Towards Black-box Iterative Machine Teaching

Appendix

A. Details of the Proofs

We analyze the sample complexity by separating the teaching procedure into two stages in each iteration, i.e., the active
query stage by conducting examination for the student and the teaching stage by providing samples to the student.

A.1. Error Decomposition

Recall that there is a mapping G from the feature space of the teacher to that of the student, and we have hw; xi = hw; G(X)i =

G~ (w); x where G~ denotes the conjugate mapping of G. We also denote the ax = MaXy=yx=1 G~ (X)G(X), min =
miny=y—1 G~ (X)G(x) > 0 since the operator G is invertible,and G=G = -mx_To involve the inconsistency between
the student’s parameters wt, and the teacher’s estimator vt, at t-th iteration into the analysis, we first provide the recursion

with error decomposition. For simplicity, we denote  (hw; Xi;y) 1= Fpw:xi * (hw; Xi ;y). Then, we have the update rule of
student as

wtt =wt whG(xY vyt G(xY;
where xt = (vt v ) is constructed by teacher with the estimator vt. Plug into the difference, we have
Gty v ?

= GT(whH v 2y 22 whG(xYH iyt GTG(xY 2 ) whG(xY Yyt GTG(xY); 6T (wh) v

= GT(WY) v 4+ 22 yhxtoyt GTG(xY) Z 2 vhxt oyt GTG(XY); 6T (WY v
4 2 66 (xY) 2 2 G= (W) xt iyt 2 tyt Ayt
2 GTG(xYH);GTwhH v G~ (wh); xt ;yt vixt oyt

Suppose the loss function is L-Lipschitz smoothandx 2 X = x2 R%kxk R

jo(vexisy) o (vrxisy)j  LRkvy o vk,
which implies
(hvo;xi;y) LRkvy  vok (hvy; Xi;y) (hvo;xi;y) + LRkvy  vok:

We have the error decomposition as follows,

GTW) v 7 6T v C+ 22 yh (vt ov) oyt 2 BTG v)
2 Vh (W ov) gyt GTG(t v )GTWY) v
+ 22 R GGV v) Z GT(wY) GTWhixt iyt 4+ vhxt oyt
+2 LR G>G(vt v),GTwWH v GT(whH) vt
GZ(WY v C4 222 2yttt oy )yt oty 2 (5)
2 vh (vt ov ) oyt min VE V2 e GTWH vt vE v

+ 22LR GTG( v) 2 GTWYH) vt 2 vExt oyt +LR GT(wh) vt
+2 LR GG Vvt v ‘4 GG vt v GTWYH vt G vt
where the last two terms represent the inconsistency on the teacher’s side and the student’s side in computing
A.2. Exact Recovery of G=(w)

Theorem 2 Suppose the teacher is able to recover G (wt) exactly using m samples at each iteration. If for any v2RY,
there exists 60 and § such thatX= (v v )and

2 R
0< Fpeait VHR P <=5
max
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then (*;G) isETwithO (m+1)logl samples.

Proof Plug G™(w%) v' =0 into the error decomposition (5), we have

2 .

GTwtl) v ° GZWh) v 4+ 22207 yhot vyt vt v
2 VSt V) oyt e Vv
1+ 220502 v (vt vyt 2 v v v) sy min GTWY v

Denote () = Minaaxgoy (W& (V' v)i;yY) > 0,and () = maxgax.goy (W4 (VP v)iyh) <
2 min \ve have the recursion

’
max

W) v 7 or(;) TwH v
wherer(; )=max 1+ 22 () 2 min ();1+ 22, () 2 min () and0 r(; ) 1 There-
fore, the algorithm converges exponentially,

GTW) v r(; )T ETWY) v

ke=w® v k

1
In other words, the students needs 2 log ﬁ log samples for updating. Consider that at each

iteration, if the teacher first uses m samples for estimating G=(w), then the total number of samples is no larger than

1 > 0
(m+1)2 Iogﬁ log keZw? vk [ |

Lemma 3 If F() is bijective, then we can exactly recover G~ (w) 2 RY with d samples.

Proof We prove the theorem by construction. Denote d independent samples as Z = fzig?=l 2 RY. We can exactly recover
arbitrary v with these samples by solving the linear system,

hv; Zi = b; (6)

whereb = F 1 (F (hw;G(X)i)) are provided by the student. F  exists because F is bijective. Since rank(Z) = d, the
linear system (6) has a unique solution. |

Lemma4 If F() = max (0; ), then we can exactly recover G™(w) 2 RY with 2d samples.

Proof We prove the lemma by construction. Notice that 8a 2 R, either max(0;a) = a and max(0; a) = 0,
or max(0;a) = 0and max(0; a) = a. Then, we can first construct d independent samples as fzig?=1 2 RY,
and then, extend the set with f zig?:l. We construct the linear system by picking one of the linear equations from
hv; zji = max (0; hw; G(zj)i) orhv; zji = max(0; hw;G(z;)i) which does not equal to zero. Denote the linear system
hv; Z% = b, since we select either z; or z; to form Z, then, rank(Z") = d, therefore, the linear system has a unique
solution. |

In both regression and classification scenarios, if the student answers the questions in the query phase with F () = 1(),
F() = S(), or F() = max(0; ), where | denotes the identity mapping and S denotes some sigmoid function, e.g.,
logistic function, hyperbolic tangent, error function and so on, we can exactly recover v = G~ (w) 2 RY with arbitrary O(d)
independent data, omitting the numerical error and consider the solution as exact recovery. Recall we can reuse these O(d)
independent data in each iteration, we have

Corollary 5 Suppose the student answers questions in query phase viaF () = 1(), F() = S(), or F() = max (0; ),
then (*;G) is ETwith O log 1 teaching samples and O(d) query samples via exact recovery.
A.3. Approximate Recovery of G™(w)

Theorem 6 Suppose the loss function “ is L-Lipschitz smooth in a compact domain ,, RY of v containing v and sample
candidates (x;y) are from bounded X Y, where X = x2RY;kxk R . Further suppose at t-th iteration, the teacher
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estimates the student o5:= G~ (w') vt =0 () with probability at least 1 using m ( ¢t; ) samples. If for any
v2 ,thereexists 60 and ¥ suchthatfork= (v v ), wehave

2(1 ) min ,

2 1
max

0< Fhegit Vt;k <

. . G~G
with 0 < < min —pé—;l ;

then the student can achieve -approximation of v withO logl 1+ m  Tog T samples with probability at least
1 . 1fm(et )=0O(og?l), then (“;G)is ET.
Proof Assume that in each iteration, the teacher will estimate the w* at least satisfying ¢y := G~ (w!) V!

—min kyt v k. Plugging into the error decomposition (5), we obtain

max

2 2
G>(Wt+1) v G>(Wt) v 4+ 22 rznax 2 vt: (Vt V);yt vt v 2

2 VE Wt ov) gy mn@ ) Vv P
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G>(Wt) v 4+ 222 2 vt: (Vt V);yt vt v 2
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+ 2LR® est rznax 2 Vt;Xt ;yt + LR ey

2 t > t t
+2 LR et max V V. o+ max GT(wWY) v

The last inequality due to the factthat xt = (vt v ) 2 X, implying kvt v k R. On the other hand, we have

viov 2= vt G +GTWwY) v ) GT(whH Vvt 242 GT(wWhH v 2
2, 2 2
2200 vt v T+2 GTWY) v
max
2 2
vt vt ST v
1 2 2 gﬁin

max

Combine this into the recursion,

W) v 7 Co GTWYH v C+C vEXt oyt 4+ vt v g+ Co (7
1
where Cp = 1+ﬁ7@ 220Vt vy 22, 2 (WHVE vy nin@@ ) L, Cp o=
2LR3 2, +2 LR? gy, and Cp 1= 2 LR? gy + 2L2R* 2.

Under the ET condition, we are able to pick R and $ so that 0 < Ipye.pi © (W5 R Y) < 2 ) min \we obtain,

2
Co=1+ " 22 oyt v gyt 222 vt vyt e ) L

With the condition 8v 2, kvk  Cy and (hv; xti;yb) C holds, as long as we can obtain = O tiz ,

GT(wt1) v 2 converges in rate O % (Nemirovski et al., 2009). In fact, we can achieve better converges rate, i.e.,
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less sample complexity, with more accurate estimation in each iteration. Specifically, we expand the recursion (7),

- 2 2
GTw't) v Co GZ(W) v "+ fl (@ {;' 2Cvg est + C2 5y

cl

2 A>gont 1 2 0 2 0 2
Co G (w) \ +Co Cest +Co gt +Cf et +Co g

t+1 ~>/,,0 2 i 0 2
Co G~(w") v + Cyo GCiesttCogy

i=1
t
2, Col Cf)

= CHt TWw% v 1 G,

0 2 .
Cl est + C2 est -

To achieve -approximation of v for student, we may need the number of teaching samples to be

1t 267w v
T= Iog% log 8)
0

so that Cé*l GTW° v 2 5, while the number of query samples in each iteration m should satisfy

8
<co(t J)

—=24C 2 C} min 5; —min 1 C 1 i c!
1 Co 1 est 1 Co 1 est 4 max min 0 min = min -1 . 9
- gg ) est COC% 41 max ’ C2 ( )

est C,
Then, the total number of samples will be
T 1+m ; =0 lo 1 1+m ;
esty T g ) IOg 1

|

Theorem 7 Suppose that Assumption 1 holds. Then with probability at least 1, then we can recover G~ (w) 2 RY with
O d?+dlogl logl querysamples.

Proof Similarly, we prove this claim by construction. Basically, we first approximate the ~ = kg:igvvgk within =

2R%k k=1 ,andthen, rescale itby G™(w) .
In the first stage, we exploit active learning (Balcan et al., 2009). Obvisouly, kvk = 1, therefore, after t-iteration in
examination phase, we have
q

k¢ ~K=k K+k-k® 2h g~i=2@0 cos( ~)=2 1 1 sin’( g~) ;

therefore,

k¢ ~k* 2sin( ¢~):

which is obtained by applying P x2 (1 x)when0 x 1. Recallsin( ¢~)=0 245»8 , we have

which is equivalent that we can approximate k ¢ ~K? witht = O log® . Ineach iteration, the active learning make
O d?logd +dlogt queries, implying the total sample complexity isO d?+dlog® log?l .
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When rescaling, we increase the error by G~ (w) 2, then, we can set * = When G~ (w) is bounded by

kG=(W)K? "
some constant C, which is the case, the sample we needed willbe O d? +dlog log €% which does not affect the
asymptotic sample complexity. ]

Plug Theorem 6 with Theorem 7, we have

Corollary 8 Suppose that Assumption 1 holds. Then then (“;G) is ET with O log® teaching samples and
O logllog L d?+dlog'>  query samples.

A.4. Estimation Error Preservation
Lemma 9 Suppose that G is a unitary operator. If G~(w®) V° ,then G=(wt*l) yt+1
Proof This can be checked by induction, assume in t-th step, G~ (w!) V! ,

GTW™) v = GWY) ki B0 VEF e

= GT(whH V!

A.5. Extension to Combination-based and Pool-based Active Teaching

In this section, we mainly discuss the results for synthesis-based active teaching to combination-based and pool-based active
learning.

For combination-based active teaching, where both the training samples and query samples are constructed by linear
combination of k samples D = fxigle, we have the following results for exact recovery and approximate recovery in the
sense of

q
hvy; vaip = v1>D(D>D)+ D>v,; and kvkp :=hv;vig:

Note that with the introduced metric, for v 2 RY, we only consider its component in span (D) and the components in the
null space will be ignored. Therefore, 8 v1; Vv, 2 span(D) such that kv, ky = kvokp, we have vi' x=v3 x=hvy; Xip, for
all x 2 RY. For notational convenience, we omit the subscript D for the analysis in this section.

Corollary 10 Suppose the student answers questions in query phase via F () = 1() or F() = S() and G=(W°);v 2

span (D). Then (“;G) is ET with O log ¥ teaching samples and rank(D) query samples via exact recovery.

Corollary 11 Suppose Assumption 1 holds, the student answers questions in query phaseviaF () =1()or F() =S()
1

and G=(WP):v 2 span (D). Then (*;G) is ETwith O log® teaching samplesand O logLlog L d2 + dlog %"

query samples via approximate recovery.

The proof for these two corollaries are straightforward since under the condition that G=(w®);v 2 span (D), every
teaching sample will be in span (D), so that the G=(w*) and vt are also in span (D). Therefore, we can reduce such setting
to synthesis-based active teaching with essential dimension as rank(D). Then, the conclusions are achieved.

For rescaled pool-based active teaching, where the teacher can only pick samples from a prefixed sample candidates pool,
D= fxig'i‘zl, for teaching and query. We will still evaluate using the same metric k k defined above (omit subscript D for
convenience). We first discuss the exact recovery case.

Theorem 13 Suppose the student answers questions in the exam phase via F ()=1() or F()=S() and G=(W°);v 2

span (D). If 8 G=(w) 2 span(D), there exist (x;y) 2 D Y and such that for k:%;k[’x; $=vy, we have
yAY (X) min ,

2 ’
max

0 rhust VERY
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then (*;G) is ET with O log 1 teaching samples and rank(D) query samples.

Proof Under the conditions that G=(w°);v 2 span (D), with the same argument, in each iteration, both G=(w') and vt
are in span (D). Therefore, as long as we pick rank(D) independent samples from D as query samples, we can recover
any v 2 span (D) in the sense of the introduced metric. For the training sample, due to the restriction in selecting
samples, we need to recheck the recursion. We follow the proof for rescaled pool-based omniscient teaching in (Liu et al.,
2017a). Specifically, at t-step, as the loss is exponentially synthesis-based teachable with , therefore, we have the virtually
constructed sample fx,;y,gwhere x, = G~ (w') v with satisfying the condition of exponentially synthesis-based
active teachability, we first rescale the candidate pool X such that

8x 2 X; xkxk=kxyk= GT(WYH v

We denote the rescaled candidate pool as X, under the condition of rescalable pool-based teachability, there is a sample
R;9g 2 X Y with scale factor ~ such that

min  2kGTryt WHAGKX) jy K22 GTWY) v GTIryet whAG(X) Gy
xy)2Xe Y
2 wEAG(R) 9 GTG(MR) 2 2 whAG(R) (9 AGTGR GT(WYH v

hA R Xy i
kxy k2

We decompose the "% = axy + Xy-» witha = .and Xy»> =& axy. Then, we have

min ~ 2kGTryet WHGXX) jy K22 GTWY v iGTIrw whG(x) ;y

xXiy)2Xe Y
22 wWhhe(R) P AGTG() T 2 whAGE) P AGTERIGT(WY v
22 WhAGE) 1P % R GTWY) VT 2 WEAGE®) 1P min @ +XuniGTWY v
= 22 wWhagR) ;¢ 22 GTWYH v ° 2 WHAGR) 19 mind GT(WYH) v
Under the condition
* + 1
GT(wh) v 2V (X) mi
t . min ,
0 ' ok °) Y 2
we have the recursion
GCWHY) v Zr(; iGV(X)) GTMWY v
n , , o
where r(; ;G;V(X)) = max 1+ 2 () Zu 2 () mnVX)1+ 2 () Zax 2 () minV(X)
and 0 r(; iGV)) <L with ()= Minwgexgey wt, KTOD vy ty > o0and () =
MaXw;g2X ;92Y wt; WG(X) Y <%.Therefore, the algorithm converges exponentially
GTWwhH v o, r(; GV (X)T? cTwh) v .

l =
In sum, the student needs 2 log W log KeZw?) vk teaching samples and rank(D) query samples to

achieve an -approximation of v . |

For approximate recovery case, the active learning is no longer able to achieve the required accuracy for estimating of the
student parameters with the restricted sample pool. Therefore, the algorithm may not achieve exponential teaching. We will
leave this as an open problem.
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B. Experimental Details

For synthetic data, we generate training data (X;;y) where each entry in X; is Gaussian distributed and y = hw ; X;i +
where is a Gaussian distributed noise for the LSR learner. For the LR learner, ¥X1; +1g and fX5; 1g where X; 2 X; is
Gaussian distributed in each entry and +1; 1 are the labels. Specifically, we use the 50-dimension data that is Gaussian
distributed with (0:5;  ;0:5) (label +1)and ( 0:5; ; 0:5) (label -1) as the mean and identity matrix as the covariance
matrix. We generate 1000 training data points for each class. Learning rate for the same feature space is 0.0001, for
regularization term is set as 0.00005. For the operator G that maps between teacher’s and student’s spaces, we mostly
use an orthogonal transformation in experiments. In MNIST dataset, we use full training set of digits 7 and 9 and extract
24-dim projective random features from the raw 32 32 images. We use the full testing set to evaluate the 7/9 classification
accuracy.

C. More Experiments: LR Learner with F (z) = S(z)
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Figure 5: The convergence performance of random teacher (SGD), omniscient teacher and active teacher in MNIST 7/9 classification. We
evaluate the LR learner with F (z) = S(z) here.

For the LR learner that uses the sigmoid function as feedbacks, one could clearly see that the experimental results match our
theoretical analysis in case of the exact recovery of the ideal virtual learner. The active teacher is able to achieve the same
performance as the omniscient teacher after the “background exam”, and converges much faster than the SGD. In fact, the
active teacher and the omniscient teacher should achieve the same convergence speed without consideration of numerical
errors. Moreover, the empirical results indicate that the teacher tends to pick easy examples first and difficult examples later.
In iterative machine teaching, the difficulty level of an example is essentially the distance between the example and the
decision boundary. Interestingly, deeply learned features also exhibit similar difficulty level in terms of the norm of the
feature (Liu et al., 2018; 2017b), which may be useful for improving the convergence of deep models (e.g., the norm fo
deeply learned features can be used as a form of difficulty indicator in curriculum learning and iterative machine teaching).
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D. Analysis and Experiments of the Learner with Forgetting Behavior
D.1. Modeling the forgetting behavior

We model the forgetting behavior of the learner by adding a deviation to the learned parameter in each iteration of updating
the learner. Specifically in each iteration, the learner will update its model in its feature space with

wt = w4+ ryf(hwh xisy) + ¢ (10)

where ¢ is a random deviation vector. The larger the deviation is, the more the learner forgets. ¢ can be modeled in a
time-variant fashion, or simply using a fixed probability distribution. There will be a number of ways to model the deviation.
For simplicity, we only consider a Gaussian distribution with zero mean and fixed variance here. Throughout this section,
we mainly study the case where the teacher and learner share the same feature space when the learner has the forgetting
behavior. It could help us simplify the problem, but it also more clearly shows the superiority of the active teacher because
the setting is comparable to the omniscient teacher.

D.2. The exponential teachability of the learner with forgetting behavior

Before delving deep into the exponential teachability of the learner with forgetting behavior, we first define a lazy teacher
model. The lazy teacher model works essentially similar to the omniscient teacher, except that the lazy teacher will first
construct a virtual learner before the teaching and will not observe the status of the learner during iteration. Specifically, the
lazy teacher will first construct a virtual learner without forgetting behavior based on the initial status (information) from the
real learner. Then the lazy teacher will pick samples based on the observation from the virtual learner and will feed the
same samples to the real learner. One can notice that if the real learner has no forgetting behavior, the lazy teacher will be
identical to the omniscient teacher. An overview of the lazy teacher is given in Fig. 6.

2. Keep interacting during teaching

Common Knowledge
Representation Space

@ Provide full information v ( J
NM_
m Provide samples
Lazy Teacher for this iteration Virtual Learner without Feed the same
Forgetting Behavior sample that the
u lazy teacher provides

Construct an virtual learner based on the

real learner who has no forgetting behavior |\

Pr(;jw?e ful}l mforrl?atlon Real Learner with
etore the teaching Forgetting Behavior

1. Only interact once before the teaching

Figure 6: An illustrative overview of the lazy teacher.

For the learner guided by the active teacher to achieve ET, it requires the sample complexity of the active learning to be
O(log 1), as shown in Theorem 6. It is obvious that the deviation error  of a forgetting learner can not converge to a small
enough value. Therefore, the forgetting learner can not achieve ET with the lazy teacher, because the the deviation error can
not be controlled by the lazy teacher. In contrast, the forgetting learner can still achieve ET with our proposed active teacher,
because the deviation error can also be estimated by the active query strategy. In other words, the active teacher is still able
to estimate accurate enough current parameters of the forgetting learner, which also prevents the deviation error to propagate
over iterations.

D.3. Experiments

We perform an experiment on MNIST dataset to show how the forgetting behavior will affect the fast convergence, and also
compare our active teacher with the lazy teacher. We still use the binary classification for digit 7 and 9 for our experiment.



Towards Black-box Iterative Machine Teaching

The experimental setting for the MNIST dataset is similar to Section 7.2 except that we only use one random projection to
extract the features, which means that the teacher and the learner share the same feature space. We could see from Fig. 7
that the forgetting behavior will greatly affect the convergence of the lazy learner, while the lazy learner have the same
convergence speedup with the omniscient teacher if the learner has no forgetting behavior. Most importantly, our active
teacher can well address this forgetting behavior and provide significant convergence speedup. This experiment also partially
validates that it is very reasonable in real-world education to make students take exam. If the teacher model can not well
estimate or have access to the current parameter of the student model, then the entire teaching will very possibly fail (i.e.,

similar to or even worse than the random teacher).

Experimental settings. We perform the experiment on MNIST dataset with digit 7/9 binary classification. The 24-dim
feature is computed by random projection from raw pixels. The learner will provide F (z) = sign(z) as feedbacks. For

fairness, the learning rates for all method are the same.

Obejctive Value

Figure 7: The convergence performance of random teacher (SGD), omniscient teacher, lazy teacher and active teacher in MNIST 7/9

binary classification.
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