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1 Proof of Theorem 4.1

Proof. The Courant-Fischer min-max theorem for L reads
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whereas the same theorem for L. reads
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where in the second equality we set L. = CLCT and z. = Cz and the third equality holds since II is a
projection matrix (see Property . Notice how, with the exception of the constraint that x = Iz, the final
optimization problem is identical to the one for Ay, given in . As such, the former’s solution must be
strictly larger (since it is a more constrained problem) and we have that Xk > k- O

2 Proof of Theorem [3.1]

We now proceed to derive the main statement of Theorem Our approach will be to control u—krzuk
through its expectation.

Lemma 2.1. For any k such that A\, < 0.5 mine, ce {@ + wij} the matriz L. produced by REC abides

to
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Proof. Denote by II* the projection matrix defined such that IT + II+ = I. We can then write
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Let us now consider term u;—HLLHJ—uk, where for compactness we set y = I+ uy,.
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In the last step above, we exploited the fact that y(i) = 0 whenever v; ¢ Vp.
Since £ is a matching of £, any coarsening that occurs involves a merging of two adjacent vertices v;, v;
with (IIz)(i) = (IIz)(j), implying that for every e;; € Ep:
(y(i) = y(7))? = (T ug) (i) + (Mug) (i) — (Tug) (5) — k) () = (2(0) — 2(4))?
and therefore
Ty = Z bij wij (ug (i) — ur(5))?, (6)
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with b;; a Bernoulli random variable indicating whether e;; € £r. For T3, notice that the terms in the sum
correspond to boundary edges and, moreover, whenever e;; € £ all vertices adjacent to v; and v; do not
belong in V. Another way to express Ty therefore is
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A similar result also holds for the remaining term w] It uy, = ||t uy||3 of (@):
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If we substitute @, 7 and into we find that
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and furthermore
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The expression above is always smaller than
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where 94 (T, ¢) is a function of the sampling probabilities, the eigenvalue A\x, and the degree distribution of G.
di;dj +w;;/2 (the condition
is equivalent to d; + d; + 2(w;; — 2A,) > 0 implying that ugiuk — A is a sum of non-negative terms) and
using Markov’s inequality, we find that
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which gives the desired probability bound. O



The RSS constant therefore depends on the probability that each edge e;; is contracted. This is given by:
Lemma 2.2. At the termination of REC, each edge e;j of £ can be found in Ep with probability
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where pij = ¢i;/® and Pij =3, .. Ppq-
Proof. The event X;;(t) that edge e;; is still in the candidate set C at the end of the t-th iteration is
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Therefore, the probability that e;; is selected after T iterations can be written as

P(eij € Ep) = P(e;; is selected at t)
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According to the Weierstrass product inequality
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and since the function f(z) = (1 — 27)/(1 — z) is monotonically increasing in [0,1] and setting P;; =
Zepqej\/ij Ppq WE have that
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where the last step takes advantage of the series expansion log (1 —p) = — Y2, p'/i < —p. Similarly, for
the upper bound
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Based on Lemma the expression of 9y (T, ¢) is
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The function f(P;;) = P;; % has a positive derivative in the domain of interest and thus it attains

its maximum at Ppax when P;; is also maximized. Setting ¢; = N Ppax and after straightforward algebraic
manipulation, we find:

1— et/ i di + d; + 2(wi; — 2)
m(T,¢><PmaxemaX{pj +dj + 2(wy k)}

- 1 — e~ Pmax ei; €€ | Py Wi
1 — e—a1T/N iy > W 4\
= Pnax ¢ =) max ¢ J €Ny P +3— k . (19)
L—emfmac cijee | 30, ens; Pra Wij Wij
For any potential function and graph such that Pyax = O(1/N), at the limit ¢ = 175‘1‘%—& and the
above expression reaches
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The final probability estimate is achieved by using Lemma along with the derived bound on ¥ (T, ®).

3 Proof of Theorem 4.2

We adopt a variational approach and reason that, since
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for any matrix Z the following inequality holds
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as long as the columnspace of Z is of dimension k and does not intersect with the nullspace of II.
Write Ug_1 to denote the n x (k — 1) matrix with the k — 1 first eigenvectors of L. and further set
Y—1 = CTU,_1. We will consider the N x k matrix Z with
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It can be confirmed that Z’s columnspace meets the necessary requirements. Now, we can express any
x € span(Z) as z = Yj_1a + bz = II(Y_1a + bz) with ||a||? + b?||z]|> = 1 and therefore
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where in the last step we exploited the fact that, by construction, z does not lie in the span of U, k—1 (matrix
L does not rotate its own eigenvectors). Since Yi_1a € span(Ug_1), the first term in the equation above in
bounded by Ap_; and the equality is attained only when a(k — 1) = 1 (in which case b must be zero). By

the variational argument however, we are certain that the upper bound in (22)) has to be at least as large as
Ak—1, implying that
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with the two cases corresponding to the choices a(k — 1) = 1 and b = 1, respectively. In addition, we have

that
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and therefore the relation X;g < max {Xk,l, (1+e€x) = Ak } holds whenever k£ < K.
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4 Proof of Theorem 4.3
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Proof. Li’s Lemma [2] allows to express ¥ based on the squared inner products (HjTCui)2 of the eigenvectors

u; of the Laplacian L and the lifted eigenvectors C’Tﬂj of the coarsened Laplacian L.
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Moreover, the summed RSS inequalities for each i < k give:
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To continue, we use the equality
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Our first sin® bound is obtained by using the inequality Ay < Xz and re-arranging the terms:
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For the second bound, we instead perform the following manipulation
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which together with and results to
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The final bound is obtained as the minimum of and .
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5 Proof of Corollary

Proof. The proof follows a known argument in the analysis of spectral clustering first proposed by Boutsidis [I]
and later adapted by Martin et al. [3]. In particular, these works proved that:

Fre(U, SV < Fre(W, 5% + 2y, (35)

with yx = ||¥ — UQ||r = |[Ux — CTUKQ||r and Q being some unitary matrix of appropriate dimensions.
However, as demonstrated by Yu and coauthors [4], it is always possible to find a unitary matrix @ such that
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where the last inequality follows from Theorem and A K+1 > Ak+1. At this point, we could opt to take a
union bound with respect to the events {e > €} and {||TI-u||3 > €} using the results of Section |3 A more
careful analysis however follows the steps of the proof of Theorem simultaneously for all terms:
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where as before ¢y = NPpax and ¢a = Ppax/(1 — €™ mHX) Assuming further that a heavy-edge potential is
used, N is sufficiently large, and G has bounded degree such that ¢; = 49max = O(1), the above simplifies to
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From Markov’s inequality, then
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The final result follows by the inequality 1 — e~ *emaxT/N < 4ro .. (see @ in the main document). O



6 The MNIST digit graph

The following figure illustrates an instance of the clustering problem we considered. The graph is constructed

from N = 1000 images, each depicting a digit between 0 and 4 from the MNIST database. Contracted edges
are shown in red.
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