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A. Illustration of Algorithm 2

Figure 3. Illustration of AM-FLS Method. The figures on the top row depict the procedure to update r(k) using upper bound U(r(k)) .
The figures on the bottom row show when to stop the algorithm.

The geometric illustration of Algorithm 1 has already been given in Aravkin et al. (2016). In Figure 3, we illustrate
the intuition behind Algorithm 2. We choose θ = 2 as an example. In the top-left picture in Figure 3, we plot the
curve of a level function H(r) that has all the properties in Lemma 1. Moreover, the x-axis represents the value of
r and the point where the x-axis intersecting with the y-axis is (f∗, H(f∗)) = (f∗, 0). In the top-middle picture, we
consider a level parameter r(k) > f∗ such that H(r(k)) < 0, and use an oracle to find U(r(k)) and L(r(k)) such that
2U(r(k)) ≤ L(r(k)) ≤ H(r(k)) ≤ U(r(k)) (Property 4 in Definition 1 of an oracle with θ = 2). In the top-right figure, we
perform the update r(k+1) ← r(k) + U(r(k)) such that r(k) moves towards the root f∗ of H(r) as k increases. Note that, in
Algorithm 2, we use a slightly different updating step which is r(k+1) ← r(k) +U(r(k))/2. This is because the multiplier 1

2

(or any multiplier less than 1) applied to U(r(k)) can avoid the extreme scenario where r(k+1) = f∗. We want to avoid this
scenario because, if it happens, we can no longer find x̄ such that P(r(k+1); x̄) < 0 and thus cannot ensure the feasibility of
the returned solution. The impact of this multiplier to the complexity of a feasible level-set method is analyzed by Lin et al.
(2017).

In the bottom-left figure, we plot the curve (of r) minx∈X K(r;x,y(k),α(k)) in red where (y(k),α(k)) = w(k) is the dual
solution found by the oracle when it solves (7). According to (7), minx∈X K(r;x,y(k),α(k)) is a global lower bound of
H(r) and L(r(k)) = minx∈X K(r(k);x,y(k),α(k)). In the bottom-middle figure, we construct the tangent line for the
curve minx∈X K(r;x,y(k),α(k)) at r(k), namely, L(r(k)) + ∂r(minx∈X K(r(k);x,y(k),α(k)))(r − r(k)) which is the
green line in this figure. Therefore, we can choose S(r(k)) = ∂r(minx∈X K(r(k);x,y(k),α(k))) as the slope in the output
of the oracle, which will satisfy Property 5 in Definition 1. Finally, in the bottom-right picture, we show a line segment in
the x-axis whose length is L(r(k))

S(r(k))
which is no shorter than r(k) − f∗. Hence, to ensure r(k) − f∗ ≤ ε, it suffices to stop

Algorithm 2 when L(r(k))
S(r(k))

≤ ε, or equivalently, L(r(k)) ≥ εS(r(k)).

B. Proof of Lemma 3
Proof. According to the update step in Algorithm 4, we have, for t ≥ 0,

w(t+1) = (y(t+1),α(t+1)) ∈ arg min
w∈W

−α>v(t) +Gµ(w) +
D(w,w(t))

τ
. (15)
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By Proposition 1, we have y(t+1) ∈ int∆ and α(t+1) = y
(t+1)
i α̃

(t+1)
i where

α̃
(t+1)
i ∈ arg min

α̃i∈Rni

ν ‖α̃i‖22 +
1

τ

∥∥∥α̃i − α̃
(t)
i

∥∥∥2

2
+

ni∑
j=1

1

ni
φ∗ij
(
α̃ij
)
− α̃>i v

(t)
i

 . (16)

Therefore, to prove this lemma, it suffices to prove ‖α̃(t)
i ‖2 ≤ B for all t ≥ 0 and i = 0, 1, . . . ,m. We prove this result

under each of the two scenarios in Assumption 2.

Suppose scenario (b) in Assumption 2 holds such that B ≥ max
α̃ij∈domφij

‖α̃i‖2. Since α̃
(t)
i must stay in the domain of φ∗ij

according to (16), we have ‖α̃(t)
i ‖2 ≤ B for all t ≥ 0 and i = 0, 1, . . . ,m.

In the next, we prove this result by assuming scenario (a) in Assumption 2 holds such that B is a constant that satisfies

B ≥ max

{
2 ‖α̃∗i ‖2 ,

8dmaxk ‖Θik‖2Bx

γ
, 2

∥∥∥∥ ᾱ(0)
i

ȳ
(0)
i

− α̃∗i

∥∥∥∥
2

}
.

Let α̃(t)
i =

α
(t)
i

y
(t)
i

and α̃∗i =
α∗i
y∗i

for i = 0, 1, . . . ,m. We will first prove

‖α̃(t)
i − α̃∗i ‖2 ≤ max

{
‖α̃∗i ‖2 ,

4dmaxk ‖Θik‖2Bx

γ
, ‖ᾱ(0)

i /ȳ
(0)
i − α̃∗i ‖2

}
(17)

for all t ≥ 0 by induction over the index t. Equation (17) holds trivially for t = 0 because α̃
(0)
i = ᾱ

(0)
i /ȳ

(0)
i . Now, we

assume (17) holds for iteration t and prove it also holds for iteration t+ 1.

According to (16), we can independently update each coordinate of α̃(t+1)
i , denoted by α̃(t+1)

ij , by solving

α̃
(t+1)
ij ∈ arg min

α̃ij∈R

{
ν(α̃ij)

2 +
1

τ
(α̃ij − α̃(t)

ij )2 +
1

ni
φ∗ij
(
α̃ij
)
− α̃ijv(t)

ij

}
whose optimality condition implies

0 ∈ 2να̃
(t+1)
ij +

2

τ
(α̃

(t+1)
ij − α̃(t)

ij ) +
1
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∂φ∗ij

(
α̃

(t+1)
ij

)
− v(t)

ij . (18)

By the definition of the saddle point (x∗,y∗,α∗) of (9), the value α̃∗ij :=
α∗ij
y∗i

satisfies

α̃∗ij ∈ arg min
α̃ij∈R

{
− 1

ni
α̃ijξ

>
ijx
∗ +

1

ni
φ∗ij
(
α̃ij
)}

whose optimality condition implies

0 ∈ − 1

ni
ξ>ijx

∗ +
1

ni
∂φ∗ij

(
α̃∗ij
)
. (19)

Since φij is smooth with its gradient being 1
γ -Lipschitz continuous with respect to `2-norm, φ∗ij is γ strongly convex with

respect to `2-norm. Hence, the function ν(α)2 + 1
τ (α− α̃tij)2 + 1

ni
φ∗ij(α) is (2ν + 2

τ + γ
ni

)-strongly convex. Therefore,
the strong monotonicity property of the subdifferential of this function implies[

2να̃∗ij +
2

τ
(α̃∗ij − α̃

(t)
ij ) +

1
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∂φ∗ij

(
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)
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ij )− 1
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∂φ∗ij
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α̃
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)]
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ij ]

≥
(
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2

τ
+
γ
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)
(α̃∗ij − α̃

(t+1)
ij )2,
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which implies ∣∣∣∣2να̃∗ij +
2
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(α̃∗ij − α̃

(t)
ij ) +

1
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∂φ∗ij

(
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Applying the relationship (18) and (19) to the inequality above gives∣∣∣∣2να̃∗ij +
2

τ
(α̃∗ij − α̃

(t)
ij ) +

1

ni
ξ>ijx

∗ − v(t)
ij

∣∣∣∣ ≥ (2ν +
2

τ
+
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)
|α̃∗ij − α̃
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which, by the triangle’s inequality, further implies

2ν
∥∥α̃∗i ∥∥2

+ 2
τ

∥∥α̃∗i − α̃
(t)
i

∥∥
2

+ γ
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∥∥Θix
∗
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(t)
i

γ

∥∥
2

2ν + 2
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ni

≥ ‖α̃∗i − α̃
(t+1)
i ‖2. (20)

Note that the relationship 1
ni
ξ>ijx

∗ = 1
ni
∂φ∗ij

(
α̃∗ij
)

implies ∇φij(ξ>ijx∗) = α̃∗ij . Moreover, the definition of v(t) in
Algorithm 4 indicates that

‖Θix
∗ − niv(t)

i ‖2 ≤ 2‖Θi‖2Bx + d‖Θik‖2‖x̄(s)
k − x

(t)
k ‖ ≤ 4dmax

k
‖Θik‖2Bx

where Θik is the kth column of Θi. By the induction hypothesis (17) and (20), we conclude that

‖α̃∗i − α̃
(t+1)
i ‖2 ≤ max

{
‖α̃∗i ‖2 ,

4dmaxk ‖Θik‖2Bx

γ
, ‖ᾱ(0)

i /ȳ
(0)
i − α̃∗i ‖2

}
so that the result (17) holds for t+ 1.

Finally, using (17) and the fact that ‖α̃(t)
i ‖2 ≤ ‖α̃∗i ‖2 + ‖α̃∗i − α̃

(t)
i ‖2, we can show

‖α̃(t)
i ‖2 ≤ max

{
2 ‖α̃∗i ‖2 ,

8dmaxk ‖Θik‖2Bx

γ
, 2‖ᾱ(0)

i /ȳ
(0)
i − α̃∗i ‖2

}
≤ B

which completes the proof.

C. Proof of Theorem 1
Proof. The complexity of Algorithm 1 can be analyzed with a similar argument as in Section 2.1 in Aravkin et al. (2016)
by incorporating the complexity of oracle A. Consider an iteration k that is not the last iteration of Algorithm 1, i.e.,
U(r(k)) > ε. The property of A guarantees that θH(r(k)) ≥ θL(r(k)) ≥ U(r(k)) > ε so that the complexity of A in
iteration k is at most

C(max{H(r(k)), ε}) ≤ C(max{θ−1ε, ε}) = C(ε).

Here, we use the facts that θ > 1 and that C(·) is non-increasing by Definition 1. On the other hand, in the last
iteration of Algorithm 1 where U(r(k)) ≤ ε, we have H(r(k)) ≤ U(r(k)) ≤ ε so that the complexity of A here is
still at most C(ε). According to Theorem 2.4 in Aravkin et al. (2016), Algorithm 1 terminates after at most max{1 +

log2/θ(
2 max{|S(r(0))||f∗−r(0)|,L(r(0))}

ε ), 2} iterations so that the total expected complexity of Algorithm 1 is C(ε) max{1 +

log2/θ(
2 max{|S(r(0))||f∗−r(0)|,L(r(0))}

ε ), 2}. At the last iteration, we have P(r(k);x(k)) ≤ U(r(k)) ≤ ε, which means the
output solution x(k) is ε-optimal and ε-feasible by the definition of P and the fact that r(k) ≤ f∗ during Algorithm 1. Then,
we have verified the conclusion (1) and the first part of conclusion (c).

In the next, we analyze the complexity of Algorithm 2. The most part of the proof is from the proof of Theorem 2 in Lin et al.
(2017). However, one major difference in our proof from Lin et al. (2017) is that we analyze the complexity for Algorithm 2
under a termination condition different from the one used in Lin et al. (2017). This difference is essential because it is the
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main reason for Algorithm 2 to ensure an absolute ε-optimal solution while Lin et al. (2017) ensures a relative ε-optimal
solution.

First of all, we claim that S(r) ≤ 0 for any r. In fact, for any r′ > r, the property of S(r) promised by oracle A and
the non-increasing property of H(·) by Lemma 1 guarantees H(r) ≥ H(r′) ≥ L(r) + S(r)(r′ − r), which implies
S(r) ≤ H(r)−L(r)

r′−r . Letting r′ goes to infinity leads to this conclusion.

According to the definition of β, Lemma 1(d) and convexity of H(r), we can show that

β(r − f∗) ≤ −H(r) ≤ r − f∗, ∀r ∈ (f∗, r(0)]. (21)

Suppose Algorithm 2 terminates at iteration k = K. From (21), the updating equation for r(k+1) and the fact that
H(r(k)) ≤ U(r(k)) ≤ L(r(k))/θ ≤ H(r(k))/θ < 0 (according to the property of A), we have

r(k+1) − f∗ = r(k) − f∗ + U(r(k))/2 ≥ r(k) − f∗ +
H(r(k))

2
≥ 1

2
(r(k) − f∗) (22)

r(k+1) − f∗ = r(k) − f∗ + U(r(k))/2 ≤ r(k) − f∗ +
H(r(k))

2θ
≤
(

1− β

2θ

)
(r(k) − f∗), (23)

for k = 0, 1, . . . ,K. Recursively applying both inequalities gives

0 <
1

2k
(r(0) − f∗) ≤ r(k) − f∗ ≤

(
1− β

2θ

)k
(r(0) − f∗), for k = 0, 1, 2, . . . ,K. (24)

Choosing r = r(k) in the inequality (21), and applying (24) and the properties of L(r(k)) and U(r(k)), we can show that

−L(r(k)) ≤ −θU(r(k)) ≤ −θH(r(k)) ≤ θ(r(k) − f∗) ≤ θ
(

1− β

2θ

)k
(r(0) − f∗) ≤ −H(r(0))

2

for k ≥ 2θ
β log

(
2θ(r(0)−f∗)
|H(r(0))|

)
. With k satisfying this inequality, using the fact that f∗ < r(k) by (24), the definition of

S(r(k)), and the fact that S(r(k)) ≤ 0, we can prove that

H(r(0)) ≥ L(r(k)) + S(r(k))(r(0) − r(k)) ≥ H(r(0))

2
+ S(r(k))(r(0) − f∗),

or equivalently, S(r(k)) ≤ H(r(0))
2(r(0)−f∗) = −β2 < 0. Therefore, if we simultaneously require k ≥ 2θ

β log
(

2θ(r(0)−f∗)2
|H(r(0))|ε

)
, we

will further ensure

−L(r(k)) ≤ −H(r(0))ε

2(r(0) − f∗)
=
βε

2
≤ −εS(r(k)).

Therefore, the total number of main iterations K of Algorithm 2 satisfies

K ≤ 2θ

β
log

(
2θ(r(0) − f∗)
|H(r(0))|

max

{
r(0) − f∗

ε
, 1

})
=

2θ

β
log

(
2θ

β
max

{
r(0) − f∗

ε
, 1

})
and, by the assumption on the complexity of A in Definition 1, the the overall expected complexity of Algorithm 2 is∑K
k=0 C(|H(r(k))|).

To further analyze the overall complexity of Algorithm 2, consider an iteration k < K, i.e., L(r(k)) < εS(r(k)). The
property of A guarantees that θH(r(k)) ≤ L(r(k)) < εS(r(k)) which, together with the definition of S(r(k)) and the fact
f∗ < r(k) < r(0), implies that

H(r(0)) ≥ L(r(k)) + S(r(k))(r(0) − r(k)) ≥ θH(r(k)) +
θH(r(k))

ε
(r(0) − f∗).

This inequality further implies, for 0 ≤ k < K,

|H(r(k))| ≥ |H(r(0))|
θ(1 + (r(0) − f∗)/ε)

. (25)



Level-Set Methods for Finite-Sum Constrained Convex Optimization

Hence, the expected complexity of A in iteration k < K (non-terminating iteration) of Algorithm 2 is at most

C(|H(r(k))|) ≤ C
(

|H(r(0))|
θ(1 + (r(0) − f∗)/ε)

)
≤ C

(
β|H(r(0))|

2θ(1 + (r(0) − f∗)/ε)

)
.

On the other hand, according to (21), (22) and (25), we have

−H(r(K)) ≥ β(r(K) − f∗) ≥ β

2
(r(K−1) − f∗) ≥ β|H(r(K−1))|

2
≥ β|H(r(0))|

2θ(1 + (r(0) − f∗)/ε)
,

so the complexity of A at the last iteration (i.e., k = K) is at most

C(|H(r(k))|) ≤ C
(

β|H(r(0))|
2θ(1 + (r(0) − f∗)/ε)

)
.

Hence, the total expected complexity of Algorithm 2 is C
(

β|H(r(0))|
2θ(1+(r(0)−f∗)/ε)

)
2θ
β log

(
2θ
β max{ r

(0)−f∗
ε , 1}

)
.

Lastly, we analyze the quality of the solutions from Algorithm 2. Recall that f∗ < r(k) by (24), so that, at any iteration,
P(r(k);xk) ≤ U(r(k)) ≤ L(r(k))/θ ≤ H(r(k))/θ < 0, which implies that maxi=1,...,m[fi(x

k)− ri] ≤ 0 according to the
definition of P . Hence, we have proved that x(k) is a strictly feasible solution for any k.

Furthermore, we note that the affine-minorant property of S(r(K)) implies

H

(
r(K) − L(r(K))

S(r(K))

)
≥ L(r(K)) + S(r(K))

(
r(K) − L(r(K))

S(r(K))
− r(K)

)
= 0,

so we must have r(K) − L(r(K))/S(r(K)) ≤ f∗, which further ensures r(K) − f∗ ≤ L(r(K))/S(r(K)) ≤ ε according to
the terminating condition of Algorithm 2. At the last iteration, again, we have P(r(K);x(K)) ≤ U(r(K)) ≤ L(r(K))/θ ≤
H(r(K))/θ < 0. Because 0 ≤ r(K) − f∗ ≤ ε and P(r(K);x(K)) < 0, we have f0(x(K)) − f∗ ≤ r(K) − f∗ ≤ ε and
maxi=1,...,m[fi(x

K) − ri] ≤ 0 according to the definition of P . Hence, Algorithm 2 returns an ε-optimal and feasible
solution at termination. Then, we have verified the conclusion (2) and the second part of conclusion (c).

D. Proof of Proposition 1
Proof of Proposition 1. By the definition of Gν , D and hB , after organizing terms, (12) can be formulated as

min
w∈W

 2(1 +B)2ν
∑m
i=0 yi ln yi + 2(1+B)2

τ

∑m
i=0 yi ln

(
yi
y′i

)
+ y>r

+
∑m
i=0 νyi

∥∥∥αi
yi

∥∥∥2

2
+
∑m
i=0

yi
τ

∥∥∥αi
yi
− α′i

y′i

∥∥∥2

2
+
∑m
i=0

∑ni
j=1

yi
ni
φ∗ij
(αij
yi

)
−
∑m
i=0 yi(

αi
yi

)>vi

 . (26)

We first fix y ∈ int∆ and only optimize α ∈ Rn in (26). By changing variables with α̃i = αi
yi

and α̃′i =
α′i
y′i

, (26) becomes

min
y∈∆,α̃∈Rn

{
2(1 +B)2ν

∑m
i=0 yi ln yi + 2(1+B)2

τ

∑m
i=0 yi ln

(
yi
y′i

)
+ y>r

+
∑m
i=0 νyi ‖α̃i‖

2
2 +

∑m
i=0

yi
τ ‖α̃i − α̃′i‖

2
2 +

∑m
i=0

∑ni
j=1

yi
ni
φ∗ij
(
α̃ij
)
−
∑m
i=0 yi(α̃i)

>vi

}

= min
y∈∆

 2(1 +B)2ν
∑m
i=0 yi ln yi + 2(1+B)2

τ

∑m
i=0 yi ln

(
yi
y′i

)
+ y>r

+
∑m
i=0 yi min

α̃i∈Rni

[
ν ‖α̃i‖22 + 1

τ ‖α̃i − α̃′i‖
2
2 +

∑ni
j=1

1
ni
φ∗ij
(
α̃ij
)
− α̃>i vi

]  (27)

= min
y∈∆

{
2(1 +B)2ν

m∑
i=0

yi ln yi +
2(1 +B)2

τ

m∑
i=0

yi ln

(
yi
y′i

)
+ y>(r + ρ)

}
. (28)

The equality (27) above indicates that the minimization over αi in (26) for a given y is equivalent to the inner minimization
over α̃i in (27), which is independent of y and can be solved for each i separately. Note that the ith inner minimization is
exactly (13), whose optimal solution, i.e., α̃#

i , has a closed form for many commonly used loss function φij . The equality
(28) indicates that, after obtaining the optimal α̃i, we can solve the optimal y by solving the outer minimization problem
(28) whose solution is exactly y# defined in Proposition 1 which can be verified from the optimality condition. According
to the relationship that α̃i = αi

yi
, the optimal value of the original variable αi should be α#

i = α̃#
i y

#
i .
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E. Proof of Theorem 2 and Theorem 3
In this section, we provide the proofs for Theorem 2 and Theorem 3.

Proof of Theorem 2. With a little abuse of notation, in this proof, we denote by (x∗,w∗) the saddle point of (9) but hide
their dependency on µ and ν. For simplicity of notation, we define Fµ(x) :=

µ‖x‖22
2 .

We first analyze the convergence property of the sth outer iteration of Algorithm 4. Let Et represent the conditional
expectation conditioning on (x(0),w(0)) = (x̄(s), w̄(s)) as well as all the stochastic outcomes up to the end of inner iteration
t of the outer iteration s of Algorithm 4.

The definition of (x(t+1),y(t+1)) and the optimality conditions of (x∗,w∗) imply that, for any x ∈ X and w = (y,α) ∈ W ,(
µ+

1

σ

)
‖x− x(t+1)‖22

2
+ (x(t+1))>u(t) + Fµ(x(t+1)) +

‖x(t) − x(t+1)‖22
2σ

≤ x>u(t) + Fµ(x) +
‖x− x(t)‖22

2σ
(29)

(
ν +

1

τ

)
D(w,w(t+1))− (α(t+1))>v(t) +Gν(w(t+1)) +

D(w(t+1),w(t))

τ
≤ −α>v(t) +Gν(w) +

D(w,w(t))

τ
(30)

Motived by (88) and (89) in Xiao et al. (2017), we define

P̃(x) := α∗Ax + Fµ(x)−α∗Ax∗ − Fµ(x∗) and D̃(w) := αAx∗ −Gν(w)−α∗Ax∗ +Gν(w∗).

Note that minx∈X P̃(x) = P̃(x∗) = 0 and maxw∈W D̃(w) = D̃(w∗) = 0. By the µ-strong convexity of Fµ with respect
to Euclidean distance and the ν-strong convexity of Gν with respect to Bregman divergence D, we can show that

P̃(x) ≥ µ‖x− x∗‖22
2

and − D̃(w) ≥ νD(w,w∗) (31)

We choose x = x∗ in (29) and w = w∗ in (30), and the add (29) and (30) together. After organizing terms, we obtain(
µ+

1

σ

)
‖x∗ − x(t+1)‖22

2
+
‖x(t) − x(t+1)‖22

2σ
+

(
ν +

1

τ

)
D(w∗,w(t+1)) +

D(w(t+1),w(t))

τ

+P̃(x(t+1))− D̃(w(t+1))

≤ (x∗ − x(t+1))>u(t) +
‖x∗ − x(t)‖22

2σ
− (α∗ −α(t+1))>v(t) +

D(w∗,w(t))

τ
+ α∗Ax(t+1) −α(t+1)Ax∗

= (x∗ − x(t))>[u(t) −A>α(t)] + (α∗ −α(t))>[Ax(t) − v(t)] +
‖x∗ − x(t)‖22

2σ
+
D(w∗,w(t))

τ

+(x∗ − x(t))>A>α(t) − (α∗ −α(t))>Ax(t) − (x(t+1) − x(t))>A>α(t) + (α(t+1) −α(t))>Ax(t)

+(x(t+1) − x(t))>[A>α(t) − u(t)]− (α(t+1) −α(t))>[Ax(t) − v(t)] + α∗Ax(t+1) −α(t+1)Ax∗

= (x∗ − x(t))>[u(t) −A>α(t)] + (α∗ −α(t))>[Ax(t) − v(t)] +
‖x∗ − x(t)‖22

2σ
+
D(w∗,w(t))

τ
(32)

−(x(t+1) − x(t))>A>(α(t) −α∗) + (α(t+1) −α(t))>A(x(t) − x∗)

+(x(t+1) − x(t))>[A>α(t) − u(t)]− (α(t+1) −α(t))>[Ax(t) − v(t)]

Since the random indexes k and l are independent of x(t) and w(t), we have

Et[(x∗ − x(t))>(u(t) −A>α(t))] = 0 and Et[(α∗ −α(t))>(Ax(t) − v(t))] = 0 (33)

by the definition of u(t) and v(t).

Next, we study the three lines on the right hand side of (32), respectively. By the definition of u(t), Cauchy-Schwarz



Level-Set Methods for Finite-Sum Constrained Convex Optimization

inequality and Young’s inequality, we have

Et
[
(x(t) − x(t+1))>(u(t) −A>α(t))

]
≤ 1

2at
Et‖x(t) − x(t+1)‖22 +

at
2
Et‖A>ᾱ(s) + nA>l: α

(t)
l − nA

>
l: ᾱ

(s)
l −A

>α(t)‖22

≤ 1

2at
Et‖x(t) − x(t+1)‖22 + atnmax

l
‖Al:‖22‖α(t) −α∗‖22 + atnmax

l
‖Al:‖22‖ᾱ(s) −α∗‖22

≤ 1

2at
Et‖x(t) − x(t+1)‖22 + 2atnmax

l
‖Al:‖22D(w∗,w(t)) + 2atnmax

l
‖Al:‖22D(w∗, w̄(s)) (34)

Similarly, we can prove that

Et
[
(α(t) −α(t+1))>(Ax(t) − v(t))

]
≤ 1

2bt
Et‖α(t) −α(t+1)‖22 + btdmax

k
‖A:k‖22‖x(t) − x∗‖22 + btdmax

k
‖A:k‖22‖x̄(s) − x∗‖22

≤ 1

bt
EtD(w(t+1),w(t)) + btdmax

k
‖A:k‖22‖x(t) − x∗‖22 + btdmax

k
‖A:k‖22‖x̄(s) − x∗‖22 (35)

Applying Cauchy-Schwarz inequality and Young’s inequality in a similar way gives

Et
[
(x(t) − x(t+1))>A>(α(t) −α∗)

]
≤ 1

2at
Et‖x(t) − x(t+1)‖22 + at‖A‖22D(w∗,w(t)) (36)

Et
[
(α(t+1) −α(t))>A(x(t) − x∗)

]
≤ 1

bt
EtD(w(t+1),w(t)) +

bt‖A‖22
2
‖x(t) − x∗‖22 (37)

Choosing at = 2σ and bt = 2τ and applying (33), (34), (35), (36) and (37) to (32) lead to(
µ+

1

σ

)
Et‖x∗ − x(t+1)‖22

2
+

(
ν +

1

τ

)
EtD(w∗,w(t+1)) + P̃(x(t+1))− D̃(w(t+1))

≤
(

2τ‖A‖22 + 4τdmax
k
‖A:k‖22 +

1

σ

)
‖x∗ − x(t)‖22

2
+

(
2σ‖A‖22 + 4σnmax

l
‖Al:‖22 +

1

τ

)
D(w∗,w(t))

+2τdmax
k
‖A:k‖22‖x∗ − x̄(s)‖22 + 4σnmax

l
‖Al:‖22D(w∗, w̄(s))

≤
(
τκµν + 2τκµν +

1

σ

)
‖x∗ − x(t)‖22

2
+

(
σκµν + 2σκµν +

1

τ

)
D(w∗,w(t))

+τκµν‖x∗ − x̄(s)‖22 + 2σκµνD(w∗, w̄(s)), (38)

where in the last inequality we use the fact that the operator norm of A, i.e., ‖A‖2, satisfies ‖A‖22 ≤ ‖A‖2max = κµν
2 and the

fact that max{dmaxk ‖A:k‖22, nmaxl ‖Al:‖22} ≤ ‖A‖2max = κµν
2 .

Let η be a constant to be determined later. Choosing σ = η
κµ and τ = η

κν in (38), we obtain the following inequality(
1 +

κ

η

)
µEt
‖x∗ − x(t+1)‖22

2
+

(
1 +

κ

η

)
νEtD(w∗,w(t+1)) + EtP̃(x(t+1))− EtD̃(w(t+1))

≤
(

3η +
κ

η

)
µ
‖x∗ − x(t)‖22

2
+

(
3η +

κ

η

)
νD(w∗,w(t)) + ηµ‖x∗ − x̄(s)‖22 + 2ηνD(w∗, w̄(s)),

which, if divided by
(

1 + κ
η

)
, further implies

1

1 + κ
η

[P̃(x(t+1))− D̃(w(t+1))] + Etδ(t+1) ≤

(
1− 1− 3η

1 + κ
η

)
Etδ(t) +

2η

1 + κ
η

Etδ̄(s), (39)

where

δ(t) :=
µ‖x∗ − x(t)‖22

2
+ νD(w∗,w(t)) and δ̄(s) :=

µ‖x∗ − x̄(s)‖22
2

+ νD(w∗, w̄(s)).
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Since δ(0) = δ̄(s) and δ(T ) = δ̄(s+1), applying (39) recursively for t = 0, 1, . . . , T − 1 yields

1

1 + κ
η

[P̃(x̄(s+1))− D̃(w̄(s+1))] + δ̄(s+1) ≤


(

1− 1− 3η

1 + κ
η

)T
+

2η

1− 3η

 δ̄(s)

Choosing η = 1
12 in this inequality gives

1

1 + 12κ
[P̃(x̄(s+1))− D̃(w̄(s+1))] + δ̄(s+1) ≤

{(
1− 1

4/3 + 16κ

)T
+

2

9

}
δ̄(s)

Hence, by choosing T = (4/3 + 16κ) log( 18
5 ), we can ensure

(
1− 1

4/3+16κ

)T
≤ 5

18 which implies

1

1 + 12κ
[P̃(x̄(s+1))− D̃(w̄(s+1))] + δ̄(s+1) ≤ 1

2
δ̄(s). (40)

Because P̃(x)− D̃(w) ≥ 0 for any x ∈ X and w ∈ W , the inequality above, if applied recursively for s = 0, 1, . . . , S − 1,
implies

δ̄(s) ≤
(

1

2

)s
δ̄(0). (41)

The inequality (41) only establishes the convergence of Algorithm 4 in terms of the solution’s distance to the saddle point of
(9). In the next, we will prove the convergence of Pµ,ν(r; x̄(s+1))−Dµ,ν(r; w̄(s+1)) to zero.

By the µ-strong convexity of Fµ and the ν-strong convexity of Gν with respect to Euclidean distance, we can show that
Pµ,ν(r;x) and Dµ,ν(r;w) are smooth with Lipschitz continuous gradients. Therefore, according to Lemma 8 in Xiao et al.
(2017), we have

Pµ,ν(r;x)−Dµ,ν(r;w) ≤ P̃(x)− D̃(w) +
‖A‖2

2ν
‖x− x∗‖22 +

‖A‖2

2µ
‖α−α∗‖22

≤ P̃(x)− D̃(w) +
‖A‖2

2ν
‖x− x∗‖22 +

‖A‖2

µ
D(α∗,α)

for any x ∈ X and w ∈ W , which implies

Pµ,ν(r; x̄(s+1))−Dµ,ν(r; w̄(s+1)) ≤ P̃(x̄(s+1))−D̃(w̄(s+1))+κδ̄(s+1) ≤ (1 + 12κ)

{
1

1 + 12κ
[P̃(x̄(s+1))− D̃(w̄(s+1))] + δ̄(s+1)

}
.

Applying this inequality to (40) and combining it with (41) yield

Pµ,ν(r; x̄(s))−Dµ,ν(r; w̄(s)) ≤ (1 + 12κ)

{
1

1 + 12κ
[P̃(x̄(s))− D̃(w̄(s))] + δ̄(s)

}
≤
(

1

2

)s
(1 + 12κ) δ̄(0).

The first conclusion of this theorem comes from this inequality and the fact that δ̄(0) ≤ Pµ,ν(r; x̄(0))−Dµ,ν(r; w̄(0)).

In the next, we prove the second conclusion of Theorem 2, namely, the expected number of stages before Algorithm 4
terminates. The argument in this proof is originally developed in Section C in the Appendix of (Lin et al., 2015). Let S(ζ)
be the (stage) index of outer iteration (i.e., s) when Algorithm 4 terminates. By Markov’s inequality and (14), we have

Prob(S(ζ) ≥ s+ 1) ≤ Prob(Pµ,ν(r; x̄(s))−Dµ,ν(r; w̄(s)) > ζ)

≤ E[Pµ,ν(r; x̄(s))−Dµ,ν(r; w̄(s))]

ζ

≤ (1 + 12κ)

(
1

2

)s Pµ,ν(r; x̄(0))−Dµ,ν(r; w̄(0))

ζ
. (42)
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Let S0 := 1 + 2 log
(

(2+24κ)[Pµ,ν(r;x̄(0))−Dµ,ν(r;w̄(0))]
ζ

)
. Using (42), we can show that

ES(ζ) =

∞∑
s=0

Prob(S(ζ) ≥ s)

≤ S0 +

∞∑
s=S0

Prob(S(ζ) ≥ s)

≤ S0 +

(
1

2

)S0−1
(
∞∑
s=0

(
1

2

)s)
(1 + 12κ)

Pµ,ν(r; x̄(0))−Dµ,ν(r; w̄(0))

ζ

≤ S0 +

(
1

2

)S0−1

(2 + 24κ)
Pµ,ν(r; x̄(0))−Dµ,ν(r; w̄(0))

ζ

≤ S0 + 1

and the second conclusion follows.

Proof of Theorem 3. Suppose CheckGap(x̂(p), ŵ(p), ε, θ) = “Success”, and thus, Algorithm 5 terminates when iteration
index p = P . We first prove by induction that

P(r; x̂(p))−D(r; ŵ(p)) ≤ P(r; x̂(0))−D(r; ŵ(0))

2p
=
ζ0
2p

for p = 0, 1, . . . , P − 2. (43)

This inequality holds trivially for p = 0. Suppose it holds for iteration p − 1 with p − 1 ≤ P − 3. We then consider
iteration p ≤ P − 2 in Algorithm 5 where SVRG(x̄(0), w̄(0), µ, ν, ζ, ε, θ) is called with x(0) = x̂(p), w(0) = ŵ(p),
µ = ζ0

2p+3Qx
, ν = ζ0

2p+3Qw
, and ζ = ζ0

2p+2 . Because p+ 1 ≤ P − 1 (i.e., this is not the last called of SVRG), we must have
CheckGap(x̂(p+1), ŵ(p+1), ε, θ) = “Continue”. In other word, Algorithm 4 (SVRG) in this call is terminated because

Pµ,ν(r; x̂(p+1))−Dµ,ν(r; ŵ(p+1)) ≤ ζ0
2p+2

.

According to this inequality and Lemma 4, we have

P(r; x̂(p+1))−D(r; ŵ(p+1)) ≤ Pµ,ν(r;x)−Dµ,ν(r;w) + µQx + νQw ≤
ζ0

2p+2
+

ζ0
2p+3Qx

Qx +
ζ0

2p+3Qw
Qw =

ζ0
2p+1

which implies our claim (43) by induction.

In the next, we want to show that Algorithm 5 satisfies the property of an affine minorant oracle. Suppose r > f∗

so that H(r) < 0. According to (43), with p ≥ log2

(
2ζ0θ

(θ−1)|H(r)|

)
≥ log2

(
ζ0θ

(θ−1)|H(r)|

)
, Algorithm 5 can ensure

P(r; x̂(p))−D(r; ŵ(p)) ≤ θ−1
θ |H(r)| ≤ θ−1

θ |D(r; ŵ(p))| which implies θP(r; x̂(p)) ≤ D(r; ŵ(p)).

Suppose r ≤ f∗ so that H(r) ≥ 0. We apply (43) to two cases, H(r) ≥ ε
2 and H(r) < ε

2 . In the case where

H(r) ≥ ε
2 , with p ≥ log2

(
2ζ0θ

(θ−1) max{|H(r)|,ε}

)
≥ log2

(
ζ0θ

(θ−1)|H(r)|

)
, Algorithm 5 can ensure P(r; x̂(p))−D(r; ŵ(p)) ≤

θ−1
θ |H(r)| ≤ θ−1

θ P(r; ŵ(p)) which implies P(r; x̂(p)) ≤ θD(r; ŵ(p)). In the case where H(r) < ε
2 , with

p ≥ log2

(
2ζ0θ

(θ−1) max{|H(r)|,ε}

)
≥ log2

(
2ζ0
ε

)
, Algorithm 5 can ensure P(r; x̂(p)) − D(r; ŵ(p)) ≤ ε

2 which implies

P(r; x̂(p)) ≤ D(r; ŵ(p)) + ε
2 ≤ H(r) + ε

2 ≤ ε. Overall,

Based on these arguments, at least one of the three conditions in Algorithm 3 will be satisfied, and Algorithm 5 will terminate
and return the desired L(r), U(r) and S(r) within P iterations with

P ≤
{
C̃(|H(r)|) if r > f∗

C̃(max{|H(r)|, ε}) if r ≤ f∗. (44)

where C̃(z) := log2

(
2ζ0θ

(θ−1)z

)
. Note that the two upper bounds on P here correspond to the two cases of the complexity of

the affine minorant oracle A in Definition 1.
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Lastly, we analyze the total complexity of Algorithm 5 by analyzing the complexity of each call of SVRG. When calling
SVRG in iteration p, the parameters are chosen as µ = ζ0

2p+3Qx
, ν = ζ0

2p+3Qw
and ζ = ζ0

2p+2 . Hence, by Lemma 4 and (43),
we have

Pµ,ν(r; x̂(p))−Dµ,ν(r; ŵ(p)) ≤ P(r; x̂(p))−D(r; ŵ(p)) +
ζ0

2p+3Qx
Qx +

ζ0
2p+3Qw

Qw ≤
ζ0

2p−1
.

According to Theorem 2, the expected number of outer iterations in the pth call of SVRG is at most

S ≤ 2 + 2 log

(
(2 + 24κ) [Pµ,ν(r; x̂(p))−Dµ,ν(r; ŵ(p))]

ζ

)
≤ 2 + 2 log

(
16 + 22p+13 3‖A‖2maxQxQw

ζ2
0

)
and the number of inner iterations is

T =

(
4

3
+ 16κ

)
log

(
18

5

)
=

(
4

3
+ 22p+11 ‖A‖2maxQxQw

ζ2
0

)
log

(
18

5

)
This indicates the expected complexity of the pth call of SVRG is at most

C(p)
SV RG := nd

[
2 + 2 log

(
16 + 22p+13 3‖A‖2maxQxQw

ζ2
0

)]
+ (n+ d)

(
4

3
+ 22p+11 ‖A‖2maxQxQw

ζ2
0

)
log

(
18

5

)
.

Given C(p)
SV RG above and the upper bound (44) for P for two different cases (r > f∗ and r ≤ f∗), the total expected

complexity of Algorithm 5, when used as an affine minorant oracle A in Definition 1, is at most

P−1∑
p=0

C(p)SV RG ≤
P−1∑
p=0

nd

[
2 + 2 log

(
16 + 22p+13 3‖A‖2maxQxQw

ζ20

)]
+

P−1∑
p=0

(n+ d)

(
4

3
+ 22p+11 ‖A‖2maxQxQw

ζ20

)
log

(
18

5

)

≤ 2Pnd+ nd log

(
1 +

3‖A‖2maxQxQw

ζ20

)(P−1∑
p=0

(4p+ 26)

)

+
4P (n+ d)

3
+
‖A‖2maxQxQw

ζ20
(n+ d) log

(
18

5

)(P−1∑
p=0

22p+11

)

≤ 2Pnd+ nd log

(
1 +

3‖A‖2maxQxQw

ζ20

)
(2P (P − 1) + 26P ))

+
4P (n+ d)

3
+
‖A‖2maxQxQw

ζ20
(n+ d) log

(
18

5

)
211 4P − 1

3

≤
{
C(|H(r)|) if r > f∗

C(max{|H(r)|, ε}) if r ≤ f∗,

where (after replacing P by (44))

C(z) := 2C̃(z)nd+ nd log

(
1 +
‖A‖2maxQxQw

ζ2
0

)(
2C̃(z)(C̃(z)− 1) + 26C̃(z))

)
+

4C̃(z)(n+ d)

3
+
‖A‖2maxQxQw

ζ2
0

(n+ d) log

(
18

5

)
211 4C̃(z) − 1

3
.

Using the fact that C̃(z) is the logarithmic function C̃(z) = log2

(
2ζ0θ

(θ−1)z

)
such that Õ

(
4C̃(z)

)
= Õ( 1

z2 ), we conclude that

C(z) = Õ
(
nd+ (n+ d)

‖A‖2max

z2

)
, which completes the proof.

F. Proof of Lemma 4
For any x ∈ X , let

wx ∈ arg max
w∈W

K(r;x,w) = arg min
w∈W

−α>Ax +G0(w)
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where G0(w) =
∑m
i=0

∑ni
j=1

yi
ni
φ∗ij
(αij
yi

)
+ y>r which is Gν(w) when ν = 0. Note that, the minimization above has a

similar form as the minimization in Line 12 of Algorithm 4, i.e., the updating equation for w(t+1), if we replace τ by +∞,
ν by 0, and v(t) by Ax. Therefore, by a similar proof as Lemma 3, we can show that wx ∈ WB with B defined as in
Lemma 3.

Similarly, for any x ∈ X , let

wx,ν ∈ arg max
w∈W

K(r;x,w)− νhB(w) = arg min
w∈W

−α>Ax +Gν(w).

The minimization above has a similar form as the minimization in the updating equation for w(t+1) in Algorithm 4, if we
replace τ by +∞ and v(t) by Ax. Then, by a similar proof as Lemma 3, we can also show that wx,ν ∈ WB with B defined
as in Lemma 3.

By the definitions of P and Pµ,ν , we can show that

P(r;x)− Pµ,ν(r;x) ≤ K(r;x,wx)−K(r;x,wx) + νhB(wx)− µ‖x‖22
2
≤ ν max

w∈WB

hB(w) =
νQw

2

and

Pµ,ν(r;x)− P(r;x) ≤ K(r;x,wx,ν)− νhB(wx,ν) +
µ‖x‖22

2
−K(r;x,wx) ≤ µmax

x∈X

‖x‖22
2

=
µQx

2

where we used the facts that hB is non-negative overWB and that wx ∈ WB . Combining these two inequalities gives
|P(r;x)−Pµ,ν(r;x)| ≤ µQx

2 + νQw

2 . By a similar argument, we can also show that |D(r;x)−Dµ,ν(r;x)| ≤ µQx

2 + νQw

2
which, together with the previous inequality, leads to the conclusion of this Lemma.


