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Abstract
In this paper, we make an important step to-
wards the black-box machine teaching by con-
sidering the cross-space machine teaching, where
the teacher and the learner use different feature
representations and the teacher can not fully ob-
serve the learner’s model. In such scenario, we
study how the teacher is still able to teach the
learner to achieve faster convergence rate than the
traditional passive learning. We propose an active
teacher model that can actively query the learner
(i.e., make the learner take exams) for estimating
the learner’s status and provably guide the learner
to achieve faster convergence. The sample com-
plexities for both teaching and query are provided.
In the experiments, we compare the proposed ac-
tive teacher with the omniscient teacher and verify
the effectiveness of the active teacher model.

1. Introduction
Machine teaching (Zhu, 2015; 2013; Zhu et al., 2018) is
the problem of constructing a minimal dataset for a target
concept such that a student model (i.e., leaner) can learn the
target concept based on this minimal dataset. Recently, ma-
chine teaching has been shown very useful in applications
ranging from human computer interaction (Suh et al., 2016),
crowd sourcing (Singla et al., 2014; 2013) to cyber security
(Alfeld et al., 2016; 2017). Besides various applications,
machine teaching also has nice connections with curricu-
lum learning (Bengio et al., 2009; Hinton et al., 2015). In
traditional machine learning, a teacher usually constructs a
batch set of training samples, and provides them to a student
in one shot without further interactions. Then the student
keeps learning from this batch dataset and tries to learn the
target concept. Previous machine teaching paradigm (Zhu,
2013; 2015; Liu et al., 2016) usually focuses on constructing
the smallest such dataset, and characterizing the size of such
dataset, called the teaching dimension of the student model.
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Figure 1: Comparison between iterative machine teaching and
cross-space machine teaching by active teacher.

For machine teaching to work effectively in practical sce-
narios, (Liu et al., 2017a) propose an iterative teaching
framework which takes into consideration that the learner
usually uses iterative algorithms (e.g. gradient descent) to
update the models. Different from the traditional machine
teaching framework where the teacher only interacts with
the student in one-shot, the iterative machine teaching al-
lows the teacher to interact with the student in every single
iteration. It hence shifts the teaching focus from models to
algorithms: the objective of teaching is no longer construct-
ing a minimal dataset in one shot but searching for samples
so that the student learns the target concept in a minimal
number of iterations (i.e., fastest convergence for the student
algorithm). Such a minimal number of iterations is called
the iterative teaching dimension for the student algorithm.
(Liu et al., 2017a) mostly consider the simplest iterative
case where the teacher can fully observe the student. This
case is interesting in theory but too restrictive in practice.

Human teaching is arguably the most realistic teaching sce-
nario in which the learner is completely a black-box to the
teacher. Analogously, the ultimate problem for machine
teaching is how to teach a black-box learner. We call such
problem black-box machine teaching. Inspired by the fact
that the teacher and the student typically represent the same
concept but in different ways, we present a step towards the
black-box machine teaching – cross-space machine teach-
ing, where the teacher i) does not share the same feature
representation with the student, and ii) can not observe the
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student model. This setting is interesting in the sense that it
can both relax the assumptions for iterative machine teach-
ing and improve our understanding on human learning.

Inspired by a real-life fact, that a teacher will regularly ex-
amine the student to learn how well the student has mastered
the concept, we propose an active teacher model to address
the cross-space teaching problem. The active teacher is
allowed to actively query the student with a few (limited)
samples every certain number of iterations, and the student
can only return the corresponding prediction results to the
teacher. For example, if the student uses a linear regression
model, it will return to the teacher its prediction hwt; ~xi
where wt is the student parameter at the t-th iteration and
~x is the representation of the query example in student’s
feature space. Under suitable conditions, we show that the
active teacher can always achieve faster rate of improvement
than a random teacher that feeds samples randomly. In other
words, the student model guided by the active teacher can
provably achieve faster convergence than the stochastic gra-
dient descent (SGD). Additionally, we discuss the extension
of the active teacher to deal with the learner with forgetting
behavior, and the learner guided by multiple teachers.

To validate our theoretical findings, we conduct extensive
experiments on both synthetic data and real image data. The
results show the effectiveness of the active teacher.

2. Related Work
Machine teaching defines a task where we need to find an
optimal training set given a learner and a target concept.
(Zhu, 2015) describes a general teaching framework which
has nice connections to curriculum learning (Bengio et al.,
2009) and knowledge distillation (Hinton et al., 2015). (Zhu,
2013) considers Bayesian learners in exponential family and
formulates the machine teaching as an optimization problem
over teaching examples that balance the future loss of the
learner and the effort of the teacher. (Liu et al., 2016) give
the teaching dimension of linear learners. Machine teaching
has been found useful in cyber security (Mei & Zhu, 2015),
human computer interaction (Meek et al., 2016), and human
education (Khan et al., 2011). (Johns et al., 2015) extend
machine teaching to human-in-the-loop settings. (Doliwa
et al., 2014; Gao et al., 2015; Zilles et al., 2008; Samei
et al., 2014; Chen et al., 2018) study the machine teaching
problem from a theoretical perspective.

Previous machine teaching works usually ignore the fact
that a student model is typically optimized by an iterative
algorithm (e.g., SGD), and in practice we focus more on how
fast a student can learn from the teacher. (Liu et al., 2017a)
propose the iterative teaching paradigm and an omniscient
teaching model where the teacher knows almost everything
about the learner and provides training examples based on
the learner’s status. Our cross-space teaching serves as a
stepping stone towards the black-box iterative teaching.

3. Cross-Space Iterative Machine Teaching
The cross-space iterative teaching paradigm is different from
the standard iterative machine teaching in terms of two ma-
jor aspects: i) the teacher does not share the feature repre-
sentation with the student; ii) the teacher cannot observe the
student’s current model parameter in each iteration. Specifi-
cally, we consider the following teaching settings:

Teacher. The teacher model observes a sample A (e.g.
image, text, etc.) and represents it as a feature vector xA2
Rd and a label y2R. The teacher knows the model (e.g.,
loss function) and the optimization algorithm (including the
learning rate1) of the learner, and the teacher preserves an
optimal parameter v� of this model in its own feature space.
We denote the prediction of the teacher as ŷv�=hv�; xi2.

Learner. The learner observes the same sample A and
represents it as a vectorized feature ~xA2Rs and a label
~y2R. The learner uses a linear model hw; ~xi where w is its
model parameter and updates it with SGD (if guided by a
passive teacher). We denote the prediction of the student
model as ŷtw=hwt; ~xi in t-th iteration.

Representation. Although the teacher and learner do not
share the feature representation, we still assume their repre-
sentations have an intrinsic relationship. For simplicity, we
assume there exists a unknown one-to-one mapping G from
the teacher’s feature space to the student’s feature space
such that ~x=G(x). However, the conclusions in this paper
are also applicable to injective mappings. Unless specified,
we assume that y = ~y by default.

Interaction. In each iteration, the teacher will provide a
training example to the learner and the learner will update
its model using this example. The teacher cannot directly
observe the model parameter w of the student. In this pa-
per, the active teacher is allowed to query the learner with
a few examples every certain number of iterations. The
learner can only return to the teacher its prediction hwt; ~xi
in the regression scenario, its predicted label sign(hwt; ~xi)
or confidence score S(hwt; ~xi) in the classification scenario,
where wt is the student’s model parameter at t-th iteration
and S(�) is some nonlinear function. Note that the teacher
and student preserve the same loss function ‘(�; �).

Similar to (Liu et al., 2017a), we consider three ways for
the teacher to provide examples to the learner:

Synthesis-based teaching. In this scenario, the space of
provided examples is

X = fx 2 Rd; kxk � Rg
Y = R (Regression) or f�1; 1g (Classification):

Combination-based teaching. In this scenario, the space

1For simplicity, the teacher is assumed to know the learning
rate of the learner, but this prior is not necessary, as discussed later.

2For simplicity, we omit the bias term throughout the paper. It
is straightforward to add them back.
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of provided examples is (�i 2 R)

X =
�
xj kxk � R; x = �k

i=1�ixi; xi 2 D
	
;D = fx1; : : : ; xkg

Y = R (Regression) or f�1; 1g (Classification)

Rescalable pool-based teaching. This scenario further re-
strict the knowledge pool for samples. The teacher can pick
examples from X �Y:
X = fxj kxk � R; x = 
xi; xi 2 D; 
 2 Rg;D = fx1; : : :g
Y = R (Regression) or f�1; 1g (Classification)

We also note that the pool-based teaching (without rescala-
bility) is the most restricted teaching scenario and it is very
close to the practical settings.

4. The Active Teaching Algorithm
To address the cross-space iterative machine teaching,
we propose the active teaching algorithm, which actively
queries its student for its prediction output. We first describe
the general version of the active teaching algorithm. Then
without loss of generality, we will discuss three specific ex-
amples: least square regression (LSR) learner for regression,
logistic regression (LR) and support vector machine (SVM)
learner for classification (Friedman et al., 2001).

4.1. General Algorithm
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Figure 2: The cross-space teaching by active teacher. The real
learner receives training example x but will perceive it as G(x).

Inspired by human teaching, we expand the teacher’s capa-
bilities by enabling the teacher to actively query the student.
The student will return its predictions to the teacher. Based
on the student’s feedback, The teacher will estimate the
student’s status and determine which example to provide
next time. The student’s feedback enables the active teacher
to teach without directly observing the student’s model.

The active teacher can choose to query the learner with a
few samples in each iteration, and the learner will usually
report the prediction F (hw; ~xi) where F (�) denotes some
function of the inner product prediction. For example, we
usually have F (z) = z for regression and F (z)=sign(z)
or F (z)= 1

1+exp(�z) for classification. Based on our as-
sumption that there is an unknown mapping from teacher’s
feature to student’s feature, there also exists a mapping from
the model parameters of the teacher to those of the student.
These active queries enables the teacher to estimate the
student’s corresponding model parameter “in the teacher’s
space” and maintain a virtual learner, the teacher’s estima-
tion of the real learner, in its own space. The teacher will

decide which example to provide based on its current vir-
tual learner model. The ideal virtual learner v will have the
same prediction output as the real learner, i.e. hv; xi=hw; ~xi
where ~x=G(x). Equivalently, v=G>(w) always holds for
the ideal virtual learner, where G> is the conjugate mapping
of G. Note that for the purpose of analysis, we assume that
G is a generic linear operator, though our analysis can easily
extends to general cases. In fact, one of the most important
challenges in active teaching is to recover a virtual student
that approximates the real leaner as accurately as possible.
The estimation error of the teacher may affect the quality
of training examples that the teacher provides for the real
learner. Intuitively, if we can recover the virtual learner with
an appropriate accuracy, then we can still achieve faster
teaching speed than that of passive learning. Fig. 2 shows
the pipeline of the cross-space teaching.

With full access to the obtained virtual learner in the
teacher’s space, the teacher can perform omniscient teach-
ing as in (Liu et al., 2017a). Specifically, the active teacher
will optimize the following objective:

argmin
x2X ;y2Y
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where ‘ is a loss function and vt is the teacher’s estimation
of G>(wt) after the teacher performs an active query in t-th
iteration (i.e., the current model parameter of the virtual
learner). �t is the learning rate of the virtual learner. The
learning rate of the student model is not necessarily needed.
The general teaching algorithm is given in Algorithm 1.

Particularly, different types of feedback (i.e., the form of
F (�)) from learners contain different amount of information,
resulting in different levels of difficulties in recovering the
parameters of the learner’s model. We will discuss two
general ways to recover the virtual learner for two types of
frequently used feedbacks in practice.
Exact recovery of the virtual learner. We know that the
learner returns a prediction in the form of F (hw; ~xi). In
general, if F (�) is an one-to-one mapping, we can exactly
recover the ideal virtual learner (i.e. G>(w)) in the teacher’s
space using the system of linear equations. In other words,
the recovery of virtual learner could be exact as long as there
is no information loss from hw; ~xi to F (hw; ~xi). Specifi-
cally, we have hv; qji=hw; ~qji where qj is the j-th query
for the learner. Because hw; ~qji is given by the real learner,
we only need to construct d queries (d is the dimension of
the teacher space) and require fq1; q2; � � � ; qdg to be linearly
independent to estimate v. Without no numerical error, we
can exactly recover v. Since the recovery is exact, we have
G>(w)=v. Note that there are cases that we can achieve
exact recovery without F (�) being an one-to-one mapping.
For example, F (z) = max(0; z) (hinge function) is not an
one-to-one mapping but we can still achieve exact recovery.
Approximate recovery of the virtual learner. If F (�) is
not an one-to-one mapping (e.g., sign(�) which provides
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Algorithm 1 The active teacher

1: Randomly initialize the student parameter w0;
2: Set t = 1, exam = True (i.e., whether we make the student

takes exams) and maximal iteration number T ;
3: while vt has not converged or t < T do
4: if G>G 6= I and exam = True then
5: Obtain an estimation Ĝ>(wt) of the student model in

the teacher’s space using the virtual learner construction
Algorithm 2;

6: vt = Ĝ>(wt);
7: else if G>G = I and exam = True then
8: Perform the one-time “background” exam using Algo-

rithm 2 and set exam to False;
9: end if

10: Solve the optimization for the virtual learner (e.g. pool-
based teaching):

(xt; yt) = argmin
x2X ;y2Y
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11: if exam = False then
12: Use the selected example (xt; yt) to perform the update

of the virtual learner in the teacher’s space:

vt = vt�1 � �t

@‘
�

vt�1; xt

�
; yt
�

@vt�1
:

13: end if
14: Use the selected example (~xt; ~yt) where ~x=G(x); ~y=y to

perform the update of the real learner in the student’s space:

wt = wt�1 � �t

@‘
�

wt�1; ~xt

�
; ~yt
�

@wt�1
:

15: t t+ 1;
16: end while

1-bit feedback), then generally we may not be able to ex-
actly recover the student’s parameters. Therefore, we have
to develop a more intelligent technique (i.e. less sample
complexity) to estimate G>(w). In this paper, we use active
learning (Settles, 2010) to help the teacher better estimate
G>(w) for the virtual learner. One of the difficulties is that
the active learning algorithm obtains the parameters of a
model based on the predicted labels on which the norm of
the weights has no effect. It becomes ambiguous which
set of weights the teacher should choose. Therefore, the
active teacher also needs to have access to the norm of the
student’s weights for recovering the virtual learner. In the
following sections, we will develop and analyze our estima-
tion algorithm for the virtual learner based on the existing
active learning algorithms with guarantees on sample com-
plexity (Balcan et al., 2009; Ailon, 2012; Hanneke, 2007;
Schein & Ungar, 2007; Settles, 2010).

4.2. Least Square Regression Learner
For the LSR learner, we use the following model:

min
w2Rs;b2R

1

n

nX
i=1

1

2
(hw; ~xii � ~yi)

2: (2)

Algorithm 2 The virtual learner construction
1: if The feedback function F (z) is an one-to-one mapping or a

hinge function then
2: Perform one-time exam by actively query multiple exam-

ples;
3: Solve a system of linear equations to obtain the exact recov-

ery of the ideal virtual learner;
4: else
5: Apply acitve learning algorithms to perform an approximate

recovery of the ideal virtual learner (in this case, the teacher
will need to know the norm of the student model);

6: end if

Because F (hw; ~xi)=hw; ~xi, the LSR learner belongs to
the case where the active teacher can exactly recover the
ideal virtual learner. When G>G = I , the teacher only
need to perform active exam once. It can be viewed as a
“background exam” for the teacher to figure out how well
the student has mastered the knowledge at the beginning,
and the teacher can track the dynamics of students exactly
later. Otherwise, for a general one-to-one mapping G, the
teacher needs to query the student in each iteration. Still,
the teacher can reuse the same set of queries in all iterations.

4.3. Logistic Regression Learner
For the LR learner, we use the following model (without
loss of generality, we consider the binary classification):

min
w2Rs;b2R

1

n

nX
i=1

log
�
1 + expf�~yi(hw; ~xii)g

�
(3)

We discuss two cases separately: (1) the learner returns
the probability of each class (i.e. F (z) = S(z) where S(�)
denotes a sigmoid function); (2) the learner only returns the
predicted label (i.e. F (z) = sign(z)).

In the first case where F (�) is a sigmoid function, we can
exactly recover the ideal virtual learner. This case is es-
sentially similar to the LSR learner where we need only
one “background exam” if G>G=I and we can reuse the
queries in each iteration for a general one-to-one mapping G
(G>G 6=I). In the second case where F (�) is a sign function,
we can only approximate the ideal virtual learner with some
error. In this case, we use active learning to do the recovery.

4.4. Support Vector Machine Learner
For the SVM learner, we use the following model for the
binary classification:

min
w2Rs;b2R

1

n

nX
i=1

max(1� yi(w
T ~xi + b); 0) (4)

Similarly, we have two cases: (1) the learner returns the
hinge value of each class (i.e. F (z)=max(0; z); (2) the
learner only returns the label (i.e. F (z) = sign(z)).

In the first case where F (�) is a hinge function, we can still
recover the ideal virtual learner. Although the hinge func-
tion is not a bijective mapping (only half of it is one-to-one),












