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Abstract
Two popular examples of first-order optimization
methods over linear spaces are coordinate descent
and matching pursuit algorithms, with their ran-
domized variants. While the former targets the
optimization by moving along coordinates, the
latter considers a generalized notion of directions.
Exploiting the connection between the two al-
gorithms, we present a unified analysis of both,
providing affine invariant sublinear O(1/t) rates
on smooth objectives and linear convergence on
strongly convex objectives. As a byproduct of
our affine invariant analysis of matching pursuit,
our rates for steepest coordinate descent are the
tightest known. Furthermore, we show the first ac-
celerated convergence rate O(1/t2) for matching
pursuit and steepest coordinate descent on convex
objectives.

1. Introduction
In this paper we address the following convex optimization
problem:

min
x∈lin(A)

f(x) , (1)

where f is a convex function. The minimization is over a
linear space, which is parametrized as the set of linear com-
binations of elements from a given set A. These elements
of A are called atoms. In the most general setting, A is
assumed to be a compact but not necessarily finite subset of
a Hilbert space, i.e., a linear space equipped with an inner
product, complete in the corresponding norm. Problems
of the form (1) are tackled by a multitude of first-order
optimization methods and are of paramount interest in the
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machine learning community (Seber & Lee, 2012; Meir &
Rätsch, 2003; Schölkopf & Smola, 2001; Menard, 2018;
Tibshirani, 2015).

Traditionally, matching pursuit (MP) algorithms were in-
troduced to solve the inverse problem of representing a
measured signal by a sparse combination of atoms from an
over-complete basis (Mallat & Zhang, 1993). In other words,
the solution of the optimization problem (1) is formed as
a linear combination of few of the elements of the atom
set A – i.e. a sparse approximation. At each iteration, the
MP algorithm picks a direction from A according to the
gradient information, and takes a step. This procedure is
not limited to atoms of fixed dimension. Indeed, lin(A) can
be an arbitrary linear subspace of the ambient space and
we are interested in finding the minimizer of f only on this
domain, see e.g. (Gillis & Luce, 2018). Conceptually, MP
stands in the middle between coordinate descent (CD) and
gradient descent, as the algorithm is allowed to descend the
function along a prescribed set of directions which does not
necessarily correspond to coordinates. This is particularly
important for machine learning applications as it translates
to a sparse representation of the iterates in terms of the
elements of A while maintaining the convergence guaran-
tees (Lacoste-Julien et al., 2013; Locatello et al., 2017b).

The first analysis of the MP algorithm in the optimization
sense to solve the template (1) without incoherence assump-
tions was done by (Locatello et al., 2017a). To prove con-
vergence, they exploit the connection between MP and the
Frank-Wolfe (FW) algorithm (Frank & Wolfe, 1956), a
popular projection-free algorithm for the constrained op-
timization case. On the other hand, steepest coordinate
descent is a special case of MP (when the atom set is the
L1 ball). This is particularly important as the CD rates can
be deduced from the MP rates. Furthermore, the literature
on coordinate descent is currently much richer than the one
on MP. Therefore, understanding the connection of the two
classes of CD and MP-type algorithms is a main goal of this
paper, and results in benefits for both sides of the spectrum.
In particular, the contributions of this paper are:

• We present an affine invariant convergence analysis for
Matching Pursuit algorithms solving (1). Our approach
is tightly related to the analysis of coordinate descent
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and relies on the properties of the atomic norm in order
to generalize from coordinates to atoms.

• Using our analysis, we present the tightest known lin-
ear and sublinear convergence rates for steepest coor-
dinate descent, improving the constants in the rates
of (Stich et al., 2017; Nutini et al., 2015).

• We discuss the convergence guarantees of Random
Pursuit (RP) methods which we analyze through the
lens of MP. In particular, we present a unified analysis
of both MP and RP which allows us to carefully trade
off the use of (approximate) steepest directions over
random ones.

• We prove the first known accelerated rate for MP, as
well as for steepest coordinate descent. As a conse-
quence, we also demonstrate an improvement upon the
accelerated random CD rate by performing a steepest
coordinate update instead.

Related Work: Matching Pursuit was introduced in the
context of sparse recovery (Mallat & Zhang, 1993), and later,
fully corrective variants similar to the one used in Frank-
Wolfe (Holloway, 1974; Lacoste-Julien & Jaggi, 2015; Ker-
dreux et al., 2018) were introduced under the name of or-
thogonal matching pursuit (Chen et al., 1989; Tropp, 2004).
The classical literature for MP-type methods is typically
focused on recovery guarantees for sparse signals and the
convergence depends on very strong assumptions (from an
optimization perspective), such as incoherence or restricted
isometry properties of the atom set (Tropp, 2004; Davenport
& Wakin, 2010). Convergence rates with incoherent atom
sets are predented in (Gribonval & Vandergheynst, 2006;
Temlyakov, 2013; 2014; Nguyen & Petrova, 2014). Also
boosting can be seen as a generalized coordinate descent
method over a hypothesis class (Rätsch et al., 2001; Meir &
Rätsch, 2003).

The idea of following a prescribed set of directions also
appears in the field of derivative free methods. For instance,
the early method of Pattern-Search (Hooke & Jeeves, 1961;
Dennis & Torczon, 1991; Torczon, 1997) explores the search
space by probing function values along predescribed direc-
tions (“patterns” or atoms). This method is in some sense
orthogonal to the approach here: by probing the function
values along all atoms, one aims to find a direction along
which the function decreases (and the absolute value of
the scalar product with the gradient is potentially small).
MP does not access the function value, but computes the
gradient and then picks the atom with the smallest scalar
product with the gradient, and then moves to a point where
the function value decreases.

The description of random pursuit appears already in the
work of Mutseniyeks & Rastrigin (1964) and was first ana-
lyzed by Karmanov (1974b;a); Zieliński & Neumann (1983).

More recently random pursuit was revisited in (Stich et al.,
2013; Stich, 2014).

Acceleration of first-order methods was first developed
in (Nesterov, 1983). An accelerated CD method was de-
scribed in (Nesterov, 2012). The method was extended
in (Lee & Sidford, 2013) for non-uniform sampling, and
later in (Stich, 2014) for optimization along arbitrary ran-
dom directions. Recently, optimal rates have been obtained
for accelerated CD (Nesterov & Stich, 2017; Allen-Zhu
et al., 2016). A close setup is the accelerated algorithm
presented in (El Halabi et al., 2017), which minimizes a
composite problem of a convex function on Rn with a non-
smooth regularizer which acts as prior for the structure of
the space. Contrary to our setting, the approach is restricted
to the atoms being linearly independent. Simultaneously at
ICML 2018, Lu et al. (2018) propose an accelerated rate for
the semi-greedy coordinate descent which is a special case
of our accelerated MP algorithm.

Notation: Given a non-empty subset A of some Hilbert
space, let conv(A) be the convex hull of A, and let lin(A)
denote its linear span. Given a closed set A, we call its
diameter diam(A) = maxz1,z2∈A ‖z1 − z2‖ and its radius
radius(A) = maxz∈A ‖z‖. ‖x‖A := inf{c > 0: x ∈
c · conv(A)} is the atomic norm of x over a set A (also
known as the gauge function of conv(A)). We call a subset
A of a Hilbert space symmetric if it is closed under negation.

2. Revisiting Matching Pursuit
Let H be a Hilbert space with associated inner product
〈x,y〉, ∀x,y ∈ H. The inner product induces the norm
‖x‖2 := 〈x,x〉, ∀x ∈ H. Let A ⊂ H be a compact
and symmetric set (the “set of atoms” or dictionary) and
let f : H→R be convex and L-smooth (L-Lipschitz gra-
dient in the finite dimensional case). If H is an infinite-
dimensional Hilbert space, then f is assumed to be Fréchet
differentiable.

Algorithm 1 Generalized Matching Pursuit
1: init x0 ∈ lin(A)
2: for t = 0 . . . T
3: Find zt := (Approx-)LMOA(∇f(xt))
4: xt+1 := xt − 〈∇f(xt),zt〉

L‖zt‖2 zt
5: end for

In each iteration, MP queries a linear minimization oracle
(LMO) to find the steepest descent direction among the
set A:

LMOA(y) := argmin
z∈A

〈y, z〉 , (2)

for a given query vector y ∈ H. This key subroutine is
shared with the Frank-Wolfe method (Frank & Wolfe, 1956;
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Jaggi, 2013) as well as steepest coordinate descent. Indeed,
finding the steepest coordinate is equivalent to minimizing
Equation 2. The MP update step minimizes a quadratic
upper bound gxt

(x) = f(xt)+ 〈∇f(xt),x−xt〉+ L
2 ‖x−

xt‖2 of f at xt on the direction z returned by the LMO,
where L is an upper bound on the smoothness constant of f
with respect to the Hilbert norm ‖·‖. For f(x) = 1

2‖y−x‖
2,

y ∈ H, Algorithm 1 recovers the classical MP algorithm
(Mallat & Zhang, 1993).

The LMO. Greedy and projection-free optimization al-
gorithms such as Frank-Wolfe and Matching Pursuit rely
on the property that the result of the LMO is a descent di-
rection, which is translated to an alignment assumption of
the search direction returned by the LMO (i.e., zt in Al-
gorithm 1) and the gradient of the objective at the current
iteration (see (Locatello et al., 2017b), (Pena & Rodriguez,
2015, third premise) and (Torczon, 1997, Lemma 12 and
proof of Proposition 6.4)). Specifically, for Algorithm 1,
a symmetric atom set A ensures that 〈∇f(xt), zt〉 < 0,
as long as xt is not optimal yet. Indeed, we then have
that minz∈A〈∇f(xt), z〉 = minz∈conv(A)〈∇f(xt), z〉 < 0
where the inequality comes from symmetry as z = 0 ∈
conv(A). Note that an alternative sufficient condition in-
stead of symmetry is thatA is the atomic ball of a norm (the
so called atomic norm (Chandrasekaran et al., 2012)).

Steepest Coordinate Descent. In the case when A is
the L1-ball, the MP algorithm becomes identical to steep-
est coordinate descent (Nesterov, 2012). Indeed, due to
symmetry of A, one can rewrite the LMO problem as
it = argmaxi |∇if(x)| , where ∇i is the i-th component
of the gradient, i.e. 〈∇f(x), ei〉 with ei being one of the
natural vectors. Then the update step can be written as:

xt+1 := xt+1 −
1

L
∇itf(xt)ei .

Note that by assuming a symmetric atom set and solving the
LMO problem as defined in (2) the steepest atom is aligned
with the negative gradient, therefore the positive stepsize
− 〈∇f(xt),zt〉

L decreases the objective.

Approximate linear oracles. Exactly solving the LMO
defined in (2) can be costly in practice, both in the MP and
the CD setting, as A can contain (infinitely) many atoms.
On the other hand, approximate versions can be much more
efficient. Algorithm 1 allows for an approximate LMO.
Different notions of such a LMO were explored for MP
and OMP in (Mallat & Zhang, 1993) and (Tropp, 2004), re-
spectively, for the Frank-Wolfe framework in (Jaggi, 2013;
Lacoste-Julien et al., 2013) and for coordinate descent (Stich
et al., 2017). For given quality parameter δ ∈ (0, 1] and
given direction d ∈ H, the approximate LMO for Algo-
rithm 1 returns a vector z̃ ∈ A such that:

〈d, z̃〉 ≤ δ〈d, z〉 , (3)

relative to z = LMOA(d) being an exact solution.

2.1. Affine Invariant Algorithm

In this section, we will present our new affine invariant
algorithm for the optimization problem (1). Hence, we
first explain in Definition 1 that what does it mean for an
optimization algorithm to be affine invariant:
Definition 1. An optimization method is called affine in-
variant if it is invariant under affine transformations of the
input problem: If one chooses any re-parameterization
of the domain Q by a surjective linear or affine map
M : Q̂ → Q, then the “old” and “new” optimization prob-
lems minx∈Q f(x) and minx̂∈Q̂ f̂(x̂) for f̂(x̂) := f(Mx̂)
look the same to the algorithm.

In other words, a step of the algorithm in the original opti-
mization problem is the same as a step in the transformed
problem. We will further demonstrate in the appendix that
the proposed Algorithm 2 which we discuss later in detail
is indeed an affine invariant algorithm. In order to obtain
an affine invariant algorithm, we define an affine invariant
notion of smoothness using the atomic norm. This notion is
inspired by the curvature constant employed in FW and MP,
see (Jaggi, 2013; Locatello et al., 2017a). We define:

LA := sup
x,y∈lin(A)
y=x+γz

‖z‖A=1,γ∈R>0

2

γ2
[
f(y)− f(x)− 〈∇f(x),y− x〉

]
.

(4)
This definition combines the complexity of the function f
as well as the set A into a single number, and is affine
invariant under transformations of our input problem (1).
It yields the same upper bound to the function as the one
given by the traditional smoothness definition, that is LA-
smoothness with respect to the atomic norm ‖·‖A, when x,y
are constrained to the set lin(A):

f(y) ≤ f(x) + 〈∇f(x),y − x〉+ LA
2
‖y − x‖A ,

For example, if A is the L1-ball we obtain f(x + γz) ≤
f(x) + γ〈∇f(x), z〉 + γ2 L1

2 where ‖z‖1 = 1. Based on
the affine-invariant notion of smoothness defined above, we
now present pseudocode of our affine-invariant method in
Algorithm 2.

Algorithm 2 Affine Invariant Generalized Matching Pursuit
1: init x0 ∈ lin(A)
2: for t = 0 . . . T
3: Find zt := (Approx-)LMOA(∇f(xt))
4: xt+1 = xt − 〈∇f(xt),zt〉

LA
zt

5: end for

The above algorithm looks very similar to the generalized
MP (Algorithm 1), however, the main difference is that
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while the original algorithm is not affine invariant over the
domainQ = lin(A) (Def 1), the new Algorithm 2 is so, due
to using the generalized smoothness constant LA.

Note. For the purpose of the analysis, we call x? the min-
imizer of problem (1). If the optimum is not unique, we
pick the one with largest atomic norm as it represent the
worst case for the analysis. All the proofs are deferred to
the appendix.

2.1.1. NEW AFFINE INVARIANT SUBLINEAR RATE

In this section, we will provide the theoretical justification
of our proposed approach for smooth functions (sublinear
rate) and its theoretical comparison with existing previous
analysis for special cases. We define the level set radius
measured with the atomic norm as:

R2
A := max

x∈lin(A)
f(x)≤f(x0)

‖x− x?‖2A . (5)

When we measure this radius with the ‖ · ‖2 we call it R2
2,

and when we measure it with ‖ · ‖1 we call it R2
1. Note that

measuring smoothness using the atomic norm guarantees
that for the Lipschitz constant LA the following holds:

Lemma 2. Assume f is L-smooth w.r.t. a given norm ‖ · ‖,
over lin(A) where A is symmetric. Then,

LA ≤ L radius‖·‖(A)2 . (6)

For example, in the coordinate descent setting we mea-
sure smoothness with the atomic norm being the L1-norm.
Lemma 2 implies that LA ≤ L1 ≤ L2 where L2 is the
smoothness constant measured with the L2-norm. Note that
the radius of the L1-ball measured with ‖·‖1 is 1. Therefore,
we put ourselves in a more general setting than Algorithm 1,
showing convergence of the affine invariant Algorithm 2

We are now ready to prove the convergence rate of Algo-
rithm 2 for smooth functions.

Theorem 3. Let A ⊂ H be a closed and bounded set. We
assume that ‖ · ‖A is a norm over lin(A). Let f be convex
and LA-smooth w.r.t. the norm ‖ · ‖A over lin(A), and let
RA be the radius of the level set of x0 measured with the
atomic norm. Then, Algorithm 2 converges for t ≥ 0 as

f(xt+1)− f(x?) ≤
2LAR

2
A

δ2(t+ 2)
,

where δ ∈ (0, 1] is the relative accuracy parameter of the
employed approximate LMO (3).

Discussion. The proof of Theorem 3 extends the conver-
gence analysis of steepest coordinate descent. As opposed
to the classical proof in (Nesterov, 2012), the atoms are here

not orthogonal to each other, do not have the same norm and
do not correspond to the coordinates of the ambient space.
Indeed, lin(A) could be a subset of the ambient space and
the only assumptions on A are that is closed, bounded and
‖ · ‖A is a norm over lin(A). We do not make any inco-
herence assumption. The key element of our proof is the
definition of smoothness using the atomic norm. Further-
more, we use the properties of the atomic norm to obtain a
proof which shares the spirit of the Nesterov’s one without
having to rely on strong assumptions on A.

Relation to Previous MP Sublinear Rate. The sublin-
ear convergence rate presented in Theorem 3 is fundamen-
tally different in spirit from the one proved in (Locatello
et al., 2017a). Indeed, their convergence analysis builds on
top of the proof technique used for Frank-Wolfe in (Jaggi,
2013). They introduce a dependency from the atomic norm
of the iterates as a way to constrain the part of the space
in which the optimization is taking place which artificially
induce a notion of duality gap. They do so by defining
ρ := max {‖x?‖A, ‖x0‖A . . . , ‖xT ‖A} < ∞. (Locatello
et al., 2017a) also used an affine invariant notion of smooth-
ness, thus obtaining an affine invariant rate. On the other
hand, their notion of smoothness depends explicitly on ρ.
While this constant can be further upper bounded with the
level set radius, it is not known a priori, which makes the
estimation of the smoothness constant problematic as it is
needed in the algorithm and the proof technique more in-
volved. We propose a much more elegant solution, which
uses a different affine invariant definition of smoothness
which explicitly depend on the atomic norm. Furthermore,
we managed to get rid of the dependency on the sequence
of the iterates by using only properties of the atomic norm
without any additional assumption (finiteness of ρ).

Relation to Steepest Coordinate Descent. From our
analysis, we can readily recover existing rates for coordinate
descent. Indeed, if A is the L1-ball in an n dimensional
space, the rate of Theorem 3 with exact oracle can be written
as:

f(xt+1)− f(x?) ≤
2L1R

2
1

t+ 2
≤ 2L2R

2
1

t+ 2
≤ 2L2nR

2
2

t+ 2
,

where the first inequality is our rate, the second inequality
is the rate of (Stich et al., 2017) and the last inequality is
the rate given in (Nesterov, 2012). Therefore, by measuring
smoothness with the atomic norm, we have shown a tighter
dependency on the dimensionality of the space. Indeed,
the atomic norm gives the tightest norm to measure the
product between the smoothness of the function and the
level set radius among the known rates. Therefore, our rate
for steepest coordinate descent is the tightest known.
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Coordinate Descent and Affine Transformations. But
what does it mean to have an affine invariant rate for coor-
dinate descent? By definition, it means that if one applies
an affine transformation to the L1-ball, the coordinate de-
scent algorithm in the natural basis and on the transformed
domain Q̂ are equivalent. Note that in the transformed
problem, the coordinates do not corresponds to the natural
coordinates anymore. Indeed, in the transformed domain the
coordinates are êi = M−1ei where M−1 is the inverse of
the affine map M : Q̂→ Q. If one would instead perform
coordinate descent in the transformed space using the natu-
ral coordinates, one would obtain not only different atoms
but also a different iterate sequence. In other words, while
Matching Pursuit is fully affine invariant, the definition of
CD is not, as the choice of the coordinates is not part of the
definition of the optimization problem. The two algorithms
do coincide for one particular choice of basis, the canonical
coordinate basis for A.

2.1.2. SUBLINEAR RATE OF RANDOM PURSUIT

There is a significant literature on optimization methods
which do not require full gradient information. A notable
example is random coordinate descent, where only a ran-
dom component of the gradient is known. As long as the
direction that is selected by the LMO is not orthogonal to
the gradient we have convergence guarantees due to the
inexact oracle definition. We now abstract from the random
coordinate descent setting and analyze a randomized variant
of matching pursuit, the random pursuit algorithm, in which
the atom z is randomly sampled from a distribution over A,
rather than picked by a linear minimization oracle. This ap-
proach is particularly interesting, as it is deeply connected to
the random pursuit algorithm analyzed in (Stich et al., 2013).
For now we assume that we can compute the projection of
the gradient onto a single atom 〈∇f, z〉 efficiently. In order
to present a general recipe for any atom set, we exploit the
notion of inexact oracle and define the inexactness of the
expectation of the sampled direction for a given sampling
distribution:

δ̂2 := min
d∈lin(A)

Ez∈A〈d, z〉2

‖d‖2A∗
. (7)

This constant was already used in (Stich, 2014) to measure
the convergence of random pursuit (β2 in his notation). Note
that for uniform sampling from the corners of the L1-ball,
we have δ̂2 = 1

n . Indeed, Ez∈A〈d, z〉2 = 1
n for any d. This

definition holds for any sampling scheme as long as δ̂2 6= 0.
Note that by using this quantity we do not get the tightest
possible rate, as at each iteration, we consider how much
worse a random update could be compared to the optimal
(steepest) update.

We are now ready to present the sublinear convergence rate
of random matching pursuit.

Theorem 4. Let A ⊂ H be a closed and bounded set. We
assume that ‖ · ‖A is a norm. Let f be convex and LA-
smooth w.r.t. the norm ‖ · ‖A over lin(A) and let RA be the
radius of the level set of x0 measured with the atomic norm.
Then, Algorithm 2 converges for t ≥ 0 as

Ez

[
f(xt+1)

]
− f(x?) ≤ 2LAR

2
A

δ̂2(t+ 2)
,

when the LMO is replaced with random sampling of z from
a distribution over A.

Gradient-Free Variant. If is possible to obtain a fully
gradient-free optimization scheme. In addition to having
replaced the LMO in Algorithm 1 by the random sampling
as above, as can additionally also replace the line search
step on the quadratic upper bound given by smoothness,
with instead an approximate line search on f . As long as the
update scheme guarantees as much decrease as the above
algorithm, the convergence rate of Theorem 4 holds.

Discussion. This approach is very general, as it allows to
guarantee convergence for any sampling scheme and any
set A provided that δ̂2 6= 0. In the coordinate descent case
we have that for the worst possible gradient for random has
δ̂2 = 1

n . Therefore, the speed-up of steepest can be up
to a factor equal to the number of dimensions in the best
case. Similarly, if z is sampled from a spherical distribution,
δ̂2 = 1

n (Stich et al., 2013). More examples of computation
of δ̂2 can be found in (Stich, 2014, Section 4.2). Last but not
least, note that δ̂2 is affine invariant as long as the sampling
distribution over the atoms is preserved.

2.1.3. STRONG CONVEXITY AND AFFINE INVARIANT
LINEAR RATES

Similar to the affine invariant notion of smoothness, we here
define the affine invariant notion of strong convexity.

µA := inf
x,y∈lin(A)

x 6=y

2

‖y − x‖2A
D(y,x) .

where D(y,x) := f(y)− f(x)− 〈∇f(x),y− x〉We can
now show the linear convergence rate of both the matching
pursuit algorithm and its random pursuit variant.
Theorem 5. Let A ⊂ H be a closed and bounded set. We
assume that ‖ · ‖A is a norm. Let f be µA-strongly convex
and LA-smooth w.r.t. the norm ‖ · ‖A, both over lin(A).
Then, Algorithm 2 converges for t ≥ 0 as

εt+1 ≤
(
1− δ2 µA

LA

)
εt .

where εt := f(xt)−f(x?). If the LMO direction is sampled
randomly from A, Algorithm 2 converges for t ≥ 0 as

Ez [εt+1|xt] ≤
(
1− δ̂2 µA

LA

)
εt .
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Relation to Previous MP Linear Rate. Again, the proof
of Theorem 5 extends the convergence analysis of steepest
coordinate descent using solely the affine invariant definition
of strong convexity and the properties of the atomic norm.
Note that again we define the strong convexity constant with-
out relying on ρ = max {‖x?‖A, ‖x0‖A . . . , ‖xT ‖A} <
∞ as in (Locatello et al., 2017a). We now show that our
choice of the strong convexity parameter is the tightest w.r.t.
any choice of the norm and that we can precisely recover
the non affine invariant rate of (Locatello et al., 2017a). Let
us recall their notion of minimal directional width, which
is the crucial constant to measure the geometry of the atom
set for a fixed norm:

mDW(A) := min
d∈lin(A)

d6=0

max
z∈A

〈 d

‖d‖
, z
〉
.

Note that for CD we have that mDW(A) = 1√
n

. Now,
we relate the affine invariant notion of strong convexity
with the minimal directional width and the strong convexity
w.r.t. any chosen norm. This is important, as we want to
make sure to perfectly recover the convergence rate given
in (Locatello et al., 2017a).

Lemma 6. Assume f is µ-strongly convex w.r.t. a given
norm ‖ · ‖ over lin(A) and A is symmetric. Then:

µA ≥ mDW(A)2 µ .

We then recover their non-affine-invariant rate as:

εt+1 ≤
(
1− δ2 µmDW(A)2

L radius‖·‖(A)2
)
εt .

Relation to Coordinate Descent. When we fix A as the
L1-ball and use an exact oracle our rate becomes:

εt+1 ≤
(
1− µ1

L1

)
εt ≤

(
1− µ1

L

)
εt ≤

(
1− µ

nL

)
εt ,

where the first is our rate, the second is the rate of steepest
CD (Nutini et al., 2015) and the last is the one for random-
ized CD (Nesterov, 2012) (n is the dimension of the ambient
space). Therefore, our linear rate for coordinate descent is
the tightest known.

3. Accelerating Generalized Matching Pursuit
As we established in the previous sections, matching pursuit
can be considered a generalized greedy coordinate descent
where the allowed directions do not need to form an orthog-
onal basis. This insight allows us to generalize the analysis
of accelerated coordinate descent methods and to accelerate
matching pursuit (Lee & Sidford, 2013; Nesterov & Stich,
2017). However it is not clear at the outset how to even
accelerate greedy coordinate descent, let alone the matching

pursuit method. Recently Song et al. (2017) proposed an
accelerated greedy coordinate descent method by using the
linear coupling framework of (Allen-Zhu & Orecchia, 2014).
However the updates they perform at each iteration are not
guaranteed to be sparse which is critical for our application.
We instead extend the acceleration technique in (Stich et al.,
2013) which in turn is based on (Lee & Sidford, 2013).
They allow the updates to the two sequences of iterates x
and v to be chosen from any distribution. If this distribu-
tion is chosen to be over coordinate directions, we get the
familiar accelerated coordinate descent, and if we instead
chose the distribution to be over the set of atoms, we would
get an accelerated random pursuit algorithm. To obtain an
accelerated matching pursuit algorithm, we need to addi-
tionally decouple the updates for x and v and allow them
to be chosen from different distributions. We will update x
using the greedy coordinate update (or the matching pursuit
update), and use a random coordinate (or atom) direction to
update v.

The possibility of decoupling the updates was noted in
(Stich, 2014, Corollary 6.4) though its implications for accel-
erating greedy coordinate descent or matching pursuit were
not explored. From here on out, we shall assume that the
linear space spanned by the atoms A is finite dimensional.
This was not necessary for the non-accelerated matching
pursuit and it remains open if it is necessary for accelerated
MP. When sampling, we consider only a non-symmetric ver-
sion of the set A with all the atoms in the same half space.
Line search ensures that sampling either z or −z yields the
same update. For simplicity, we focus on an exact LMO.

3.1. From Coordinates to Atoms

For the acceleration of MP we make some stronger assump-
tion w.r.t. the rates in the previous section. In particular,
we will not obtain an affine invariant rate which remains an
open problem. The key challenges for an affine invariant ac-
celerated rate are strong convexity of the model, which can
be solved using arguments similar to (d’Aspremont et al.,
2018) and the fact that our proof relies on defining a new
norm which deform the space in order to obtain favorable
sampling properties as we will explain in this section. The
main difference between working with atoms and working
with coordinates is that projection along coordinate basis
vectors is ’unbiased’. Let ei represent the ith coordinate
basis vector. Then for some vector d, if we project along a
random basis vector ei,

Ei∈[n][〈ei,d〉ei] =
1

n
d .

However if instead of coordinate basis, we choose from a
set of atoms A, then this is no longer true. We can correct
for this by morphing the geometry of the space. Suppose
we sample the atoms from a distribution Z defined over A.
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Let us define
P̃ := Ez∼Z [zz

>] .

We assume that the distribution Z is such that lin(A) ⊆
range(P̃). This intuitively corresponds to assuming that
there is a non-zero probability that the sampled z ∼ Z is
along the direction of every atom zt ∈ A i.e.

Pz∼Z [〈z, zt〉 > 0] > 0, ∀zt ∈ A .

Further let P = P̃† be the pseudo-inverse of P̃. Note that
both P and P̃ are positive semi-definite matrices. We can
equip our space with a new inner product 〈·,P·〉 and the
resulting norm ‖·‖P. With this new dot product,

Ez∼Z [〈z,Pd〉z] = Ez∼Z [zz
>]Pd = P†Pd = d .

The last equality follows from our assumption that lin(A) ⊆
range(P̃).

Algorithm 3 Accelerated Random Pursuit
1: init x0 = v0 = y0, β0 = 0, and ν′

2: for t = 0, 1 . . . T
3: Solve α2

t+1Lν
′ = βt + αt+1

4: βt+1 := βt + αt+1

5: τt :=
αt+1

βt+1

6: Compute yt := (1− τt)xt + τtvt
7: Sample zt ∼ Z
8: xt+1 := yt − 〈∇f(yt),zt〉

L‖zt‖22
zt

9: vt+1 := vt − αt+1〈∇f(yt), zt〉zt
10: end for

Algorithm 4 Accelerated Matching Pursuit
1: init x0 = v0 = y0, β0 = 0, and ν
2: for t = 0, 1 . . . T
3: Solve α2

t+1Lν = βt + αt+1

4: βt+1 := βt + αt+1

5: τt :=
αt+1

βt+1

6: Compute yt := (1− τt)xt + τtvt
7: Find zt := LMOA(∇f(yt))
8: xt+1 := yt − 〈∇f(yt),zt〉

L‖zt‖22
zt

9: Sample z̃t ∼ Z
10: vt+1 := vt − αt+1〈∇f(yt), z̃t〉z̃t
11: end for

3.2. Analysis

Modeling explicitly the dependency on the structure of the
set is crucial to accelerate MP. Indeed, acceleration works
by defining two different quadratic subproblems, one upper
bound given by smoothness, and one lower bound given by a
model of the function. The constraints on the set of possible
descent direction implicitly used in MP influence both these

subproblems. While the smoothness quadratic upper bound
contains information about A in its definition (y = x+ γz
and ‖z‖A = 1), the model of the function needs explicit
modeling ofA. This is particularly crucial when sampling a
direction in the model update, which can be thought as a sort
of exploration part of the algorithm. In both the algorithms,
the update of the parameter v corresponds to optimizing the
modeling function ψ which can be given as :

ψt+1(x) = ψt(x)+

αt+1

(
f(yt) + 〈z̃>t ∇f(yt), z̃>t P(x− yt)〉

)
, (8)

where ψ0(x) =
1
2‖x− x0‖2P.

Lemma 7. The update of v in Algorithm 3 and 4 minimizes
the model

vt ∈ argmin
x

ψt(x) .

We will be first discussing the theory for the greedy accel-
erated method in detail. As evident from the algorithm 4,
another important constant which is required for both the
analysis and to actually run the algorithm is ν for which:

ν ≤ max
d∈lin(A)

E
[
(z̃>t d)

2‖z̃t‖2P
]
‖z(d)‖22

(z(d)>d)2
,

where z(d) is defined to be
z(d) = LMOA(−d) .

The quantity ν relates the geometry of the atom set with the
sampling procedure in a similar way as δ̂2 in Equation (7)
but instead of measuring how much worse a random update
is when compared to a steepest update.
Theorem 8. Let f be a convex function and A be a sym-
metric compact set. Then the output of algorithm 4 for any
t ≥ 1 converges with the following rate:

E[f(xt)]− f(x?) ≤
2Lν

t(t+ 1)
‖x? − x0‖2P .

Proof. We extend the proof technique of (Lee & Sidford,
2013; Stich et al., 2013) to allow for general atomic updates.
The analysis can be found in Appendix C.1

Once we understand the convergence of the greedy ap-
proach, the analysis of accelerated random pursuit can be
derived easily. Here, we state the rate of convergence for
accelerated random pursuit:
Theorem 9. Let f be a convex function and A be a sym-
metric set. Then the output of the algorithm 3 for any t ≥ 1
converges with the following rate:

E[f(xt)]− f(x?) ≤
2Lν′

t(t+ 1)
‖x? − x0‖2P ,

where

ν′ ≤ max
d∈lin(A)

E
[
(z>t d)

2‖zt‖2P
]

E
[
(z>t d)

2/‖zt‖22
] .
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Discussion on Greedy Accelerated Coordinate Descent.
The convergence rate for greedy accelerated coordinate de-
scent can directly be obtained from the rate from accelerated
matching pursuit. Let the atom set A consist of the standard
basis vectors {ei, i ∈ [n]} and Z be a uniform distribution
over this set. Then algorithm 3 reduces to the accelerated
randomized coordinate method (ACDM) of (Lee & Sidford,
2013; Nesterov & Stich, 2017) and we recover their rates.
Instead if we use algorithm 4, we obtain a novel acceler-
ated greedy coordinate method with a (potentially) better
convergence rate.1

Lemma 10. When A = {ei, i ∈ [n]} and Z is a uniform
distribution over A, then P = nI, ν′ = n and ν ∈ [1, n].

4. Empirical Evaluation
In this section we aim at empirically validate our theoretical
findings. In both experiments we use 1 and the intrinsic
dimensionality of lin(A) as ν and ν′ respectively. Note that
a value of ν smaller than ν′ represents the best case for the
steepest update. We implicitly assume that the worst case in
which a random update is as good as the steepest one never
happens.

Toy Data: First, we report the function value while min-
imizing the squared distance between the a random 100
dimensional signal with both positive and negative entries
and its sparse representation in terms of atoms. We sam-
ple a random dictionary containing 200 atoms which we
then make symmetric. The result is depicted in Figure 1.
As anticipated from our analysis, the accelerated schemes
converge much faster than the non-accelerated variants. Fur-
thermore, in both cases the steepest update converge faster
than the random one, due to a better dependency on the
dimensionality of the space.

Real Data: We use the under-sampled Urban HDI Dataset
from which we extract the dictionary of atoms using the
hierarchical clustering approached of (Gillis et al., 2015).
This dataset contains 5’929 pixels, each associated with 162
hyperspectral features. The number of dictionary elements
is 6, motivated by the fact that 6 different physical materials
are depicted in this HSI data (Gillis & Luce, 2018). We
approximate each pixel with a linear combination of the
dictionary elements by minimizing the square distance be-
tween the observed pixel and our approximation. We report
in Figure 2 the loss as an average across all the pixels:

min
xi∈lin(A)

1

N

N∑
i=1

‖xi − bi‖2

We notice that as expected, the steepest matching pursuit

1Simultaneously (and independently) (Lu et al., 2018) derived
the same accelerated greedy coordinate algorithm.

Figure 1. loss for synthetic data
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Figure 2. loss for hyperspectral data

converges faster than the random pursuit, but as expected
both of them converge at the same regime. On the other
hand, the accelerated scheme converge much faster than the
non-accelerated variants. Note that the acceleration kicks
in only after a few iterations as the accelerated rate has a
worse dependency on the intrinsic dimensionality of the
linear span than the non accelerated algorithms. We notice
that the speedup of steepest MP is much more evident in the
synthetic data. The reason is that this experiment is much
more high dimensional than the hyperspectral data. Indeed,
the span of the dictionary is a 6 dimensional manifold in the
latter and the full ambient space in the former and the steep-
est update yields a better dependency on the dimensionality.

5. Conclusions
In this paper we presented a unified analysis of matching pur-
suit and coordinate descent algorithms. As a consequence,
we exploit the similarity between the two to obtain the best
of both worlds: tight sublinear and linear rates for steepest
coordinate descent and the first accelerated rate for matching
pursuit and steepest coordinate descent. Furthermore, we
discussed the relation between the steepest and the random
directions by viewing the latter as an approximate version
of the former. An affine invariant accelerated proof remains
an open problem.
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Appendix

A. Sublinear Rates
Theorem’ 2. Assume f is L-smooth w.r.t. a given norm ‖ · ‖, over lin(A) where A is symmetric. Then,

LA ≤ L radius‖·‖(A)2 . (9)

Proof. Let D(y,x) := f(y)− f(x) + γ〈∇f(x),y − x〉 By the definition of smoothness of f w.r.t. ‖ · ‖,

D(y,x) ≤ L

2
‖y − x‖2 .

Hence, from the definition of LA,

LA ≤ sup
x,y∈lin(A)
y=x+γz

‖z‖A=1,γ∈R>0

2

γ2
L

2
‖y − x‖2

= L sup
z s.t.‖z‖A=1

‖s‖2

= L radius‖·‖(A)2 .

The definition of the smoothness constant w.r.t. the atomic norm yields the following quadratic upper bound:

LA = sup
x,y∈lin(A)
y=x+γz

‖z‖A=1,γ∈R>0

2

γ2
[f(y)− f(x) + 〈∇f(x),y − x〉] . (10)

Furthermore, let:

R2
A = max

x∈lin(A)
f(x)≤f(x0)

‖x− x?‖2A . (11)

Now, we show that the algorithm we presented is affine invariant. An optimization method is called affine invariant if it is
invariant under affine transformations of the input problem: If one chooses any re-parameterization of the domain Q by a

surjective linear or affine map M : Q̂ → Q, then the “old” and “new” optimization problems minx∈Q f(x) and
minx̂∈Q̂ f̂(x̂) for f̂(x̂) := f(Mx̂) look the same to the algorithm. Note that∇f̂ = MT∇f .

First of all, let us note that LA is affine invariant as it does not depend on any norm. Now:

Mx̂t+1 = M

(
x̂t +

〈∇f̂(x̂t), ẑt〉
LA

ẑt

)

= Mx̂t +
〈∇f̂(x̂t), ẑt〉

LA
Mẑt

= xt +
〈∇f̂(x̂t), ẑt〉

LA
zt

= xt +
〈MT∇f(xt), ẑt〉

LA
zt

= xt +
〈∇f(xt),Mẑt〉

LA
zt

= xt +
〈∇f(xt), zt〉

LA
zt

= xt+1 .
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Therefore the algorithm is affine invariant.

A.1. Affine Invariant Sublinear Rate

Theorem’ 3. Let A ⊂ H be a closed and bounded set. We assume that ‖ · ‖A is a norm over lin(A). Let f be convex and
LA-smooth w.r.t. the norm ‖ · ‖A over lin(A), and let RA be the radius of the level set of x0 measured with the atomic
norm. Then, Algorithm 2 converges for t ≥ 0 as

f(xt+1)− f(x?) ≤
2LAR

2
A

δ2(t+ 2)
,

where δ ∈ (0, 1] is the relative accuracy parameter of the employed approximate LMO (3).

Proof. Recall that z̃t is the atom selected in iteration t by the approximate LMO defined in (3). We start by upper-bounding
f using the definition of LA as follows:

f(xt+1) ≤ min
γ∈R

f(xt) + γ〈∇f(xt), z̃t〉+
γ2

2
LA‖z‖2A

= min
γ∈R

f(xt) + γ〈∇f(xt), z̃t〉+
γ2

2
LA

≤ f(xt)−
〈∇f(xt), z̃t〉2

2LA

= f(xt)−
〈∇‖f(xt), z̃t〉2

2LA

≤ f(xt)− δ2
〈∇‖f(xt), zt〉2

2LA
.

Where∇‖f is the parallel component of the gradient wrt the linear span of A. Note that ‖d‖A∗ := sup {〈z,d〉, z ∈ A} is
the dual of the atomic norm. Therefore, by definition:

〈∇‖f(xt), zt〉2 = ‖ − ∇‖f(xt)‖2A∗ ,

which gives:

f(xt+1) ≤ f(xt)− δ2
1

2LA
‖∇‖f(xt)‖2A∗

≤ f(xt)− δ2
1

2LA

(
−〈∇‖f(xt),xt − x?〉

)2
R2
A

= f(xt)− δ2
1

2LA

(
〈∇‖f(xt),xt − x?〉

)2
R2
A

≤ f(xt)− δ2
1

2LA

(f(xt)− f(x?))2

R2
A

,

where the second inequality is Cauchy-Schwarz and the third one is convexity. Which gives:

εt+1 ≤
2LAR

2
A

δ2(t+ 2)
.

A.2. Randomized Affine Invariant Sublinear Rate

For random sampling of z from a distribution over A, let

δ̂2 := min
d∈linA

Ez∈A〈d, z〉2

‖d‖2A∗
. (12)
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Theorem’ 4. Let A ⊂ H be a closed and bounded set. We assume that ‖ · ‖A is a norm. Let f be convex and LA smooth
w.r.t. the norm ‖ · ‖A over lin(A) and let RA be the radius of the level set of x0 measured with the atomic norm. Then,
Algorithm 2 converges for t ≥ 0 as

Ez

[
f(xt+1)

]
− f(x?) ≤ 2LAR

2
A

δ̂2(t+ 2)
,

when the LMO is replaced with random sampling of z from a distribution over A.

Proof. Recall that z̃t is the atom selected in iteration t by the approximate LMO defined in (3). We start by upper-bounding
f using the definition of LA as follows

Ezf(xt+1) ≤ Ez

[
min
γ∈R

f(xt) + γ〈∇f(xt), z〉+
γ2

2
LA‖z‖2A

]
= Ez

[
min
γ∈R

f(xt) + γ〈∇f(xt), z〉+
γ2

2
LA

]
≤ f(xt)−

Ez

[
〈∇f(xt), z〉2

]
2LA

= f(xt)−
Ez

[
〈∇‖f(xt), z〉2

]
2LA

≤ f(xt)− δ̂2
〈∇‖f(xt), zt〉2

2LA
.

The rest of the proof proceeds as in Theorem 3.

B. Linear Rates
B.1. Affine Invariant Linear Rate

Let us first the fine the affine invariant notion of strong convexity based on the atomic norm:

µA := inf
x,y∈linA

x6=y

2

‖y − x‖2A
[f(y)− f(x)− 〈∇f(x),y − x〉] .

Let us recall the definition of minimal directional width from (Locatello et al., 2017a):

mDW(A) := min
d∈lin(A)

d6=0

max
z∈A
〈 d

‖d‖
, z〉 .

Then, we can relate our new definition of strong convexity with the mDW(A) as follows.

Theorem’ 6. Assume f is µ strongly convex wrt a given norm ‖ · ‖ over lin(A) and A is symmetric. Then:

µA ≥ mDW(A)2 µ .

Proof. First of all, note that for any x,y ∈ lin(A) with x 6= y we have that:

〈∇f(x), x− y〉2 ≤ ‖∇f(x)‖2A∗‖x− y‖2A .
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Therefore:

µA = inf
x,y∈linA

x6=y

2

‖y − x‖2A
D(x,y)

≥ inf
x,y,d∈linA
x6=y,d6=0

‖d‖2A∗
〈d,x− y〉2

2D(x,y)

≥ inf
x,y,d∈linA
x6=y,d6=0

‖d‖2A∗
〈d,x− y〉2

µ‖x− y‖2

≥ inf
x,y,d∈linA
x6=y,d6=0

‖d‖2A∗
〈d, x−y
‖x−y‖ 〉2

µ

≥ inf
x,y,d∈linA
x6=y,d6=0

‖d‖2A∗
‖d‖2

µ

≥ inf
d∈linA
d6=0

max
z

〈d, z〉2

‖d‖2
µ

= mDW(A)2 µ .

Theorem’ 5. (Part 1). Let A ⊂ H be a closed and bounded set. We assume that ‖ · ‖A is a norm. Let f be µA-strongly
convex and LA-smooth w.r.t. the norm ‖ · ‖A, both over lin(A). Then, Algorithm 2 converges for t ≥ 0 as

εt+1 ≤
(
1− δ2 µA

LA

)
εt .

where εt := f(xt)− f(x?).

Proof. Recall that z̃t is the atom selected in iteration t by the approximate LMO defined in (3). We start by upper-bounding
f using the definition of LA as follows

f(xt+1) ≤ min
γ∈R

f(xt) + γ〈∇f(xt), z̃t〉+
γ2

2
LA‖z‖2A

= min
γ∈R

f(xt) + γ〈∇f(xt), z̃t〉+
γ2

2
LA

≤ f(xt)−
〈∇f(xt), z̃t〉2

2LA

= f(xt)−
〈∇‖f(xt), z̃t〉2

2LA

≤ f(xt)− δ2
〈∇‖f(xt), zt〉2

2LA

= f(xt)− δ2
〈−∇‖f(xt), zt〉2

2LA
.

Where ‖d‖A∗ := sup {〈z,d〉, z ∈ A} is the dual of the atomic norm. Therefore, by definition:

〈−∇‖f(xt), zt〉2 = ‖∇‖f(xt)‖2A∗ ,

which gives:

f(xt+1) ≤ f(xt)− δ2
1

2LA
‖∇‖f(xt)‖2A∗ .

From strong convexity we have that:

f(y) ≥ f(x) + 〈∇f(x),y − x〉+ µA
2
‖y − x‖2A .



On Matching Pursuit and Coordinate Descent

Fixing y = xt + γ(x? − xt) and γ = 1 in the LHS and minimizing the RHS we obtain:

f(x?) ≥ f(xt)−
1

2µA

〈∇f(xt),x? − xt〉
‖x? − xt‖2A

≥ f(xt)−
1

2µA
‖∇‖f(xt)‖2A∗ ,

where the last inequality is obtained by the fact that 〈∇f(xt),x? − xt〉 = 〈∇‖f(xt),x? − xt〉and Cauchy-Schwartz.
Therefore:

‖∇f(xt)‖A∗ ≥ 2εtµA ,

which yields:

εt+1 ≤ εt − δ2
µA
LA

εt .

B.2. Randomized Affine Invariant Linear Rate

Theorem’ 5. (Part 2). Let A ⊂ H be a closed and bounded set. We assume that ‖ · ‖A is a norm. Let f be µA-strongly
convex and LA-smooth w.r.t. the norm ‖ · ‖A, both over lin(A). Then, Algorithm 2 converges for t ≥ 0 as

Ez [εt+1|xt] ≤
(
1− δ̂2 µA

LA

)
εt ,

where εt := f(xt)− f(x?), and the LMO direction z is sampled randomly from A, from the same distribution as used in
the definition of δ̂.

Proof. We start by upper-bounding f using the definition of LA as follows

Ez [f(xt+1)] ≤ Ez

[
min
γ∈R

f(xt) + γ〈∇f(xt), z̃t〉+
γ2

2
LA‖z‖2A

]
= Ez

[
min
γ∈R

f(xt) + γ〈∇f(xt), z̃t〉+
γ2

2
LA

]
≤ f(xt)− Ez

[
〈∇f(xt), z̃t〉2

2LA

]
≤ f(xt)− δ̂2

〈∇f(xt), zt〉2

2LA

= f(xt)− δ̂2
〈∇‖f(xt), z̃t〉2

2LA

= f(xt)− δ̂2
〈−∇‖f(xt), z̃t〉2

2LA
.

The rest of the proof proceeds as in Part 1 of the proof of Theorem 5.

C. Accelerated Matching Pursuit
Our proof follows the technique for acceleration given in (Lee & Sidford, 2013; Nesterov & Stich, 2017; Nesterov, 2004;

Stich et al., 2013)

C.1. Proof of Convergence

We define ‖x‖2P = x>Px. We start our proof by first defining the model function ψt. For t = 0, we define :

ψ0(x) =
1

2
‖x− v0‖2P .

Then for t > 1, ψt is inductively defined as

ψt+1(x) = ψt(x) + αt+1

(
f(yt) + 〈z̃>t ∇f(yt), z̃>t P(x− yt)〉

)
. (13)
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Algorithm 5 Accelerated Matching Pursuit
1: init x0 = v0 = y0, β0 = 0, and ν
2: for t = 0, 1 . . . T
3: Solve α2

t+1Lν = βt + αt+1

4: βt+1 = βt + αt+1

5: τt =
αt+1

βt+1

6: Compute yt = (1− τt)xt + τtvt
7: Find zt := LMOA(∇f(yt))
8: xt+1 = yt − 〈∇f(yt),zt〉

L‖zt‖22
zt

9: sample z̃t ∼ Z
10: vt+1 = vt − αt+1〈∇f(yt), z̃t〉z̃t
11: end for

Proof of Lemma 7. We will prove the statement inductively. For t = 0, ψ0(x) =
1
2‖x− v0‖2P and so the statement holds.

Suppose it holds for some t ≥ 0. Observe that the function ψt(x) is a quadratic with Hessian P. This means that we can
reformulate ψt(x) with minima at vt as

ψt(x) = ψt(vt) +
1

2
‖x− vt‖2P .

Using this reformulation,

argmin
x

ψt+1(x) = argmin
x

{
ψt(x) + αt+1

(
f(yt) + 〈z̃>t ∇f(yt), z̃>t P(x− yt)〉

)}
= argmin

x

{
ψt(vt) +

1

2
‖x− vt‖2P + αt+1

(
f(yt) + 〈z̃>t ∇f(yt), z̃>t P(x− yt)〉

)}
= argmin

x

{1
2
‖x− vt‖2P + αt+1〈z̃>t ∇f(yt), z̃>t P(x− vt)〉

}
= vt − αt+1〈∇f(yt), z̃t〉z̃t
= vt+1 .

Lemma 11 (Upper bound on ψt(x)).
E[ψt(x)] ≤ βtf(x) + ψ0(x) .

Proof. We will also show this through induction. The statement is trivially true for t = 0 since β0 = 0. Assuming the
statement holds for some t ≥ 0,

E[ψt+1(x)] = E
[
ψt(x) + αt+1

(
f(yt) + 〈z̃>t ∇f(yt), z̃>t P(x− yt)〉

)]
= E

[
ψt(x)

]
+ αt+1E

[(
f(yt) + 〈z̃>t ∇f(yt), z̃>t P(x− yt)〉

)]
≤ βtf(x) + ψ0(x) + αt+1

(
f(yt) +∇f(yt)>E

[
z̃tz̃
>
t

]
P(x− yt)〉

)
= βtf(x) + ψ0(x) + αt+1

(
f(yt) +∇f(yt)>P−1P(x− yt)〉

)
= βtf(x) + ψ0(x) + αt+1

(
f(yt) +∇f(yt)>(x− yt)〉

)
≤ βtf(x) + ψ0(x) + αt+1f(x) .

In the above, we used the convexity of the function f(x) and the definition of P.

Lemma 12 (Bound on progress). For any t ≥ 0 of algorithm 5,

f(xt+1)− f(yt) ≤ −
1

2L‖zt‖22
∇f(yt)>

[
ztz
>
t

]
∇f(yt) .
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Proof. The update xt+1 along with the smoothness of f(x) guarantees that for γt+1 = 〈∇f(yt),zt〉
L‖zt‖2 ,

f(xt+1) = f(yt + γt+1zt)

≤ f(yt) + γt+1〈∇f(yt), zt〉+
Lγ2t+1

2
‖zt‖2

= f(yt)−
1

2L‖zt‖22
∇f(yt)>

[
ztz
>
t

]
∇f(yt) .

Lemma 13 (Lower bound on ψt(x)). Given a filtration Ft upto time step t,

E[min
x
ψt(x)|Ft] ≥ βtf(xt) .

Proof. This too we will show inductively. For t = 0, ψt(x) = 1
2‖x− v0‖2P ≥ 0 with β0 = 0. Assume the statement holds

for some t ≥ 0. Recall that ψt(x) has a minima at vt and can be alternatively formulated as ψt(vt) + 1
2‖x− vt‖2P. Using

this,

ψ?t+1 = min
x

[
ψt(x) + αt+1

(〈
z̃>t ∇f(yt), z̃>t P(x− yt)

〉
+ f(yt)

)]
= min

x

[
ψt(vt) + αt+1

(〈
z̃>t ∇f(yt), z̃>t P(x− yt)

〉
+

1

2αt+1
‖x− vt‖2P + f(yt)

)]
= ψ?t + αt+1f(yt) + αt+1 min

x

[〈
Pz̃tz̃

>
t ∇f(yt),x− yt

〉
+

1

2αt+1
‖x− vt‖2P

]
.

Since we defined yt = (1− τt)xt + τtvt, rearranging the terms gives us that

yt − vt =
1− τt
τt

(xt − yt) .

Let us take now compute E[ψ?t+1|Ft] by combining the above two equations:

E[ψ?t+1|Ft] = ψ?t + αt+1f(yt) +
αt+1(1− τt)

τt

〈
PEt[z̃tz̃>t ]∇f(yt),yt − xt

〉
+ αt+1Etmin

x

[〈
Pz̃tz̃

>
t ∇f(yt),x− vt

〉
+

1

2αt+1
‖x− vt‖2P

]
= ψ?t + αt+1f(yt) +

αt+1(1− τt)
τt

〈∇f(yt),yt − xt〉

+ αt+1Etmin
x

[〈
Pz̃tz̃

>
t ∇f(yt),x− vt

〉
+

1

2αt+1
‖x− vt‖2P

]
= ψ?t + αt+1f(yt) +

αt+1(1− τt)
τt

〈∇f(yt),yt − xt〉

−
α2
t+1

2
∇f(yt)>Et

[
z̃tz̃
>
t PP−1Pz̃tz̃

>
t

]
∇f(yt)

= ψ?t + αt+1f(yt) +
αt+1(1− τt)

τt
〈∇f(yt),yt − xt〉

−
α2
t+1

2
∇f(yt)>Et

[
z̃tz̃
>
t Pz̃tz̃

>
t

]
∇f(yt) .

Let us define a constant ν ≥ 0 such that it is the smallest number for which the below inequality holds for all t,

ν∇f(yt)>
[
ztz
>
t

]
2L‖zt‖22

∇f(yt) ≥ ∇f(yt)>E
[
z̃tz̃
>
t Pz̃tz̃

>
t

]
∇f(yt) .
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Also recall from Lemma 12 that

f(xt+1)− f(yt) ≤ −
1

2L‖zt‖22
∇f(yt)>

[
ztz
>
t

]
∇f(yt) .

Using the above two statements in our computation of ψ?t+1, we get

E[ψ?t+1|Ft] = ψ?t + αt+1f(yt) +
αt+1(1− τt)

τt
〈∇f(yt),yt − xt〉

−
α2
t+1

2
∇f(yt)>Et

[
z̃tz̃
>
t Pz̃tz̃

>
t

]
∇f(yt)

≥ ψ?t + αt+1f(yt) +
αt+1(1− τt)

τt
〈∇f(yt),yt − xt〉

−
α2
t+1ν

2
∇f(yt)>

[
ztz
>
t

]
∇f(yt)

≥ ψ?t + αt+1f(yt) +
αt+1(1− τt)

τt
〈∇f(yt),yt − xt〉

+ α2
t+1Lν(f(xt+1)− f(yt))

≥ ψ?t + αt+1f(yt) +
αt+1(1− τt)

τt
(f(yt)− f(xt))

+ α2
t+1Lν(f(xt+1)− f(yt)) .

Let us pick αt+1 such that it satisfies α2
t+1νL = βt+1. Then the above equation simplifies to

E[ψ?t+1|Ft] ≥ ψ?t +
αt+1

τt
f(yt)−

αt+1(1− τt)
τt

f(xt) + βt+1(f(xt+1)− f(yt))

= ψ?t − βtf(xt) + βt+1f(yt)− βt+1f(yt) + βt+1f(xt+1)

= ψ?t − βtf(xt) + βt+1f(xt+1) .

We used that τt = αt+1/βt+1. Finally we use the inductive hypothesis to conclude that

E[ψ?t+1|Ft] ≥ ψ?t − βtf(xt) + βt+1f(xt+1) ≥ βt+1f(xt+1) .

Lemma 14 (Final convergence rate). For any t ≥ 1 the output of algorithm 5 satisfies:

E[f(xt)]− f(x?) ≤
2Lν

t(t+ 1)
‖x? − x0‖2P .

Proof. Putting together Lemmas 11 and 13, we have that

βtE[f(xt)] ≤ E[ψ?t ] ≤ E[ψt(x?)] ≤ βtf(x?) + ψ0(x
?) .

Rearranging the terms we get

E[f(xt)]− f(x?) ≤
1

2βt
‖x? − x0‖2P .

To finish the proof of the theorem, we only have to compute the value of βt. Recall that

α2
t+1Lν = βt + αt+1 .

We will inductively show that αt ≥ t
2Lν . For t = 0, β0 = 0 and α1 = 1

2Lν which satisfies the condition. Suppose that for
some t ≥ 0, the inequality holds for all iterations i ≤ t. Recall that βt =

∑t
i=1 αi i.e. βt ≥ t(t+1)

4Lν . Then

(αt+1Lν)
2 − αt+1Lν = βtLν ≥

t(t+ 1)

4
.
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The positive root of the quadratic x2 − x− c = 0 for c ≥ 0 is x = 1
2

(
1 +
√
4c+ 1

)
. Thus

αt+1Lν ≥
1

2

(
1 +

√
t(t+ 1) + 1

)
≥ t+ 1

2
.

This finishes our induction and proves the final rate of convergence.

Lemma 15 (Understanding ν).

ν ≤ max
d∈lin(A)

E
[
(z̃>t d)

2‖z̃t‖2P
]
‖z(d)‖22

(z(d)>d)2
,

Proof. Recall the definition of ν as a constant which satisfies the following inequality for all iterations t

ν∇f(yt)>
[
ztz
>
t

]
2L‖zt‖22

∇f(yt) ≥ ∇f(yt)>E
[
z̃tz̃
>
t Pz̃tz̃

>
t

]
∇f(yt) .

which then yields the following sufficient condition for ν:

ν ≤ max
d∈lin(A)

E
[
(z̃>t d)

2‖z̃t‖2P
]
‖z(d)‖22

(z(d)>d)2
,

where z(d) is defined to be
z(d) = LMOA(−d) .

Proof of Theorem 9. The proof of Theorem 9 is exactly the same as that of the previous except that now the update to vt
is also a random variable. The only change needed is the definition of ν′ where we need the following to hold:

ν′∇f(yt)>
1

2L
Et
[
ztz
>
t /‖zt‖

2
2

]
∇f(yt) ≥ ∇f(yt)>E

[
ztz
>
t Pztz

>
t

]
∇f(yt) .

Proof of Lemma 10. When A = {ei, i ∈ [n]} and Z is a uniform distribution over A, then P̃ = 1/nI and P = nI. A
simple computation shows that ν′ = n and ν ∈ [1, n]. Note that here ν could be upto n times smaller than ν′ meaning that

our accelerated greedy coordinate descent algorithm could be
√
n times faster than the accelerated random coordinate

descent. In the worst case ν = ν′, but in practice one can pick a smaller ν compared to ν′ as the worst case gradient rarely
happen. It is possible to tune ν and ν′ empirically but we do not explore this direction.


