
Appendix for Delayed Impact of Fair Machine Learning

A Further Examples

We present two more examples of the problem formulation in Sec. 2, showing its general applicability
to many domains.

Example A.1 (Advertising). A second illustrative example is given by the case of advertising
agencies making decisions about which groups to target. An individual with product interest score
x responds positively to an ad with probability ρ(x). The ad agency experiences utility u(x) related
to click-through rates, which increases with ρ(x). Individuals who see the ad but are uninterested
may react negatively (becoming less interested in the product), and ∆(x) encodes the interest
change. If the product is a positive good like education or employment opportunities, interest can
correspond to well-being. Thus the advertising agency’s incentives to only show ads to individuals
with extremely high interest may leave behind groups whose interest is lower on average. A related
historical example occurred in advertisements for computers in the 1980s, where male consumers
were targeted over female consumers, arguably contributing to the current gender gap in computing.

Example A.2 (College Admissions). The scenario of college admissions or scholarship allotments
can also be considered within our framework. Colleges may select certain applicants for acceptance
according to a score x, which could be thought encode a “college preparedness” measure. The stu-
dents who are admitted might “succeed” (this could be interpreted as graduating, graduating with
honors, finding a job placement, etc.) with some probability ρ(x) depending on their preparedness.
The college might experience a utility u(x) corresponding to alumni donations, or positive rating
when a student succeeds; they might also show a drop in rating or a loss of invested scholarship
money when a student is unsuccessful. The student’s success in college will affect their later success,
which could be modeled generally by ∆(x). In this scenario, it is challenging to ensure that a single
summary statistic x captures enough information about a student; it may be more appropriate to
consider x as a vector as well as more complex forms of ρ(x).

While a variety of applications are modeled faithfully within our framework, there are limitations
to the accuracy with which real-life phenomenon can be measured by strictly binary decisions and
success probabilities. Such binary rules are necessary for the definition and execution of existing
fairness criteria, (see Sec. 2.2) and as we will see, even modeling these facets of decision making as
binary allows for complex and interesting behavior.

B Optimality of Threshold Policies

Next, we move towards statements of the main theorems underlying the results presented in Sec-
tion 3. We begin by establishing notation which we shall use throughout. Recall that ◦ denotes

1



the Hadamard product between vectors. We identify functions mapping X → R with vectors in
RC . We also define the group-wise utilities

Uj(τ j) :=
∑
x∈X

πj(x)τ j(x)u(x) , (1)

so that for τ = (τA, τB), U(τ ) := gAUA(τA) + gBUB(τB).
First, we formally describe threshold policies, and rigorously justify why we may always assume

without loss of generality that the institution adopts policies of this form.

Definition B.1 (Threshold selection policy). A single group selection policy τ ∈ [0, 1]C is called
a threshold policy if it has the form of a randomized threshold on score:

τ c,γ =


1, x > c

γ, x = c

0, x < c

, for some c ∈ [C] and γ ∈ (0, 1] . (2)

As a technicality, if no members of a population have a given score x ∈ X , there may be
multiple threshold policies which yield equivalent selection rates for a given population. To avoid
redundancy, we introduce the notation τ j

∼=πj τ
′
j to mean that the set of scores on which τ j and τ ′j

differ has probability 0 under πj; formally,
∑

x:τ j(x) 6=τ j(x) πj(x) = 0. For any distribution πj, ∼=πj

is an equivalence relation. Moreover, we see that if τ j
∼=πj τ

′
j, then τ j and τ ′j both provide the

same utility for the institution, induce the same outcomes for individuals in group j, and have the
same selection and true positive rates. Hence, if (τA, τB) is an optimal solution to any of MaxUtil,
EqOpt, or DemParity, so is any (τ ′A, τ

′
B) for which τA

∼=πA
τ ′A and τB

∼=πB
τ ′B.

For threshold policies in particular, their equivalence class under ∼=πj is uniquely determined by
the selection rate function,

rπj(τ j) :=
∑
x∈X

πj(x)τ j(x) , (3)

which denotes the fraction of group j which is selected. Indeed, we have the following lemma (proved
in Appendix D.1):

Lemma B.1. Let τ j and τ ′j be threshold policies. Then τ j
∼=πj τ

′
j if and only if rπj(τ j) = rπj(τ

′
j).

Further, rπj(τ j) is a bijection from Tthresh(πj) to [0, 1], where Tthresh(πj) is the set of equivalence
classes between threshold policies under ∼=πj. Finally, πj ◦ r−1

πj
(βj) is well defined.

Remark that r−1
πj

(βj) is an equivalence class rather than a single policy. However, πj ◦ r−1
πj

(τ j) is

well defined, meaning that πj ◦τ j = πj ◦τ ′j for any two policies in the same equivalence class. Since
all quantities of interest will only depend on policies τ j through πj ◦ τ j, it does not matter which
representative of r−1

πj
(βj) we pick. Hence, abusing notation slightly, we shall represent Tthresh(πj)

by choosing one representative from each equivalence class under ∼=πj
1.

It turns out the policies which arise in this away are always optimal in the sense that, for a
given loan rate βj , the threshold policy r−1

πj
(βj) is the (essentially unique) policy which maximizes

1One way to do this is to consider the set of all threshold policies τ c,γ such that, γ = 1 if πj(c) = 0 and πj(c−1) > 0
if γ = 1 and c > 1.
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both the institution’s utility and the utility of the group. Defining the group-wise utility,

Uj(τ j) :=
∑
x∈X

u(x)πj(x)τ j(x) , (4)

we have the following result:

Proposition B.2 (Threshold policies are preferable). Suppose that u(x) and ∆(x) are strictly
increasing in x. Given any loaning policy τ j for population with distribution πj, then the policy
τ thresh
j := r−1

πj
(rπj(τ j)) ∈ Tthresh(πj) satisfies

∆µj(τ
thresh
j ) ≥ ∆µj(τ j) and Uj(τ thresh

j ) ≥ Uj(τ j) . (5)

Moreover, both inequalities hold with equality if and only if τ j
∼=πj τ

thresh
j .

The map τ j 7→ r−1
πj

(rπj(τ j)) can be thought of transforming an arbitrary policy τ j into a
threshold policy with the same selection rate. In this language, the above proposition states that
this map never reduces institution utility or individual outcomes. We can also show that optimal
MaxUtil and DemParity policies are threshold policies, as well as all EqOpt policies under an
additional assumption:

Proposition B.3 (Existance of optimal threshold policies under fairness constraints). Suppose
that u(x) is strictly increasing in x. Then all optimal MaxUtil policies (τA, τB) satisfy τ j

∼=πj

r−1
πj

(
rπj(τ j)

)
for j ∈ {A,B}. The same holds for all optimal DemParity policies, and if in addition

u(x)/ρ(x) is increasing, the same is true for all optimal EqOpt policies.

To prove proposition B.2, we invoke the following general lemma which is proved using standard
convex analysis arguments (in Appendix D.2):

Lemma B.4. Let v ∈ RC , and let w ∈ RC>0, and suppose either that v(x) is increasing in x, and
v(x)/w(x) is increasing or, ∀x ∈ X , w(x) = 0. Let π ∈ SimplexC−1 and fix t ∈ [0,

∑
x∈X π(x) ·

w(x)]. Then any

τ ∗ ∈ arg max
τ∈[0,1]C

〈v ◦ π, τ 〉 s.t. 〈π ◦w, τ 〉 = t (6)

satisfies τ ∗ ∼=π r−1
π (rπ(τ ∗)). Moreover, at least one maximizer τ ∗ ∈ Tthresh(π) exists.

Proof of Proposition B.2. We will first prove Proposition B.2 for the function Uj. Given our nom-
inal policy τ j, let βj = rπj(τ j). We now apply Lemma B.4 with v(x) = u(x) and w(x) =
1. For this choice of v and w, 〈v, τ 〉 = Uj(τ ) and that 〈πj ◦ w, τ = rπj(τ ). Then, if τ j ∈
arg maxτ Uj(τ ) s.t. rπj(τ ) = βj, Lemma 6 implies that τ j

∼=πj r
−1
πj

(rπj(τ j)).

On the other hand, assume that τ j
∼=πj r

−1
πj

(
rπj(τ j)

)
. We show that r−1

πj
(rπj(τ j)) is a maximizer;

which will imply that τ j is a maximizer since τ j
∼=πj r

−1
πj

(rπj(τ j)) implies that Uj(τ j) = τ j
∼=πj

r−1
πj

(rπj(τ j)). By Lemma B.4 there exists a maximizer τ ∗j ∈ Tthresh(π), which means that τ ∗j =

r−1
πj

(rπj(τ
∗
j )). Since τ ∗j is feasible, we must have rπj(τ

∗
j ) = rπj(τ j), and thus τ ∗j = r−1

πj
(rπj(τ j)),

as needed. The same argument follows verbatim if we instead choose v(x) = ∆(x), and compute
〈v, τ 〉 = ∆µj(τ ).
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We now argue Proposition B.3 for MaxUtil, as it is a straightforward application of Lemma B.4.
We will prove Proposition B.3 for DemParity and EqOpt separately in Sections C.1 and C.2.

Proof of Proposition B.3 for MaxUtil. MaxUtil follows from lemma B.4 with v(x) = u(x), and
t = 0 and w = 0.

B.1 Quantiles and Concavity of the Outcome Curve

To further our analysis, we now introduce left and right quantile functions, allowing us to specify
thresholds in terms of both selection rate and score cutoffs.

Definition B.2 (Upper quantile function). Define Q to be the upper quantile function correspond-
ing to π, i.e.

Qj(β) = argmax{c :
C∑
x=c

πj(x) > β} and Q+
j (β) := argmax{c :

C∑
x=c

πj(x) ≥ β} . (7)

Crucially Q(β) is continuous from the right, and Q+(β) is continuous from the left. Further,
Q(·) and Q+(·) allow us to compute derivatives of key functions, like the mapping from selection
rate β to the group outcome associated with a policy of that rate, ∆µ(r−1

π (β)). Because we take
π to have discrete support, all functions in this work are piecewise linear, so we shall need to
distinguish between the left and right derivatives, defined as follows

∂−f(x) := lim
t→0−

f(x+ t)− f(x)

t
and ∂+f(y) := lim

t→0+

f(y + t)− f(y)

t
. (8)

For f supported on [a, b], we say that f is left- (resp. right-) differentiable if ∂−f(x) exists for
all x ∈ (a, b] (resp. ∂+f(y) exists for all y ∈ [a, b)). We now state the fundamental derivative
computation which underpins the results to follow:

Lemma B.5. Let ex denote the vector such that ex(x) = 1, and ex(x′) = 0 for x′ 6= x. Then
πj ◦ r−1

πj
(β) : [0, 1]→ [0, 1]C is continuous, and has left and right derivatives

∂+

(
πj ◦ r−1

πj
(β)
)

= eQ(β) and ∂−

(
πj ◦ r−1

πj
(β)
)

= eQ+(β) . (9)

The above lemma is proved in Appendix D.3. Moreover, Lemma B.5 implies that the outcome
curve is concave under the assumption that ∆(x) is monotone:

Proposition B.6. Let π be a distribution over C states. Then β 7→ ∆µ(r−1
π (β)) is concave. In

fact, if w(x) is any non-decreasing map from X → R, β 7→ 〈w, r−1
π (β)〉 is concave.

Proof. Recall that a univariate function f is concave (and finite) on [a, b] if and only (a) f is left- and
right-differentiable, (b) for all x ∈ (a, b), ∂−f(x) ≥ ∂+f(x) and (c) for any x > y, ∂−f(x) ≤ ∂+f(y).

Observe that ∆µ(r−1
π (β)) = 〈∆,π ◦ r−1

π (β)〉. By Lemma B.5, π ◦ r−1
π (β) has right and left

derivatives eQ(β) and eQ+(β). Hence, we have that

∂+∆µ(βB) = ∆(Q(βB)) and ∂−∆µ(βB) = ∆(Q+(βB)) . (10)
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Figure 1: Considering the utility as a function of selection rates, fairness constraints correspond
to restricting the optimization to one-dimensional curves. The DemParity (DP) constraint is a
straight line with slope 1, while the EqOpt (EO) constraint is a curve given by the graph of G(A→B).
The derivatives considered throughout Section C are taken with respect to the selection rate βA
(horizontal axis); projecting the EO and DP constraint curves to the horizontal axis recovers concave
utility curves such as those shown in the lower panel of Figure 2 (where MaxUtil in is represented
by a horizontal line through the MU optimal solution).

Using the fact that ∆(x) is monotone, and that Q ≤ Q+, we see that ∂+∆µ(f−1
π (βB)) ≤ ∂−∆µ(f−1

π (βB)),
and that ∂∆µ(f−1

π (βB)) and ∂+∆µ(f−1
π (βB)) are non-increasing, from which it follows that ∆µ(f−1

π (βB))
is concave. The general concavity result holds by replacing ∆(x) with w(x).

C Proofs of Characterization Theorems

We are now ready to present and prove theorems that characterize the selection rates under fairness
constraints, namely DemParity and EqOpt. These characterizations are crucial for proving the
results in Section 3. Our computations also generalize readily to other linear constraints, in a way
that will become clear in Section C.2.

C.1 A Characterization Theorem for DemParity

In this section, we provide a theorem that gives an explicit characterization for the range of selection
rates βA for A when the bank loans according to DemParity. Observe that the DemParity objective
corresponds to solving the following linear program:

max
τ=(τA,τB)∈[0,1]2C

U(τ ) s.t. 〈πA, τA〉 = 〈πB, τB〉 .

Let us introduce the auxiliary variable β := 〈πA, τA〉 = 〈πB, τB〉 corresponding to the selection
rate which is held constant across groups, so that all feasible solutions lie on the green DP line in
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Figure 1. We can then express the following equivalent linear program:

max
τ=(τA,τB)∈[0,1]2C ,β∈[0,1]

U(τ ) s.t. β = 〈πj, τ j〉, j ∈ {A,B} .

This is equivalent because, for a given β, Proposition B.3 says that the utility maximizing policies
are of the form τ j = r−1

πj
(β). We now prove this:

Proof of Proposition B.3 for DemParity. Noting that rπj(τ j) = 〈πj, τ j〉, we see that, by Lemma B.4,
under the special case where v(x) = u(x) and w(x) = 1, the optimal solution (τ ∗A(β), τ ∗B(β)) for
fixed rπA

(τA) = rπB
(τB) = β can be chosen to coincide with the threshold policies. Optimizing

over β, the global optimal must coincide with thresholds.

Hence, any optimal policy is equivalent to the threshold policy τ = (r−1
πA

(β), r−1
πB

(β)), where β
solves the following optimization:

max
β∈[0,1]

U
((
r−1
πA

(β), r−1
πB

(β)
))

. (11)

We shall show that the above expression is in fact a concave function in β, and hence the set of
optimal selection rates can be characterized by first order conditions. This is presented formally in
the following theorem:

Theorem C.1 (Selection rates for DemParity). The set of optimal selection rates β∗ satisfying (11)
forms a continuous interval [β−DemParity, β

+
DemParity], such that for any β ∈ [0, 1], we have

β < β−DemParity if gAu (QA(β)) + gBu (QB(β)) > 0 ,

β > β+
DemParity if gAu

(
Q+

A (β)
)

+ gBu
(
Q+

B (β)
)
< 0 .

Proof. Note that we can write

U
((
r−1
πA

(β), r−1
πB

(β)
))

= gA〈u,πA ◦ r−1
πA

(β)〉+ gB〈u,πB ◦ r−1
πB

(β)〉 .

Since u(x) is non-decreasing in x, Proposition B.6 implies that β 7→ U
((
r−1
πA

(β), r−1
πB

(β)
))

is
concave in β. Hence, all optimal selection rates β∗ lie in an interval [β−, β+]. To further characterize
this interval, let us us compute left- and right-derivatives.

∂+U
((
r−1
πA

(β), r−1
πB

(β)
))

= ∂+gA〈u,πA ◦ r−1
πA

(β)〉+ ∂+gB〈u,πB ◦ r−1
πB

(β)〉
= gA〈u, ∂+

(
πA ◦ r−1

πA
(β)
)
〉+ gB〈u, ∂+

(
πB ◦ r−1

πB
(β)
)
〉

Lemma B.5
= gA〈u, eQA(β)〉+ gB〈u, eQB(β)〉
= gAu(QA(β)) + gBu(QB(β)) .

The same argument shows that

∂−U((r−1
πA

(β), r−1
πB

(β))) = gAu(Q+
A (β)) + gBu(Q+

B (β)).
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By concavity of U
((
r−1
πA

(β), r−1
πB

(β)
))

, a positive right derivative at β implies that β < β∗ for all β∗

satisfying (11), and similarly, a negative left derivative at β implies that β > β∗ for all β∗ satisfying
(11).

The results in Section 3 pertaining to DemParity follow readily from Theorem C.1, and are
proved in Section F. For example, we prove Theorem 3.3 by fixing a selection rate of interest (e.g.
β0) and inverting the inequalities in Theorem C.1 to find the exact population proportions under
which, for example, DemParity results in a higher selection rate than β0.

C.2 EqOpt and General Constraints

Next, we will provide a theorem that gives an explicit characterization for the range of selection rates
βA for A when the bank loans according to EqOpt. Observe that the EqOpt objective corresponds
to solving the following linear program:

max
τ=(τA,τB)∈[0,1]2C

U(τ ) s.t. 〈wA ◦ πA, τA〉 = 〈wB ◦ πB, τB〉 , (12)

where wj = ρ
〈ρ,πj〉 . This problem is similar to the demographic parity optimization in (11), except

for the fact that the constraint includes the weights. Whereas we parameterized demographic parity
solutions in terms of the acceptance rate β in equation (11), we will parameterize equation (12) in
terms of the true positive rate (TPR), t := 〈wA ◦ πA, τA〉. Thus, (12) becomes

max
t∈[0,tmax]

max
(τA,τB)∈[0,1]2C

∑
j∈{A,B}

gjUj(τ j) s.t. 〈wj ◦ πj, τ j〉 = t, j ∈ {A,B} , (13)

where tmax = minj∈{A,B}{〈πj,wj〉} is the largest possible TPR. The magenta EO curve in Figure 1
illustrates that feasible solutions to this optimization problem lie on a curve parametrized by t.
Note that the objective function decouples for j ∈ {A,B} for the inner optimization problem,

max
τ j∈[0,1]C

∑
j∈{A,B}

gjUj(τ j) s.t. 〈wj ◦ πj, τ j〉 = t . (14)

We will now show that all optimal solutions for this inner optimization problem are πj-a.e. equal to
a policy in Tthresh(πj), and thus can be written as r−1

πj
(βj), depending only on the resulting selection

rate.

Proof of Proposition B.3 for EqOpt. We apply Lemma B.4 to the inner optimization in (14) with

v(x) = u(x) and w(x) = ρ(x)
〈ρ,πj〉 . The claim follows from the assumption that u(x)/ρ(x) is increasing

by optimizing over t.

This selection rate βj is uniquely determined by the TPR t (proof appears in Appendix E.1):

Lemma C.2. Suppose that w(x) > 0 for all x. Then the function

Tj,wj(β) := 〈r−1
πj

(β),πj ◦wj〉

is a bijection from [0, 1] to [0, 〈πj,w〉].
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Hence, for any t ∈ [0, tmax], the mapping from TPR to acceptance rate, T−1
j,wj

(t), is well defined

and any solution to (14) is πj-a.e. equal to the policy r−1
πj

(T−1
j,wj

(t)). Thus (13) reduces to

max
t∈[0,tmax]

∑
j∈{A,B}

gjUj
(
r−1
πj

(
T−1

j,wj
(t)
))

. (15)

The above expression parametrizes the optimization problem in terms of a single variable. We
shall show that the above expression is in fact a concave function in t, and hence the set of optimal
selection rates can be characterized by first order conditions. This is presented formally in the
following theorem:

Theorem C.3 (Selection rates for EqOpt). The set of optimal selection rates β∗ for group A
satsifying (13) forms a continuous interval [β−EqOpt, β

+
EqOpt], such that for any β ∈ [0, 1], we have

β < β−EqOpt if gA
u(QA(β))

wA(QA(β))
+ gB

u(QB(G
(A→B)
w (β)))

wB(QB(G
(A→B)
w (β)))

> 0 ,

β > β+
EqOpt if gA

u(Q+
A (β))

wA(Q+
A (β))

+ gB
u(Q+

B (G
(A→B)
w (β)))

wB(Q+
B (G

(A→B)
w (β)))

< 0 .

Here, G
(A→B)
w (β) := T−1

B,wB
(T−1

A,wA
(β)) denotes the (well-defined) map from selection rates βA for A

to the selection rate βB for B such that the policies τ ∗A := r−1
πA

(βA) and τ ∗B := r−1
πB

(βB) satisfy the
constraint in (12).

Proof. Starting with the equivalent problem in (15), we use the concavity result of Lemma E.1.
Because the objective function is the positive weighted sum of two concave functions, it is also
concave. Hence, all optimal true positive rates t∗ lie in an interval [t−, t+]. To further characterize
[t−, t+], we can compute left- and right-derivatives, again using the result of Lemma E.1.

∂+

∑
j∈{A,B}

gjUj
(
r−1
πj

(T−1
j,wj

(t))
)

= gA∂+UA
(
r−1
πA

(T−1
A,wA

(t))
)

+ gA∂+UA
(
r−1
πA

(T−1
A,wA

(t))
)

= gA
u(QA(T−1

A,wA
(t)))

wA(QA(T−1
A,wA(t)))

+ gB
u(QB(T−1

B,wB
(t)))

wB(QB(T−1
B,wB(t)))

The same argument shows that

∂−
∑

j∈{A,B}

gjUj
(
r−1
πj

(T−1
j,wj

(t))
)

= gA
u(Q+

A (T−1
A,wA

(t))

wA(Q+
A (T−1

A,wA(t)))
+ gB

u(Q+
B (T−1

B,wB
(t)))

wB(Q+
B (T−1

B,wB(t)))
.

By concavity, a positive right derivative at t implies that t < t∗ for all t∗ satisfying (15), and
similarly, a negative left derivative at t implies that t > t∗ for all t∗ satisfying (15).

Finally, by Lemma C.2, this interval in t uniquely characterizes an interval of acceptance rates.
Thus we translate directly into a statement about the selection rates β for group A by seeing that

T−1
A,wA

(t) = β and T−1
B,wB

(t) = G
(A→B)
w (β).

Lastly, we remark that the results derived in this section go through verbatim for any linear
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constraint of the form 〈w,πA ◦ τA〉 = 〈w,πB ◦ τB〉, as long as u(x)/w(x) is increasing in x, and
w(x) > 0.

D Optimality of Threshold Policies

D.1 Proof of Lemma B.1

We begin with the first statement of the lemma. Suppose τ j
∼=πj τ

′
j. Then there exists a set S ⊂ X

such that πj(x) = 0 for all x ∈ S, and for all x /∈ S, τ j(x) = τ ′j(x). Thus,

rπ(τ j)− rπj(τ
′
j) =

∑
x∈X

πj(x)(τ j(x)− τ ′j(x))

=
∑
x∈S

πj(x)(τ j(x)− τ ′j(x)) = 0 .

Conversely, suppose that rπj(τ j) = rπj(τ
′
j). Let τ j = τ c,γ and τ ′j = τ c′,γ′ as in Definition B.1. We

now have the following cases:

1. Case 1: c = c′. Then τ j(x) = τ ′j(x) for all x ∈ X − {c}. Hence,

0 = rπ(τ j)− rπj(τ
′
j) = π(x)(τ j(c)− τ ′j(c)) .

This implies that either τ j(c) = τ ′j(c), and thus τ j(x) = τ ′j(x) for all x ∈ X , or otherwise
π(c) = 0, in which case we still have τ j

∼=πj τ
′
j (since the two policies agree every outside the

set {c}).

2. Case 2: c 6= c′. We assume assume without loss of generality that c′ < c ≤ C. Since the
policies τ c′,1 and τ c′+1,0 are identity for c′ < C, we may also assume without loss of generality
that γ′ ∈ [0, 1). Thus for all x ∈ S := {c′, c′ + 1, . . . , C}, we have τ ′j(x) < τ j(x). This implies
that

0 = rπ(τ j)− rπj(τ
′
j)

=
∑
x∈S

πj(x)(τ j(x)− τ ′j(x))

≥ min
x∈S

(τ j(c)− τ ′j(x)) ·
∑
x∈S

π(x) .

Since minx∈S(τ j(c)− τ ′j(x)) > 0, it follows that
∑

x∈S πj(x) = 0, whence τ j
∼=πj τ

′
j.

Next, we show that rπ is a bijection from Tthresh(π) → [0, 1]. That rπ is injective follows
immediately from the fact if rπj(τ ) = rπj(τ

′
j), then τ j

∼=πj τ
′
j. To show it is surjective, we exhibit

for every β ∈ [0, 1] a threshold policy τ c,γ for which rπj(τ c,γ) = β. We may assume β < 1, since
the all-ones policy has a selection rate of 1.

Recall the definition of the inverse CDF

Qj(β) := argmax{c :

C∑
x=c

π(x) > β} .
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Since β < 1, Qj(β) ≤ C. Let β+ =
∑C

x=Qj(β) π(x), and let β− =
∑C

x=Qj(β)+1 π(x). Note that by

definition, we have β− ≤ β < β+, and β+ − β− = π(Qj(β)). Hence, if we define γ = β−β−
β+−β− , we

have

rπj(τQj(β),γ) = π(Qj(β))γ +
C∑

x=Qj(β)+1

π(x) = β− + (β+ − β−)γ = β− + β − β− = β .

D.2 Proof of Lemma B.4

Given τ ∈ [0, 1]C , we define the normal cone at τ as NC(τ ) := ConicalHull{z : τ + z ∈ [0, 1]C}.
We can describe NC(τ ) explicitly as:

NC(τ ) := {z ∈ RC : zi ≤ 0 if τ i = 0, zi ≥ 0 if τ i = 1} .

Immediately from the above definition, we have the following useful identity, which is that for any
vector g ∈ RC ,

〈g, z〉 ≤ 0 ∀z ∈ NC(τ ), if and only if ∀x ∈ X ,


τ (x) = 0 g(x) < 0

τ (x) = 1 g(x) > 0

τ (x) ∈ [0, 1] g(x) = 0

. (16)

Now consider the optimization problem (6). By the first order KKT conditions, we know that
for any optimizer τ ∗ of the above objective, there exists some λ̂ ∈ R such that, for all z ∈ NC(τ ∗)

〈z,v ◦ π + λ̂π ◦w〉 ≤ 0 .

By (16), we must have that

τ ∗(x) =


0 π(x)(v(x) + λ̂w(x)) < 0

1 π(x)(v(x) + λ̂w(x)) > 0

∈ [0, 1] π(x)(v(x) + λ̂w(x)) = 0

.

Now τ ∗(x) is not necessarily a threshold policy. To conclude the theorem, it suffices to exhibit a
threshold policy τ̃ ∗ such that τ ∗(x) ∼=π τ̃ ∗. (Note that τ̃ ∗(x) will also be feasible for the constraint,
and have the same objective value; hence τ̃ ∗ will be optimal as well.)

Given τ ∗ and λ̂, let c∗ = min{c ∈ X : v(x) + λ̂w(x) ≥ 0}. If either (a) w(x) = 0 for all x ∈ X
and v(x) is strictly increasing or (b) v(x)/w(x) is strictly increasing, then the modified policy

τ̃ ∗(x) =


0 x < c∗

τ ∗(x) x = c∗

1 x > c∗

,

is a threshold policy, and τ ∗(x) ∼=π τ̃ ∗. Moreover, 〈w, τ̃ ∗〉 = 〈w, τ̃ ∗〉 and 〈π, τ̃ ∗〉 = 〈π, τ̃ ∗〉, which
implies that τ̃ ∗ is an optimal policy for the objective in Lemma B.4.
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D.3 Proof of Lemma B.5

We shall prove

∂+

(
πj ◦ r−1

πj
(β)
)

= eQj(β) , (17)

where the derivative is with respect to β. The computation of the left-derivative is analogous.
Since we are concerned with right-derivatives, we shall take β ∈ [0, 1). Since πj ◦ r−1

πj
(β) does not

depend on the choice of representative for r−1
πj

, we can choose a cannonical representation for r−1
πj

.
In Section D.1, we saw that the threshold policy τQj(β),γ(β) had acceptance rate β, where we had
defined

β+ =
C∑

x=Qj(β)

π(x) and β− =
C∑

x=Qj(β)+1

π(x) , (18)

γ(β) =
β − β−
β+ − β−

. (19)

Note then that for each x, τQj(β),γ(β)(x) is piece-wise linear, and thus admits left and right deriva-
tives. We first claim that

∀x ∈ X \ {Qj(β)}, ∂+τQj(β),γ(β)(x) = 0 . (20)

To see this, note that Qj(β) is right continuous, so for all ε sufficiently small, Qj(β + ε) = Qj(β).
Hence, for all ε sufficiently small and all x 6= Q(β), we have τQj(β+ε),γ(β+ε)(x) = τQj(β+ε),γ(β+ε)(x),

as needed. Thus, Equation (20) implies that ∂+πj ◦ r−1
πj

(β) is supported on x = Qj(β), and hence

∂+πj ◦ r−1
πj

(β) = ∂+πj(x)τQj(β),γ(β)(x)
∣∣
x=Qj(β)

· eQj(β) .

To conclude, we must show that ∂+πj(x)τQj(β),γ(β)(x)
∣∣
x=Qj(β)

= 1. To show this, we have

1 = ∂+(β)

= ∂+(rπj(τQj(β),γ(β))) since rπj(τQj(β),γ(β)) = β ∀β ∈ [0, 1)

= ∂+

(∑
x∈X

π(x) · τQj(β),γ(β)(x)

)
= ∂+π(x) · τQj(β),γ(β)(x)

∣∣
x=Qj(β)

, as needed.

E Technical Lemmas for Characterization of Fairness Solutions

E.1 Derivative Computation for EqOpt

In this section, we prove Lemma C.2, which we recall below.

Lemma C.2. Suppose that w(x) > 0 for all x. Then the function

Tj,wj(β) := 〈r−1
πj

(β),πj ◦wj〉
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is a bijection from [0, 1] to [0, 〈πj,w〉].
We will prove Lemma C.2 in tandem with the following derivative computation which we applied

in the proof of Theorem C.3.

Lemma E.1. The function

Uj(t;wj) := Uj
(
r−1
πj

(
T−1

j,wj
(t)
))

is concave in t and has left and right derivatives

∂+Uj(t;wj) =
u(Qj(T

−1
j,wj

(t)))

wj(Qj(T
−1
j,wj(t)))

and ∂−Uj(t;wj) =
u(Q+

j (T−1
j,wj

(t)))

wj(Q
+
j (T−1

j,wj(t)))
.

Proof of Lemmas C.2 and E.1. Consider a β ∈ [0, 1]. Then, πj ◦ r−1
πj

(β) is continuous and left and
right differentiable by Lemma B.5, and its left and right derivatives are indicator vectors eQj(β) and

eQ+
j (β), respectively. Consequently, β 7→ 〈wj,πj ◦ r−1

πj
(β)〉 has left and right derivatives wj(Q(β))

and wj(Q
+(β)), respectively; both of which are both strictly positive by the assumption w(x) > 0.

Hence, Tj,wj(β) = 〈wj,πj ◦ r−1
πj

(β)〉 is strictly increasing in β, and so the map is injective. It is also
surjective because β = 0 induces the policy τ j = 0 and β = 1 induces the policy τ j = 1 (up to
πj-measure zero). Hence, Tj,wj(β) is an order preserving bijection with left- and right-derivatives,
and we can compute the left and right derivatives of its inverse as follows:

∂+T
−1
j,wj

(t) =
1

∂+Tj,wj(β)
∣∣
β=T−1

j,wj
(t)

=
1

wj(Qj(T
−1
j,wj(t)))

,

and similarly, ∂−T
−1
j,wj

(t) = 1
wj(Q+(T−1

j,wj
(t)))

. Then we can compute that

∂+Uj(rπj(T
−1
j,wj

(t))) = ∂+U(rπj(β))
∣∣
β=T−1

j,wj
(t))
· ∂+Tj,wj(sup(t))

=
u(Qj(T

−1
j,wj

(t)))

wj(Qj(T
−1
j,wj(t)))

.

and similarly ∂−Uj(rπj(Tj,wj(t))) =
U(Q+

j (T−1
j,wj

(t)))

wj(Q
+
j (T−1

j,wj
(t)))

. One can verify that for all t1 < t2, one has that

∂+Uj(rπj(T
−1
j,wj

(t1))) ≥ ∂−Uj(rπj(T
−1
j,wj

(t2))), and that for all t, ∂+Uj(rπj(T
−1
j,wj

(t))) ≤ ∂−Uj(rπj(T
−1
j,wj

(t))).

These facts establish that the mapping t 7→ Uj(rπj(T
−1
j,wj

(t))) is concave.

E.2 Characterizations Under Soft Constraints

Given a convex penalty Φ : R → R≥0, and λ ∈ R≥0, one can write down the general form for soft
constrained utility optimization

max
τ=(τA,τB)

U(τ )− λΦ(〈wA ◦ πA, τA〉 − 〈wB ◦ πB, τB〉) , (21)

where wA and wB represent generic constraints. Again, we shall assume that for j ∈ {A,B},
u(x)/wj(x) is non-decreasing. Recall that for wj = (1, 1, . . . , 1), one recovers the soft version of

12



DemParity, whereas for wj = ρ
〈ρ,πj〉 , one recovers the soft constrained version of EqOpt.

The same argument presented in Section C.2 shows that the optimal policies are of the form

τ j = r−1
πj

(T−1
j,wj

(tj)) ,

where (tA, tB) are solutions to the following optimization problem:

max
tA∈[0,〈πA,wA〉],tB∈[0,〈πB,wB〉]

gAUA(r−1
πA

(T−1
A,wA

(tA))) + gBUB(r−1
πB

(T−1
B,wB

(tB)))− λΦ(tA − tB) .

The following lemma gives us a first order characterization of these optimal TPRs, (tA, tB).

Lemma E.2. All optimal policies are equivalent to threshold policies with selection rate (βA, βB)
which satisfy

[
0
0

]
∈


[
u(QA(βA))
wA(QA(βB)) − λ∂+Φ(∆),

u(Q+
A (βA))

wA(Q+
A (βA))

− λ∂−Φ(∆)
]

[
u(QB(βB))
wB(QB(βB)) + λ∂−Φ(∆),

u(Q+
B (β))

wB(Q+
B (βB))

+ λ∂+Φ(∆)
]
 , (22)

where ∆ = tA − tB = T
A,wA

(βA)− T
B,wB

(βB).

Proof. Let ∂(·) denote the super-gradient set of a concave function. Note that if F is left-and-right
differentiable and concave, then ∂F (x) = [∂+F (x), ∂−F (x)]. By concavity of Uj and convexity of
Φ, we must have that[

0
0

]
∈ ∂

∑
j∈{A,B}

Uj
(
r−1
πj

(
T−1

j,wj
(tj)
))
− λΦ(tA − tB)

=

[
∂UA

(
r−1
πA

(T−1
A,wA

(tA))
)

+ ∂tA{−λΦ(tA − tB)}
∂UA

(
r−1
πB

(T−1
B,wB

(tB))
)

+ ∂tB{−λΦ(tA − tB)}

]
=

[
∂UA

(
r−1
πA

(T−1
A,wA

(tA))
)
− λ∂Φ(t)

∣∣
t=tA−tB

∂UB
(
r−1
πB

(T−1
B,wB

(tB))
)

+ λ∂Φ(t)
∣∣
t=tA−tB

]

=

[
[∂+UA

(
r−1
πA

(T−1
A,wA

(tA))
)
− λ∂+Φ(t)

∣∣
t=tA−tB

, ∂−UA
(
r−1
πA

(T−1
A,wA

(tA))
)
− λ∂−Φ(t)

∣∣
t=tA−tB

]

[∂+UB
(
r−1
πB

(T−1
B,wB

(tB))
)

+ λ∂−Φ(t)
∣∣
t=tA−tB

, ∂−UB
(
r−1
πB

(T−1
A,wA

(tB))
)

+ λ∂+Φ(t)
∣∣
t=tA−tB

]

]

=


[
u(QA(T−1

A,wA
(tA)))

wA(QA(T−1
A,wA

(tA)))
− λ∂+Φ(t)

∣∣
t=tA−tB

,
u(Q+

A (T−1
A,wA

(tA)))

wA(Q+
A (T−1

A,wA
(tA)))

− λ∂−Φ(t)
∣∣
t=tA−tB

]
[
u(QB(T−1

B,wB
(tB)))

wB(QB(T−1
B,wB

(tB)))
+ λ∂−Φ(t)

∣∣
t=tA−tB

,
u(Q+

B (T−1
B,wB

(tB)))

wB(Q+
B (T−1

B,wB
(tB)))

+ λ∂+Φ(t)
∣∣
t=tA−tB

]


=


[
u(QA(βA))
wA(QA(βA)) − λ∂+Φ(t)

∣∣
t=tA−tB

,
u(Q+

A (βA))

wA(Q+
A (βB))

− λ∂−Φ(t)
∣∣
t=tA−tB

]
[
u(QB(β))
wB(QB(βB)) + λ∂−Φ(t)

∣∣
t=tA−tB

,
u(Q+

B (βB))

wB(Q+
B (βB))

+ λ∂+Φ(t)
∣∣
t=tA−tB

]
 .

Substituting ∆ = tA − tB = T
A,wA

(βA)− T
B,wB

(βB) concludes the proof.

In general, a closed form solution for the soft constrained problem may be difficult to state.
However, for the case of Φ(t) = |t|, we can state an explicit closed form solution:

13



Proposition E.3 (Special case of Φ(t) = |t|). Let Φ(t) = |t|, fix λ, and let [βλ,−A , βλ,+A ] denote the
interval of optimal selection rates for Equation (21) with regularization λ. Finally, suppose that for
any optimal MaxUtil selection rates (βMaxUtilA , βMaxUtilB ), one has T

A,wA
(βMaxUtilA ) < T

B,wB
(βMaxUtilB ).

Let [β−A , β
+
A ] denote the optimal loan rates in (21). Then there exists a λ∗ such that, for λ ≥ λ∗,

[β−A , β
+
A ] coincides with the hard constrained solution. Moreover, for λ < λ∗, any β ∈ [0, 1] satifies

β < βλ,−A if gA
u(QA(β))

wA(QA(β))
+ σ∗λ > 0

β > βλ,+A if gA
u(Q+

A (β))

wA(Q+
A (β))

+ σ∗λ < 0 .

Proof. Given a set of optimal constraint values (tA, tB) = (T
A,wA

(βA), T
B,wB

(βB)) for optimal selec-
tion rates (βA, βB) for a given parameter λ. By Proposition E.4 below, it follows that if tA = tB for
all optimal solutions, then for all λ′ ≥ λ, all optimal solutions must also have tA = tB.

Hence, it suffices to show that (a) there exists a finite λ such that all solutions must have
tA = tB, and (b) if tA 6= tB, then the display in (E.3) holds.

To prove (a) and (b), suppose tA 6= tB. By Proposition E.4 below and the fact that T
A,wA

(βMaxUtil) <
T

B,wB
(βMaxUtilB ), we have tA < tB. Moreover we can compute that

∂Φ(t) =


{1} t > 0

[−1, 1] t = 0

{−1} t < 0

it follows from the first order condition in Lemma E.2 that, if tA 6= tB

0 ∈ [
u(Q+

A (βA))

wA(Q+
A (βA))

+ λ,
u(QA(βA))

wA(QA(βB))
+ λ] , (23)

which immediately implies point (b). Point (a) follows from the above display by noting that, since
wj(x) > 0 and u(x) < ∞ for all x, where exists a λ sufficiently large such that (23) cannot hold
for any βA.

E.3 Qualitative Behavior of Soft Constraints

We now present a proposition which formalizes the intuition that soft constraints interpolate be-
tween MaxUtil and the general hard constraint (12) in Section C.2 (for arbitrary w, not just for
EqOpt). Because optimal policies may not be unique, we define the solution sets

P(λ) := {(τA, τB) : (τA, τB) solves (21) with parameter λ} ,

with the set P(∞) denoting the set of solutions to (12).
At a high level, we parameterize the soft constrained solution in terms of the value of the

constraint tA = 〈τA,wA ◦ πA〉 for A and the difference in constraint values ∆ = 〈τA,wA ◦ πA〉 −
〈τB,wB ◦ πB〉, where (τA, τB) ∈ P(λ). We show that tA interpolates between the value of the
constraint on A at λ = 0 and at λ = ∞, and that ∆ interpolates between the difference at λ = 0
(MaxUtil) and at ∆ = 0 at λ = ∞. To be rigorous, we note that the possible values for tA and
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∆ for each λ are actually contiguous intervals. Hence, to make the interpolation precise, we define
the following partial order on such intervals:

Definition E.1 (Interval order). Let S1,S2 be two intervals. We say that S1 ≺ S2 if max {x ∈
S1 } < min {x ∈ S2} and S1 � S2 if both max {x ∈ S1} ≤ max {x ∈ S2} and min{x ∈
S1} ≤ min {x ∈ S2}. We say that an interval-valued function S(λ) is non-decreasing (resp. non
increasing) in λ if S(λ) � S(λ′) (resp S(λ′) � S(λ′) for λ ≤ λ′).

In these terms, the interpolation of the soft constraints can be stated as follows:

Proposition E.4 (Soft constraints interpolate between MaxUtil and hard constrained solution).
Let Φ(t) be a convex, symmetric convex function with Φ(t) > 0 for t > 0. Then the sets

D(λ) := {∆ := 〈τA,wA ◦ πA〉 − 〈τB,wB ◦ πB〉 : (τA, τB) ∈ P(λ)}
TA(λ) := {tA := 〈τA,wA ◦ πA〉|∃τB : (τA, τB) ∈ P(λ)}

are closed intervals. Moreover,

1. In all cases, limλ→∞max{|∆| ∈ D(λ)} = 0.

2. If 0 ∈ D(λ), then there exists a MaxUtil solution satisfying (12). Thus, for all λ > 0,
P(λ) = P(∞).

3. If D(λ) ≺ {0}, then D(λ) and TA(λ) are non-decreasing on λ ∈ (0,∞], and vice versa if
D(λ) � {0}.

4. If D(λ) ≺ {0}, then {0} = D(∞) � D(λ) � {min : ∆ ∈ D(0)}, and TA(∞) � TA(λ) � {min :
∆ ∈ TA(λ)}, and vice versa if D(λ) � {0}.

E.3.1 Proof of Proposition E.4

Again, we parameterize all solutions to the soft-constrained problem as in correspondence with
solutions (tA, tB) to

min
(tA,tB)

gAUA(tA;wA) + gBUB(tB;wB) + λΦ(tA − tB) .

Letting ∆ := tB − tA, we can reparameterize the above as

min
(tA,∆)

gAUA(tA;wA) + gBUB(tA + ∆;wB)− λΦ(∆) .

Note then that D(λ) denotes the set of ∆ which are partial maximimizers of the above display. If
0 ∈ {D(λ)}, this implies that there exists a MaxUtil solution for which ∆ = 0, therefore, for all
λ > 0, all solutions will be MaxUtil solutions for which D(λ) = 0. Otherwise assume without loss
of generality that D(λ) < {0}.

First, the statement {0} = D(∞) � D(λ) � {min : ∆ ∈ D(0)}, and TA(∞) � TA(λ) � {min :
∆ ∈ TA(λ)}, and vice versa if D(λ) � {0} can be solved by on a case-by-case basis. The strategy
is to show that if any of these inequalities are violated, then the associated values of ∆ and tA are
not partial maximizers of the soft constraint objective. In particular, TA(λ) ⊂ [T−, T+] for some
appropriate T−, T+.

15



We now show that D(λ) and TA(λ) are non-increasing and non-decreasing, respectively. We
shall do so invoking the following technical lemma.

Lemma E.5. Let G1(t) be concave and let G2(t;λ) be concave in t. Let ∂G2(t;λ) denote the
super-gradient of G2, that is

∂G2(t;λ) := Conv({∂−G2(t;λ)} ∪ {∂−G2(t;λ)})

denotes the super-gradient set of the concave mapping t 7→ ∂G2(t;λ).
Then if λ 7→ ∂G2(t;λ) is non-increasing (resp. non-decreasing) in λ, the interval valued function

defined below is non-increasing (resp. non-decreasing) in λ

MAX(λ) := λ 7→ arg max
t∈[a,b]

G1(t) +G2(t;λ) .

For D(λ), one can write any partial maximizer ∆ as

max
∆≥0

G1(∆) +G2(∆;λ)

with G1(∆) = maxtA gAUA(tA;wA)+gBUB(tA +∆;wB) and G2(∆;λ) = λΦ(∆). Note that G1(∆) is
concave, being the partial maximization of a concave function, and ∂G2(∆;λ) = −t∂Φ(∆). Since
∂Φ(∆) � {0} for ∆ ≥ 0 (by convexity of φ) , we have that ∂G2(∆;λ) = −t∂Φ(∆) is non-increasing
in λ. Hence Lemma E.5 implies that interval valued function D(λ) is non-increasing.

To show that TA(λ) is non-decreasing, we have that any maximizer tA can be written as

max
tA∈[T−,T+]

G1(tA) +G2(tA;λ)

where G1(tA) = gAUA(tA;wA) and G2(tA;λ) = max∆≥0 gBUB(tA + ∆;wB) + λΦ(∆). By Danskin’s
theorem,

∂G2(tA;λ) = {∂UB(tA + ∆;wB) : ∆ ∈ arg maxG2(tA;λ)} .

Note that {∆ ∈ arg maxG2(tA;λ)} is non-increasing in λ for a fixed tA, since the contribution of
the regularizer increases. Since the sets ∂UB(tA + ∆;wB) are themselves non-increasing in ∆ by
concavity, we conclude that ∂G2(tA;λ) is non-decreasing in λ. Hence, Lemma E.5 implies that
TA(λ) is non-decreasing in λ.

Finally, to show that max{|∆| : ∆ ∈ D(λ)|} → 0, Note that the left and right derivatives of
gAUA(t;wA) and gBUB(t;wB) are upper bounded by M whereas, since Φ is strictly convex, we know
that for every ε > 0, min{|∂+Φ(∆)|, |∂−Φ(∆)|} > m(ε) for all ∆ : |∆| > ε. Hence, the first order
optimality conditions cannot be satisfied for |∆| > ε, and λ > M

m(ε) , so as λ→∞, |∆| → 0.

Proof of Lemma E.5. We prove the case where ∂G2(t;λ) is non-increasing. The first order condi-
tions requires that at an optimal t, one has

∂−G1(t) + ∂G2(t;λ)− ≥ 0 ≥ ∂+G1(t) + ∂G2(t;λ)+

where the super-gradients are amended to take into account boundary conditions. Suppose that
for the sake of contradiction that for λ′ > λ, MAX(λ′) � MAX(λ) fails. Then, there (a) exists a
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t ∈ MAX(λ) such that {t} ≺ MAX(λ′), or (b) t ∈ MAX(λ′) such that {t} � MAX(λ′). Note that
if {t} ≺ MAX(λ′), it must be the case that

∂+G1(t) + ∂G2(t;λ′)+ > 0 .

By assumption, ∂−G2(t;λ′)+ ≤ ∂0G2(t;λ)+ , which implies

∂+G1(t) + ∂G2(t;λ′)+ ≤ ∂+G1(t) + ∂+G2(t;λ)−0 ≤ 0 ,

a contradiction.

F Proofs of Main Results

We remark that the proofs in this section rely crucially on the characterizations of the optimal
fairness-constrained policies developed in Section C. We first define the notion of CDF domination,
which is referred to in a few of the proofs. Intuitively, it means that for any score, the fraction of
group B above this is higher than that for group A. It is realistic to assume this if we keep with
our convention that group A is the disadvantaged group relative to group B.

Definition F.1 (CDF domination). πA is said to be dominated by πB if ∀a ≥ 1,
∑

x>a πA <∑
x>a πB. We denote this as πA ≺ πB.

We remark that the ≺ notation in this section is entirely unrelated to the the partial order on
intervals from Section E.3. Frequently, we shall use the following lemma:

Lemma F.1. Suppose that πA ≺ πB. Then, for all β > 0, it holds that QA(β) ≤ QB(β) and
u(QA(β)) ≤ u(QA(β))

Proof. The fact that QA(β) ≤ QB(β) follows directly from the definition of monotonicty of u implies
that u(QA(β)) ≤ u(QB(β)).

F.1 Proof of Proposition 3.1

The MaxUtil policy for group j solves the optimization

max
τ j∈[0,1]C

Uj(τ j) = max
βj∈[0,1]

Uj(r−1
πj

(βj)) .

Computing left and right derivatives of this objective yields

∂+Uj(r−1
πj

(βj)) = u(Qj(β)), ∂−Uj(r−1
πj

(βj)) = u(Q+
j (β)) .

By concavity, solutions β∗ satisfy

β < β∗ if u(Qj(β)) > 0 ,

β > β∗ if u(Q+
j (β)) < 0 .

(24)

Therefore, we conclude that the MaxUtil policy loans only to scores x s.t. u(x) > 0, which implies
∆(x) > 0 for all scores loaned to. Therefore we must have that 0 ≤ ∆µMaxUtil. By definition
∆µMaxUtil ≤ ∆µ∗.
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F.2 Proof of Theorem 3.2

We begin with proving part (a), which gives conditions under which DemParity cases relative
improvement. Recall that β is the largest selection rate for which U(β) = U(βMaxUtilA ). First, we

derive a condition which bounds the selection rate β
DemParity
A from below. Fix an acceptance rate

β such that βMaxUtilA < β < min{βMaxUtilB , β}. By Theorem C.1, we have that DemParity selects to
group A with rate higher than β as long as

gA ≤ g1 :=
1

1− u(QA(β))
u(QB(β))

.

By (24) and the monotonicity of u, u(QA(β)) < 0 and u(QB(β)) > 0, so 0 < g1 < 1.
Next, we derive a condition which bounds the selection rate β

DemParity
A from above. First,

consider the case that βMaxUtilB < β, and fix β′ such that βMaxUtilB < β′ < β. Then DemParity selects
group A at a rate βA < β′ for any proportion gA. This follows from applying Theorem C.1 since
we have that u(Q+

A (β′)) < 0 and u(Q+
B (β′)) < 0 by (24) and the monotonicity of u.

Instead, in the case that βMaxUtilB > β, fix β′ such that β < β′ < βMaxUtilB . Then DemParity

selects group A at a rate less than β′ as long as

gA ≥ g0 :=
1

1− u(Q+
A (β′))

u(Q+
B (β′))

.

By (24) and the monotonicity of u, 0 < g0 < g1. Thus for gA ∈ [g0, g1], the DemParity selection
rate for group A is bounded between β and β′, and thus DemParity results in relative improvement.

Next, we prove part (b), which gives conditions under which EqOpt cases relative improvement.
First, we derive a condition which bounds the selection rate β

EqOpt
A from below. Fix an acceptance

rate β such that βMaxUtilA < β and βMaxUtilB > G(A→B)(β). By Theorem C.3, EqOpt selects group A
at a rate higher than β as long as

gA > g3 :=
1

1− 1
κ ·

ρ(QB(G(A→B)(β)))

u(QB(G(A→B)(β)))

u(QA(β))
ρ(QA(β))

.

By (24) and the monotonicity of u, u(QA(β)) < 0 and u(QB(G(A→B)(β))) > 0, so g3 > 0.
Next, we derive a condition which bounds the selection rate β

EqOpt
A from above. First, consider

the case that there exists β′ such that β′ < β and βMaxUtilB < G(A→B)(β′) . Then EqOpt selects
group A at a rate less than this β′ for any gA. This follows from Theorem C.3 since we have that
u(Q+

A (β′)) < 0 and u(Q+
B (G(A→B)(β′))) < 0 by (24) and the monotonicity of u.

In the other case, fix β′ such that β < β′ < β and βMaxUtilB > G(A→B)(β′). By Theorem C.3,
EqOpt selects group A at a rate lower than β′ as long as

gA > g2 :=
1

1− 1
κ ·

ρ(Q+
B (G(A→B)(β′)))

u(Q+
B (G(A→B)(β′)))

u(Q+
A (β′))

ρ(Q+
A (β′))

.

By (24) and the monotonicity of u, 0 < g2 < g3. Thus for gA ∈ [g2, g3], the EqOpt selection rate
for group A is bounded between β and β′, and thus EqOpt results in relative improvement.
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F.3 Proof of Theorem 3.3

Recall our assumption that β > βMaxUtilA and βMaxUtilB > β. As argued in the above proof of
Theorem 3.2, by (24) and the monotonicity of u, u(QA(β)) < 0 and u(QB(β)) > 0. Applying
Theorem C.1, DemParity selects at a higher rate than β for any population proportion gA ≤ g0,

where g0 = 1/(1 − u(QA(β))
u(QB(β))) ∈ (0, 1). In particular, if β = β0, which we defined as the harm

threshold (i.e. ∆µA(r−1
πA

(β0)) = 0 and ∆µA is decreasing at β0), then by the concavity of ∆µA, we

have that ∆µA(r−1
πA

(β
DemParity
A )) < 0, that is, DemParity causes active harm.

F.4 Proof of Theorem 3.4

By Theorem C.3, EqOpt selects at a higher rate than β for any population proportion gA ≤ g0,

where g0 = 1/(1 − 1
κ ·

ρ(QB(G(A→B)(β)))

u(QB(G(A→B)(β)))

u(QA(β))
ρ(QA(β)) ). Using our assumptions βMaxUtilB > G(A→B)(β) and

β > βMaxUtilA , we have that u(QB(G(A→B)(β))) > 0 and u(QA(β)) < 0, by (24) and the monotonicity
of u. This verifies that g0 ∈ (0, 1). In particular, if β = β0, then by the concavity of ∆µA, we have
that ∆µA(r−1

πA
(β

EqOpt
A )) < 0, that is, EqOpt causes active harm.

F.5 Proof of Theorem 3.5

Applying Theorem C.1, we have

−1− gA
gA

u(QA(β)) < u(QB(β)) =⇒ βDemParity > β .

Applying Theorem C.3, we have:

u(QB(G(A→B)(β))) · 〈ρ,πB〉
〈ρ,πA〉

·
ρ(Q+

A (β))

ρ(Q+
B (G(A→B)(β)))

< −1− gA
gA

u(Q+
A (β)) =⇒ βEqOpt < β .

By Theorems 3.3 and 3.4, choosing gA < g2 := 1/(1 − u(QA(β))
u(QB(β))) and gA > g1 := 1/(1 − 1

κ ·
ρ(Q+

B (G(A→B)(β)))

u(Q+
B (G(A→B)(β)))

u(Q+
A (β))

ρ(Q+
A (β))

) satisfies the above.

It remains to check that g1 < g2. Since we assumed β >
∑

x>µA
πA, we may apply Lemma F.2

to verify this.
Thus we indeed have sufficient conditions for βDemParity > β > βEqOpt. In particular, if β =

β0, then by the concavity of ∆µA, we have that ∆µA(r−1
πA

(β
EqOpt
A )) > 0, that is, EqOpt causes

improvement, and ∆µA(r−1
πA

(β
DemParity
A )) < 0, that is, DemParity causes active harm.

Lastly, because βDemParity > βEqOpt, it is always true that ∆µA(r−1
πA

(β
DemParity
A )) > 0 =⇒

∆µA(r−1
πA

(β
EqOpt
A )) > 0, using the concavity of the outcome curve.

Lemma F.2 (Comparison of DemParity and EqOpt selection rates). Fix β ∈ [0, 1]. Suppose πA,πB

are identical up to a translation with µA < µB. Also assume ρ(x) is affine in x. Denote κ = 〈ρ,πB〉
〈ρ,πA〉 .

Then,

β >
∑
x>µA

πA

implies u(QB(G(A→B)(β))) · κ · ρ(QA(β))

ρ(QB(G(A→B)(β)))
< u(QB(β)).
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Proof. If we have β >
∑

x>µA
πA, by lemma F.3, we must also have µB

µA
< QB(β0)

QA(β0) . This implies

κ =
∑
x πB(x)ρ(x)∑
x πA(x)ρ(x) <

ρ(QB(β))
ρ(QA(β0)) by linearity of expectation and linearity of ρ. Therefore,

κ · ρ(QA(β))

ρ(QB(β0))
< 1 (25)

Further, using G(A→B)(β) > β from lemma F.3 and the fact that u(x)
ρ(x) is increasing in x, we

have u(QB(G(A→B)(β)))

ρ(QB(G(A→B)(β)))
< u(QB(β))

ρ(QB(β)) . Therefore, u(QB(G(A→B)(β))) · κ · ρ(QA(β0))

ρ(QB(G(A→B)(β0)))
< κ · u(QB(β))

ρ(QB(β)) ·
ρ(QA(β)) < u(QB(β)) where the last inequality follows from (25).

We use the following technical lemma in the proof of the above lemma.

Lemma F.3. If πA,πB that are identical up to a translation with µA < µB, then

G(β) > β ∀ β , (26)

β >
∑
x>µ

πA =⇒ µB

µA

<
QB(β)

QA(β)
. (27)

Proof. For (26), observe that TPRA = ρ(µA) < TPRB = ρ(µB). For any β, we can write QB(β) =
µB + c and QA(β) = µA + c for some c, since πA,πB that are identical up to translation by
µA − µB. Thus, by computation, we can see that for Q(β) < µ, ∂+G

(A→B)(β) > 1 and for
Q(β) < µ, ∂+G

(A→B)(β) < 1. Since G(A→B) is monotonically increasing on [0, 1], we must have
G(A→B)(β) > β for every β ∈ [0, 1].

For (27), we have β >
∑

x>µ πA, we can again write QB(β) = µB − c and QA(β) = µA − c, for

some c > 0. Then it is clear than we have µB
µA

< QB(β)
QA(β) .

F.6 Proof of Theorem 3.6

Proof. βMaxUtilA < βMaxUtilB implies gA · u(QA(βMaxUtilA )) + gB · u(QB(βMaxUtilA )) > 0, which by Theo-

rem C.1, implies βMaxUtilA < β
DemParity
A .

TPRA(τ MaxUtil) > TPRB(τ MaxUtil) implies G(A→B)(βMaxUtilA ) > βMaxUtilB and so

u(QB(G(A→B)(βMaxUtilA ))) < 0. Therefore by Theorem C.3, we have that βMaxUtilA > β
EqOpt
A .

We now give a very simple example of πA ≺ πB where Theorem 3.5 holds. The construction
of the example exemplifies the more general idea of using large in-group inequality in group A to
skew the true positive rate at MaxUtil, making TPRA(τ MaxUtil) > TPRB(τ MaxUtil).

Example F.1 (EqOpt causes relative harm). Let C = 6, and let the utility function be such that
u(4) = 0. Suppose πA(5) = 1− 2ε,πA(1) = 2ε and πB(5) = 1− ε,πB(3) = ε.

We can easily check that πA ≺ πB. However, for any ε ∈ (0, 1/4), we have that TPRB(τ MaxUtil) =
5(1−ε)

5(1−ε)+3ε < TPRA(τ MaxUtil) = 5(1−2ε)
5(1−2ε)+2ε .
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F.7 Proof of Proposition 4.1

Denote the upper quantile function under π̂ as Q̂. Since π̂ ≺ π, we have Q̂(β) ≤ Q(β). The
conclusion follows for MaxUtil and DemParity from Theorem C.1 by the monotonicity of u.

If we have that TPRA(τ ) > T̂PRA(τ ) ∀ τ , that is, the true TPR dominates estimated TPR,
the conclusion for EqOpt follows from Theorem C.3, by the same argument as in the proof of
Theorem 3.6.

F.8 Proof of Proposition 4.2

By Proposition B.6, β∗ = argmaxβ ∆µA(β) exists and is unique. β0 = max{β ∈ [βMaxUtilA , 1] :
U(βMaxUtilA ) − UA(β) ≤ δ} which exists and is unique, by the continuity of ∆µA and Proposition
B.6.
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