1 / 2}\left(\mathcal{T}_{\mathbf{x}}-M\right) \mathcal{T}_{\mathbf{x} \lambda}^{-1 / 2}\right)^{-1 / 2}\right\|
$$

we get

$$
\begin{equation*}
\left\|M_{\lambda^{\prime}}^{-1 / 2} \mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}}\right\|^{2} \leq 3, \quad \forall \mathbf{G} \in U_{\mathbf{x}} \tag{57}
\end{equation*}
$$

Let $W=m^{-1 / 2} \mathbf{G} \mathcal{S}_{\mathbf{x}}$. As P is the projection operator onto $\overline{\operatorname{range}\left\{W^{*}\right\}}$,

$$
P=W^{*}\left(W W^{*}\right)^{\dagger} W \succeq W^{*}\left(W W^{*}+\lambda\right)^{-1} W=W^{*} W\left(W^{*} W+\lambda\right)^{-1}=M(M+\lambda)^{-1}
$$

where for the last second equality, we used Lemma 17. Thus (Rudi et al., 2015),

$$
I-P \preceq I-M(M+\lambda)^{-1}=\lambda(M+\lambda)^{-1} .
$$

It thus follows that

$$
\mathcal{T}_{\mathbf{x}}^{\frac{1}{2}}(I-P) \mathcal{T}_{\mathbf{x}}^{\frac{1}{2}} \preceq \lambda \mathcal{T}_{\mathbf{x}}^{\frac{1}{2}}(M+\lambda)^{-1} \mathcal{T}_{\mathbf{x}}^{\frac{1}{2}} \preceq \lambda \mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}}(M+\lambda)^{-1} \mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}}
$$

Using $\left\|A^{*} A\right\|^{2}=\|A\|^{2}$ and the above,

$$
\begin{equation*}
\left\|(I-P) \mathcal{T}_{\mathbf{x}}^{\frac{1}{2}}\right\|^{2}=\left\|\mathcal{T}_{\mathbf{x}}^{\frac{1}{2}}(I-P) \mathcal{T}_{\mathbf{x}}^{\frac{1}{2}}\right\| \leq \lambda\left\|\mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}}(M+\lambda)^{-1} \mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}}\right\|=\lambda\left\|(M+\lambda)^{-1 / 2} \mathcal{T}_{\mathbf{x} \lambda}^{\frac{1}{2}}\right\|^{2} \tag{58}
\end{equation*}
$$

Applying (57), one can prove the desired result.

A.4. Proof of Lemma 14

Since P is a projection operator, $(I-P)^{2}=I-P$. Then

$$
\left\|A^{s}(I-P) A^{t}\right\|=\left\|A^{s}(I-P)(I-P) A^{t}\right\| \leq\left\|A^{s}(I-P)\right\|\left\|(I-P) A^{t}\right\|
$$

Moreover, by Lemma 16,

$$
\left\|A^{s}(I-P)\right\|=\left\|A^{\frac{1}{2} 2 s}(I-P)^{2 s}\right\| \leq\left\|A^{\frac{1}{2}}(I-P)\right\|^{2 s}
$$

Similarly, $\left\|(I-P) A^{t}\right\| \leq\left\|(I-P) A^{\frac{1}{2}}\right\|^{2 t}$. Thus,

$$
\left\|A^{s}(I-P) A^{t}\right\| \leq\left\|A^{\frac{1}{2}}(I-P)\right\|^{2 s}\left\|(I-P) A^{\frac{1}{2}}\right\|^{2 t}=\left\|(I-P) A^{\frac{1}{2}}\right\|^{2(t+s)}
$$

Using $\|D\|^{2}=\left\|D^{*} D\right\|$,

$$
\left\|A^{s}(I-P) A^{t}\right\| \leq\|(I-P) A(I-P)\|^{t+s}
$$

Adding and subtracting with the same term, using the triangle inequality, and noting that $\|I-P\| \leq 1$ and $s+t \leq 1$,

$$
\begin{aligned}
\left\|A^{s}(I-P) A^{t}\right\| & \leq\|(I-P) A(I-P)\|^{t+s} \\
& \leq(\|(I-P)(A-B)(I-P)\|+\|(I-P) B(I-P)\|)^{t+s} \\
& \leq\|A-B\|^{s+t}+\|(I-P) B(I-P)\|^{s+t}
\end{aligned}
$$

which leads to the desired result using $\left\|D^{*} D\right\|=\left\|D D^{*}\right\|$.

A.5. Proof of Lemma 15

To prove the result, we need the following concentration inequality.
Lemma 21. Let w_{1}, \cdots, w_{m} be i.i.d random variables in a separable Hilbert space with norm $\|\cdot\|$. Suppose that there are two positive constants B and σ^{2} such that

$$
\begin{equation*}
\mathbb{E}\left[\left\|w_{1}-\mathbb{E}\left[w_{1}\right]\right\|^{l}\right] \leq \frac{1}{2} l!B^{l-2} \sigma^{2}, \quad \forall l \geq 2 \tag{59}
\end{equation*}
$$

Then for any $0<\delta<1 / 2$, the following holds with probability at least $1-\delta$,

$$
\left\|\frac{1}{m} \sum_{k=1}^{m} w_{m}-\mathbb{E}\left[w_{1}\right]\right\| \leq 2\left(\frac{B}{m}+\frac{\sigma}{\sqrt{m}}\right) \log \frac{2}{\delta}
$$

In particular, (59) holds if

$$
\begin{equation*}
\left\|w_{1}\right\| \leq B / 2 \text { a.s., } \quad \text { and } \quad \mathbb{E}\left[\left\|w_{1}\right\|^{2}\right] \leq \sigma^{2} \tag{60}
\end{equation*}
$$

The above lemma is a reformulation of the concentration inequality for sums of Hilbert-space-valued random variables from (Pinelis \& Sakhanenko, 1986). We refer to (Smale \& Zhou, 2007; Caponnetto \& De Vito, 2007) for the detailed proof.

Proof of Lemma 15. We first use Lemma 21 to estimate $\operatorname{tr}\left(\mathcal{T}_{\lambda}^{-\frac{1}{2}}\left(\mathcal{T}_{\mathbf{x}}-\mathcal{T}\right) \mathcal{T}_{\lambda}^{-\frac{1}{2}}\right)$. Note that

$$
\operatorname{tr}\left(\mathcal{T}_{\lambda}^{-\frac{1}{2}} \mathcal{T}_{\mathbf{x}} \mathcal{T}_{\lambda}^{-\frac{1}{2}}\right)=\frac{1}{n} \sum_{j=1}^{n}\left\|\mathcal{T}_{\lambda}^{-\frac{1}{2}} x_{j}\right\|_{H}^{2}=\frac{1}{n} \sum_{j=1}^{n} \xi_{j}
$$

where we let $\xi_{j}=\left\|\mathcal{T}_{\lambda}^{-\frac{1}{2}} x_{j}\right\|_{H}^{2}$ for all $j \in[n]$. Besides, it is easy to see that

$$
\operatorname{tr}\left(\mathcal{T}_{\lambda}^{-\frac{1}{2}}\left(\mathcal{T}_{\mathbf{x}}-\mathcal{T}\right) \mathcal{T}_{\lambda}^{-\frac{1}{2}}\right)=\frac{1}{n} \sum_{j=1}^{n}\left(\xi_{j}-\mathbb{E}\left[\xi_{j}\right]\right)
$$

Using Assumption (2),

$$
\xi_{1} \leq \frac{1}{\lambda}\left\|x_{1}\right\|_{H}^{2} \leq \frac{\kappa^{2}}{\lambda}
$$

and

$$
\mathbb{E}\left[\left\|\xi_{1}\right\|^{2}\right] \leq \frac{\kappa^{2}}{\lambda} \mathbb{E}\left\|\mathcal{T}_{\lambda}^{-\frac{1}{2}} x_{1}\right\|_{H}^{2} \leq \frac{\kappa^{2} \mathcal{N}(\lambda)}{\lambda}
$$

Applying Lemma 21, we get that there exists a subset V_{1} of Z^{n} with measure at least $1-\delta$, such that for all $\mathbf{z} \in V_{1}$,

$$
\operatorname{tr}\left(\mathcal{T}_{\lambda}^{-\frac{1}{2}}\left(\mathcal{T}_{\mathbf{x}}-\mathcal{T}\right) \mathcal{T}_{\lambda}^{-\frac{1}{2}}\right) \leq 2\left(\frac{2 \kappa^{2}}{n \lambda}+\sqrt{\frac{\kappa^{2} \mathcal{N}(\lambda)}{n \lambda}}\right) \log \frac{2}{\delta}
$$

Combining with Lemma 8 , taking the union bounds, rescaling δ, and noting that

$$
\begin{aligned}
\operatorname{tr}\left(\mathcal{T}_{\mathbf{x} \lambda}^{-1} \mathcal{T}_{\mathbf{x}}\right) & =\operatorname{tr}\left(\mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}} \mathcal{T}_{\lambda}^{\frac{1}{2}} \mathcal{T}_{\lambda}^{-\frac{1}{2}} \mathcal{T}_{\mathbf{x}} \mathcal{T}_{\lambda}^{-\frac{1}{2}} \mathcal{T}_{\lambda}^{\frac{1}{2}} \mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}}\right) \\
& \leq\left\|\mathcal{T}_{\lambda}^{\frac{1}{2}} \mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}}\right\|^{2} \operatorname{tr}\left(\mathcal{T}_{\lambda}^{-\frac{1}{2}} \mathcal{T}_{\mathbf{x}} \mathcal{T}_{\lambda}^{-\frac{1}{2}}\right) \\
& =\left\|\mathcal{T}_{\lambda}^{\frac{1}{2}} \mathcal{T}_{\mathbf{x} \lambda}^{-\frac{1}{2}}\right\|^{2}\left(\operatorname{tr}\left(\mathcal{T}_{\lambda}^{-\frac{1}{2}}\left(\mathcal{T}_{\mathbf{x}}-\mathcal{T}\right) \mathcal{T}_{\lambda}^{-\frac{1}{2}}\right)+\mathcal{N}(\lambda)\right)
\end{aligned}
$$

we get that there exists a subset V of Z^{n} with measure at least $1-\delta$, such that for all $\mathbf{z} \in V$,

$$
\operatorname{tr}\left(\left(\mathcal{T}_{\mathbf{x}}+\lambda\right)^{-1} \mathcal{T}_{\mathbf{x}}\right) \leq 3 a_{n, \delta / 2, \gamma}(\theta)\left(2\left(\frac{2 \kappa^{2}}{n \lambda}+\sqrt{\frac{\kappa^{2} \mathcal{N}(\lambda)}{n \lambda}}\right) \log \frac{4}{\delta}+\mathcal{N}(\lambda)\right)
$$

which leads to the desired result using $\lambda \leq 1, n \lambda \geq 1$ and Assumption 3.

A.6. Proof for Corollary 5

Proof. Using a similar argument as that for (58), with $W=\mathcal{S}_{\tilde{\mathbf{x}}}$, where $\tilde{\mathbf{x}}=\left\{x_{1}, \cdots, x_{m}\right\}$, we get for any $\eta>0$,

$$
\left\|(I-P) \mathcal{T}^{\frac{1}{2}}\right\|^{2} \leq \eta\left\|\left(\mathcal{T}_{\tilde{\mathbf{x}}}+\eta\right)^{-1 / 2}(\mathcal{T}+\eta)^{1 / 2}\right\|^{2}
$$

Letting $\eta=\frac{1}{m}$, and using Lemma 8 , we get that with probability at least $1-\delta$,

$$
\left\|(I-P) \mathcal{T}^{\frac{1}{2}}\right\|^{2} \lesssim \frac{1}{m} \log \frac{3 m^{\gamma}}{\delta}
$$

Combining with Corollary 3, one can prove the desired result.

B. Learning with Kernel Methods

Let the input space Ξ be a closed subset of Euclidean space \mathbb{R}^{d}, the output space $Y \subseteq \mathbb{R}$. Let μ be an unknown but fixed Borel probability measure on $\Xi \times Y$. Assume that $\left\{\left(\xi_{i}, y_{i}\right)\right\}_{i=1}^{m}$ are i.i.d. from the distribution μ. A reproducing kernel K is a symmetric function $K: \Xi \times \Xi \rightarrow \mathbb{R}$ such that $\left(K\left(u_{i}, u_{j}\right)\right)_{i, j=1}^{\ell}$ is positive semidefinite for any finite set of points $\left\{u_{i}\right\}_{i=1}^{\ell}$ in Ξ. The kernel K defines a reproducing kernel Hilbert space (RKHS) $\left(\mathcal{H}_{K},\|\cdot\|_{K}\right)$ as the completion of the linear span of the set $\left\{K_{\xi}(\cdot):=K(\xi, \cdot): \xi \in \Xi\right\}$ with respect to the inner product $\left\langle K_{\xi}, K_{u}\right\rangle_{K}:=K(\xi, u)$. For any $f \in \mathcal{H}_{K}$, the reproducing property holds: $f(\xi)=\left\langle K_{\xi}, f\right\rangle_{K}$.
Example B. 1 (Sobolev Spaces). Let $X=[0,1]$ and the kernel

$$
K\left(x, x^{\prime}\right)= \begin{cases}(1-y) x, & x \leq y \\ (1-x) y, & x \geq y\end{cases}
$$

Then the kernel induces a Sobolev Space $H=\left\{f: X \rightarrow \mathbb{R} \mid f\right.$ is absolutely continuous $\left., f(0)=f(1)=0, f \in L^{2}(X)\right\}$.

In learning with kernel methods, one considers the following minimization problem

$$
\inf _{f \in \mathcal{H}_{K}} \int_{\Xi \times Y}(f(\xi)-y)^{2} d \mu(\xi, y)
$$

Since $f(\xi)=\left\langle K_{\xi}, f\right\rangle_{K}$ by the reproducing property, the above can be rewritten as

$$
\inf _{f \in \mathcal{H}_{K}} \int_{\Xi \times Y}\left(\left\langle f, K_{\xi}\right\rangle_{K}-y\right)^{2} d \mu(\xi, y)
$$

Letting $X=\left\{K_{\xi}: \xi \in \Xi\right\}$ and defining another probability measure $\rho\left(K_{\xi}, y\right)=\mu(\xi, y)$, the above reduces to the learning setting in Section 2.

