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1 Proof of Theorem 4.1

Proof. The Courant-Fischer min-max theorem for L reads

λk = min
dim(U)=k

max
x∈span(U)

{
x>Lx

x>x
|x 6= 0

}
, (1)

whereas the same theorem for Lc reads

λ̃k = min
dim(Uc)=k

max
xc∈span(Uc)

{
x>c Lcxc

x>c xc
|xc 6= 0

}
= min

dim(Uc)=k
max

Cx∈span(Uc)

{
x>ΠLΠx

x>Πx
|x 6= 0

}
= min

dim(U)=k,U⊆im(Π)
max

x∈span(U)

{
x>Lx

x>x
|x 6= 0

}
,

where in the second equality we set Lc = CLC> and xc = Cx and the third equality holds since Π is a
projection matrix (see Property 1). Notice how, with the exception of the constraint that x = Πx, the final
optimization problem is identical to the one for λk, given in (1). As such, the former’s solution must be

strictly larger (since it is a more constrained problem) and we have that λ̃k ≥ λk.

2 Proof of Theorem 3.1

We now proceed to derive the main statement of Theorem 3.1. Our approach will be to control u>k L̃uk
through its expectation.

Lemma 2.1. For any k such that λk ≤ 0.5 mineij∈E

{
di+dj

2 + wij

}
the matrix Lc produced by REC abides

to

P
(
λk ≤ u>k L̃uk ≤ λk(1 + ε)

)
≥ 1− ϑk(T, φ)

4ε
, (2)

where

ϑk(T, φ) = max
eij∈E

{
P (eij ∈ EF )

di + dj + 2(wij − λk)

wij

}
. (3)

Proof. Denote by Π⊥ the projection matrix defined such that Π + Π⊥ = I. We can then write

u>k L̃uk = u>k ΠLΠuk = u>k (I −Π⊥)L(I −Π⊥)uk = u>k Luk − 2u>k LΠ⊥uk + u>k Π⊥LΠ⊥uk

= λk − 2λku
>
k Π⊥uk + u>k Π⊥LΠ⊥uk (4)

Let us now consider term u>k Π⊥LΠ⊥uk, where for compactness we set y = Π⊥uk.

y>Ly =
∑
eij∈E

wij(y(i)− y(j))2 =
∑

eij∈EF

wij(y(i)− y(j))2

︸ ︷︷ ︸
T1

+
∑
vi∈VF

∑
vj /∈VF

wijy(i)2

︸ ︷︷ ︸
T2

. (5)
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In the last step above, we exploited the fact that y(i) = 0 whenever vi /∈ VF .
Since EF is a matching of E , any coarsening that occurs involves a merging of two adjacent vertices vi, vj

with (Πx)(i) = (Πx)(j), implying that for every eij ∈ EF :

(y(i)− y(j))2 = ((Π⊥uk)(i) + (Πuk)(i)− (Π⊥uk)(j)− (Πuk)(j))2 = (x(i)− x(j))2

and therefore

T1 =
∑
eij∈E

bij wij (uk(i)− uk(j))2, (6)

with bij a Bernoulli random variable indicating whether eij ∈ EF . For T2, notice that the terms in the sum
correspond to boundary edges and, moreover, whenever eij ∈ EF all vertices adjacent to vi and vj do not
belong in VF . Another way to express T2 therefore is

T2 =
∑
eij∈E

bij

y(i)2
∑

ei`∈E,ei` 6=eij

wi` + y(j)2
∑

ej`∈E,ej` 6=eij

wj`


=
∑
eij∈E

bij

((
uk(i)− uk(i) + uk(j)

2

)2

(di − wij) +
(
uk(j)− uk(i) + uk(j)

2

)2

(dj − wij)
)

=
∑
eij∈E

bij wij(uk(i)− uk(j))2 di + dj − 2wij
4wij

. (7)

A similar result also holds for the remaining term u>k Π⊥uk = ‖Π⊥uk‖22 of (4):

‖Π⊥uk‖22 =
∑
eij∈E

bij

((
uk(i)− uk(i) + uk(j)

2

)2

+

(
uk(i)− uk(i) + uk(j)

2

)2
)

=
∑
eij∈E

bij wij (uk(i)− uk(j))
2 1

2wij
. (8)

If we substitute (6), (7), and (8) into (4) we find that

u>k L̃uk − λk =
∑
eij∈E

bij wij(uk(i)− uk(j))2

(
1 +

di + dj − 2wij
4wij

− λk
wij

)

=
1

4

∑
eij∈E

bij wij(uk(i)− uk(j))2

(
di + dj + 2(wij − 2λk)

wij

)
(9)

and furthermore

E
[
u>k L̃uk

]
− λk =

1

4

∑
eij∈E

P (eij ∈ EF )

(
di + dj + 2(wij − 2λk)

wij

)
wij(uk(i)− uk(j))2. (10)

The expression above is always smaller than

E
[
u>k L̃uk

]
− λk ≤

λk
4

max
eij∈E

{
P (eij ∈ EF )

di + dj + 2(wij − 2λk)

wij

}
=
λk
4
ϑk(T, φ), (11)

where ϑk(T, φ) is a function of the sampling probabilities, the eigenvalue λk, and the degree distribution of G.

Noticing that (9) is a non-negative random variable whenever λk ≤ 0.5 mineij∈E
di+dj

2 +wij/2 (the condition

is equivalent to di + dj + 2(wij − 2λk) > 0 implying that u>k L̃uk − λk is a sum of non-negative terms) and
using Markov’s inequality, we find that

P
(
u>k L̃uk ≥ λk(1 + ε)

)
= P

(
u>k L̃uk − λk

λk
≥ ε

)
≤

E
[
u>k L̃uk

]
− λk

ελk
≤ ϑk(T, φ)

4ε
, (12)

which gives the desired probability bound.
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The RSS constant therefore depends on the probability that each edge eij is contracted. This is given by:

Lemma 2.2. At the termination of REC, each edge eij of E can be found in EF with probability

pij
1− e−TPij

Pij
≤ P (eij ∈ EF ) = P (bij = 1) ≤ pij

1− e−TPij

1− e−Pij
(13)

where pij = φij/Φ and Pij =
∑
epq∈Nij

ppq.

Proof. The event Xij(t) that edge eij is still in the candidate set C at the end of the t-th iteration is

P (Xij(t)) = P (Xij(t− 1) ∩ {eij is not selected at t})

= P (Xij(t− 1))
∏

pq∈Nij

(1− ppq) =

t∏
τ=1

 ∏
pq∈Nij

(1− ppq)

 = atij . (14)

Therefore, the probability that eij is selected after T iterations can be written as

P (eij ∈ EF ) =

T∑
t=1

P (eij is selected at t)

=

T∑
t=1

pijP (Xij(t− 1))

= pij

T−1∑
t=0

atij = pij
1− aTij
1− aij

. (15)

According to the Weierstrass product inequality

aij =
∏

epq∈Nij

(1− ppq) ≥ 1−
∑

epq∈Nij

ppq (16)

and since the function f(x) = (1 − xT )/(1 − x) is monotonically increasing in [0, 1] and setting Pij =∑
epq∈Nij

ppq we have that

1− aTij
1− aij

≥ 1− (1− Pij)T

Pij
=

1− elog (1−Pij)T

Pij
≥ 1− e−TPij

Pij
,

where the last step takes advantage of the series expansion log (1− p) = −
∑∞
i=1 p

i/i ≤ −p. Similarly, for
the upper bound

aij =
∏

epq∈Nij

(1− ppq) = e
log
(∏

epq∈Nij
(1−ppq)

)
= e

∑
epq∈Nij

log (1−ppq) ≤ e−
∑

epq∈Nij
ppq = e−Pij (17)

and therefore
1−aTij
1−aij ≤

1−e−T Pij

1−e−Pij
, as claimed.

Based on Lemma 2.2, the expression of ϑk(T, φ) is

ϑk(T, φ) ≤ max
eij∈E

{
pij

1− e−TPij

1− e−Pij

di + dj + 2(wij − 2λk)

wij

}
≤ max
eij∈E

{
Pij

1− e−TPij

1− e−Pij

}
max
eij∈E

{
pij
Pij

di + dj + 2(wij − 2λk)

wij

}
. (18)
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The function f(Pij) = Pij
1−e−TPij

1−e−Pij
has a positive derivative in the domain of interest and thus it attains

its maximum at Pmax when Pij is also maximized. Setting c1 = NPmax and after straightforward algebraic
manipulation, we find:

ϑk(T, φ) ≤ Pmax
1− e−c1T/N

1− e−Pmax
max
eij∈E

{
pij
Pij

di + dj + 2(wij − 2λk)

wij

}
= Pmax

1− e−c1T/N

1− e−Pmax
max
eij∈E

{
φij∑

epq∈Nij
φpq

(∑
epq∈Nij

wpq

wij
+ 3− 4λk

wij

)}
. (19)

For any potential function and graph such that Pmax = O(1/N), at the limit c2 = Pmax

1−e−Pmax
→1 and the

above expression reaches

lim
N→∞

ϑk(T, φ) ≤ (1− e−c1T/N ) max
eij∈E

{
φij∑

epq∈Nij
φpq

(∑
epq∈Nij

wpq

wij
+ 3− 4λk

wij

)}
. (20)

The final probability estimate is achieved by using Lemma 2.1 along with the derived bound on ϑk(T, φ).

3 Proof of Theorem 4.2

We adopt a variational approach and reason that, since

λ̃k = min
U

max
x

{
x>Lx

x>x
, x ∈ U and x 6= 0 |dim(U) = k |x = Πx

}
, (21)

for any matrix Z the following inequality holds

λ̃k ≤ max
x

{
x>Lx

x>x
|x ∈ span(Z) and x 6= 0

}
(22)

as long as the columnspace of Z is of dimension k and does not intersect with the nullspace of Π.
Write Ũk−1 to denote the n × (k − 1) matrix with the k − 1 first eigenvectors of Lc and further set

Yk−1 = C>Ũk−1. We will consider the N × k matrix Z with

Z(:, i) =

{
C>ũi if i < k

z if i = k,
where z = Π(I − Yk−1Y

>
k−1)uk. (23)

It can be confirmed that Z’s columnspace meets the necessary requirements. Now, we can express any
x ∈ span(Z) as x = Yk−1a+ bz = Π(Yk−1a+ bz) with ‖a‖2 + b2‖z‖2 = 1 and therefore

x>Lx = (a>Y >k−1 + bz>)ΠLΠ(Yk−1a+ bz)

= (a>Y >k−1 + bz>)L̃(Yk−1a+ bz)

= a>Y >k−1L̃Yk−1a+ b2 z>L̃z + 2b z>L̃Yk−1a

= a>Y >k−1L̃Yk−1a+ b2 z>L̃z, (24)

where in the last step we exploited the fact that, by construction, z does not lie in the span of Ũk−1 (matrix

L̃ does not rotate its own eigenvectors). Since Yk−1a ∈ span(Ũk−1), the first term in the equation above in

bounded by λ̃k−1 and the equality is attained only when a(k − 1) = 1 (in which case b must be zero). By
the variational argument however, we are certain that the upper bound in (22) has to be at least as large as

λ̃k−1, implying that

λ̃k ≤ max

{
λ̃k−1,

z>Lz

z>z

}
(25)
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with the two cases corresponding to the choices a(k − 1) = 1 and b = 1, respectively. In addition, we have
that

z>Lz = u>k (I − Yk−1Y
>
k−1)ΠLΠ(I − Yk−1Y

>
k−1)uk =

∑
i≥k

λ̃i (ũ>i Cuk)2 (26)

and ‖z‖2 = ‖Π(I − Yk−1Y
>
k−1)uk‖2 =

∑
i≥k(ũ>i Cuk)2, meaning that

z>L̃z

z>z
=

∑
i≥k λ̃i (ũ>i Cuk)2∑
i≥k(ũ>i Cuk)2

≤ u>k L̃uk∑
i≥k(ũ>i Cuk)2

(27)

and therefore the relation λ̃k ≤ max
{
λ̃k−1, (1 + εk) λk∑

i≥k θki

}
holds whenever k ≤ K.

4 Proof of Theorem 4.3

Proof. Li’s Lemma [2] allows to express ϑk based on the squared inner products (ũ>j Cui)
2 of the eigenvectors

ui of the Laplacian L and the lifted eigenvectors C>ũj of the coarsened Laplacian Lc.

ϑk =
∥∥∥sin Θ

(
Uk, C

>Ũk

)∥∥∥2

F
=
∥∥∥Ũ>k⊥CUk∥∥∥2

F
=
∑
i≤k

∑
j>k

(ũ>j Cui)
2 (28)

Moreover, the summed RSS inequalities for each i ≤ k give:∑
i≤k

(1 + εi)λi ≥
∑
i≤k

u>i L̃ui =
∑
i≤k

n∑
j=1

λ̃j(ũ
>
j Cui)

2 =
∑
j≤k

λ̃j
∑
i≤k

(ũ>j Cui)
2 +

∑
j>k

λ̃j
∑
i≤k

(ũ>j Cui)
2. (29)

To continue, we use the equality

∑
2≤j≤k

∑
i≤k

(ũ>j Cui)
2 =

∑
2≤i≤k

‖Πui‖22 −∑
j>k

(ũ>j Cui)
2

 (30)

based on which

λ̃k+1

∑
j>k

∑
i≤k

(ũ>j Cui)
2 + λ̃2

∑
2≤i≤k

‖Πui‖22 −∑
j>k

(ũ>j Cui)
2

 ≤∑
i≤k

(1 + εi)λi =
∑

2≤i≤k

(1 + εi)λi. (31)

Our first sinΘ bound is obtained by using the inequality λ2 ≤ λ̃2 and re-arranging the terms:∥∥∥sin Θ
(
Uk, C

>Ũk

)∥∥∥2

F
≤
∑

2≤i≤k

(1 + εi)λi − λ2‖Πui‖22
λ̃k+1 − λ2

(32)

For the second bound, we instead perform the following manipulation∑
j≤k

λ̃j
∑
i≤k

(ũ>j Cui)
2 ≥

∑
j≤k

λj
∑
i≤k

(ũ>j Cui)
2 =

∑
j≤k

λj

(
1−

∑
i>k

(ũ>j Cui)
2

)

≥
∑
j≤k

λj − λk
∑
i≤k

‖Π⊥ui‖22 +
∑
j≥k

(ũ>j Cui)
2

 , (33)

which together with (28) and (29) results to∥∥∥sin Θ
(
Uk, C

>Ũk

)∥∥∥2

F
≤
∑
i≤k

(1 + εi)λi − λi + λk‖Π⊥ui‖22
λ̃k+1 − λk

=
∑

2≤i≤k

εiλi + λk‖Π⊥ui‖22
λ̃k+1 − λk

. (34)

The final bound is obtained as the minimum of (32) and (34).
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5 Proof of Corollary 5.1

Proof. The proof follows a known argument in the analysis of spectral clustering first proposed by Boutsidis [1]
and later adapted by Martin et al. [3]. In particular, these works proved that:

FK(Ψ, S̃∗)
1/2 ≤ FK(Ψ, S∗)

1/2 + 2 γK , (35)

with γK = ‖Ψ − Ψ̃Q‖F = ‖UK − C>ŨKQ‖F and Q being some unitary matrix of appropriate dimensions.
However, as demonstrated by Yu and coauthors [4], it is always possible to find a unitary matrix Q such that

γ2
K =

∥∥∥UK − C>ŨKQ∥∥∥2

F
≤ 2

∥∥∥sin Θ
(
UK , C

>ŨK

)∥∥∥2

F
≤ 2

K∑
k=2

εkλk + λK‖Π⊥uk‖22
δK

(36)

where the last inequality follows from Theorem 4.3 and λ̃K+1 ≥ λK+1. At this point, we could opt to take a
union bound with respect to the events {εk ≥ ε} and {‖Π⊥uk‖22 ≥ ε} using the results of Section 3. A more
careful analysis however follows the steps of the proof of Theorem 3.1 simultaneously for all terms:

K∑
k=2

E[εk]λk + λKE
[
‖Π⊥uk‖22

]
=

K∑
k=2

∑
eij∈E

P (eij ∈ EF )wij(uk(i)− uk(j))2

[
di + dj + 2wij + 2λK − 4λk

4wij

]

≤
K∑
k=2

λk max
eij∈E

{
P (eij ∈ EF )

[
di + dj + 2wij + 2λK − 4λk

4wij

]}

≤
K∑
k=2

λk Pmax
1− e−TPmax

1− e−Pmax
max
eij∈E

{
φij∑

epq∈Nij
φpq

(∑
epq∈Nij

wpq

wij
+ 3 +

2λK − 4λk
wij

)}

= c2
1− e−c1T/N

4

K∑
k=2

λk max
eij∈E

{
φij∑

epq∈Nij
φpq

(∑
epq∈Nij

wpq

wij
+ 3 +

2λK − 4λk
wij

)}
, (37)

where as before c1 = NPmax and c2 = Pmax/(1 − e−Pmax). Assuming further that a heavy-edge potential is
used, N is sufficiently large, and G has bounded degree such that c1 = 4%max = O(1), the above simplifies to

E
[
γ2
K

]
≤ 1− e−4%maxT/N

2 δK

K∑
k=2

λk

(
1 + max

eij∈E

{
3wij + 2λK − 4λk∑

epq∈Nij
wpq

})

≤ 1− e−4%maxT/N

2 δK

K∑
k=2

λk

(
1 + max

eij∈E

{
6 + 4λK − 8λk

davg%min

})
. (38)

The last inequality used the relation mineij
∑
epq∈Nij

wpq = %mindavg/2 and the fact that wij ≤ 1. Setting

c3 =
∑K

k=2 λ
2
k∑K

k=2 λk
, gives

E
[
γ2
K

]
≤ 1− e−4%maxT/N

2 δK

(
K∑
k=2

λk

) (
1 +

6 + 4λK − 8 c3
davg%min

)
. (39)

From Markov’s inequality, then

P

([
FK(Ψ, S̃∗)

1/2 −FK(Ψ, S∗)
1/2
]2
≥ ε

K∑
k=2

2λk(1− e−4%maxT/N )

δK

)
≤ 1

ε

(
1 +

6 + 4λK − 8 c3
davg%min

)
. (40)

The final result follows by the inequality 1− e−4%maxT/N ≤ 4r%max (see (9) in the main document).
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6 The MNIST digit graph

The following figure illustrates an instance of the clustering problem we considered. The graph is constructed
from N = 1000 images, each depicting a digit between 0 and 4 from the MNIST database. Contracted edges
are shown in red.
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