Spectrally approximating large graphs with smaller graphs: supplementary material

Andreas Loukas and Pierre Vandergheynst

1 Proof of Theorem 4.1

Proof. The Courant-Fischer min-max theorem for L reads

$$
\begin{equation*}
\lambda_{k}=\min _{\operatorname{dim}(U)=k} \max _{x \in \operatorname{span}(U)}\left\{\left.\frac{x^{\top} L x}{x^{\top} x} \right\rvert\, x \neq 0\right\}, \tag{1}
\end{equation*}
$$

whereas the same theorem for L_{c} reads

$$
\begin{aligned}
\tilde{\lambda}_{k}=\min _{\operatorname{dim}\left(U_{\mathrm{c}}\right)=k} \max _{x_{\mathrm{c}} \in \operatorname{span}\left(U_{\mathrm{c}}\right)}\left\{\left.\frac{x_{\mathrm{c}}^{\top} L_{\mathrm{c}} x_{\mathrm{c}}}{x_{\mathrm{c}}^{\top} x_{\mathrm{c}}} \right\rvert\, x_{\mathrm{c}} \neq 0\right\} & =\min _{\operatorname{dim}\left(U_{\mathrm{c}}\right)=k} \max _{C x \in \operatorname{span}\left(U_{\mathrm{c}}\right)}\left\{\left.\frac{x^{\top} \Pi L \Pi x}{x^{\top} \Pi x} \right\rvert\, x \neq 0\right\} \\
& =\min _{\operatorname{dim}(U)=k, U \subseteq \operatorname{im}(\Pi)} \max _{x \in \operatorname{span}(U)}\left\{\left.\frac{x^{\top} L x}{x^{\top} x} \right\rvert\, x \neq 0\right\}
\end{aligned}
$$

where in the second equality we set $L_{\mathrm{c}}=C L C^{\top}$ and $x_{\mathrm{c}}=C x$ and the third equality holds since Π is a projection matrix (see Property 11). Notice how, with the exception of the constraint that $x=\Pi x$, the final optimization problem is identical to the one for λ_{k}, given in (1). As such, the former's solution must be strictly larger (since it is a more constrained problem) and we have that $\tilde{\lambda}_{k} \geq \lambda_{k}$.

2 Proof of Theorem 3.1

We now proceed to derive the main statement of Theorem 3.1. Our approach will be to control $u_{k}^{\top} \widetilde{L} u_{k}$ through its expectation.

Lemma 2.1. For any k such that $\lambda_{k} \leq 0.5 \min _{e_{i j} \in \mathcal{E}}\left\{\frac{d_{i}+d_{j}}{2}+w_{i j}\right\}$ the matrix L_{c} produced by REC abides to

$$
\begin{equation*}
P\left(\lambda_{k} \leq u_{k}^{\top} \widetilde{L} u_{k} \leq \lambda_{k}(1+\epsilon)\right) \geq 1-\frac{\vartheta_{k}(T, \phi)}{4 \epsilon} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\vartheta_{k}(T, \phi)=\max _{e_{i j} \in \mathcal{E}}\left\{P\left(e_{i j} \in \mathcal{E}_{F}\right) \frac{d_{i}+d_{j}+2\left(w_{i j}-\lambda_{k}\right)}{w_{i j}}\right\} \tag{3}
\end{equation*}
$$

Proof. Denote by Π^{\perp} the projection matrix defined such that $\Pi+\Pi^{\perp}=I$. We can then write

$$
\begin{align*}
u_{k}^{\top} \widetilde{L} u_{k}=u_{k}^{\top} \Pi L \Pi u_{k}=u_{k}^{\top}\left(I-\Pi^{\perp}\right) L\left(I-\Pi^{\perp}\right) u_{k} & =u_{k}^{\top} L u_{k}-2 u_{k}^{\top} L \Pi^{\perp} u_{k}+u_{k}^{\top} \Pi^{\perp} L \Pi^{\perp} u_{k} \\
& =\lambda_{k}-2 \lambda_{k} u_{k}^{\top} \Pi^{\perp} u_{k}+u_{k}^{\top} \Pi^{\perp} L \Pi^{\perp} u_{k} \tag{4}
\end{align*}
$$

Let us now consider term $u_{k}^{\top} \Pi^{\perp} L \Pi^{\perp} u_{k}$, where for compactness we set $y=\Pi^{\perp} u_{k}$.

$$
\begin{equation*}
y^{\top} L y=\sum_{e_{i j} \in \mathcal{E}} w_{i j}(y(i)-y(j))^{2}=\underbrace{\sum_{e_{i j} \in \mathcal{E}_{F}} w_{i j}(y(i)-y(j))^{2}}_{T_{1}}+\underbrace{\sum_{v_{i} \in \mathcal{V}_{F}} \sum_{v_{j} \notin \mathcal{V}_{F}} w_{i j} y(i)^{2}}_{T_{2}} . \tag{5}
\end{equation*}
$$

In the last step above, we exploited the fact that $y(i)=0$ whenever $v_{i} \notin \mathcal{V}_{F}$.
Since \mathcal{E}_{F} is a matching of \mathcal{E}, any coarsening that occurs involves a merging of two adjacent vertices v_{i}, v_{j} with $(\Pi x)(i)=(\Pi x)(j)$, implying that for every $e_{i j} \in \mathcal{E}_{F}$:

$$
(y(i)-y(j))^{2}=\left(\left(\Pi^{\perp} u_{k}\right)(i)+\left(\Pi u_{k}\right)(i)-\left(\Pi^{\perp} u_{k}\right)(j)-\left(\Pi u_{k}\right)(j)\right)^{2}=(x(i)-x(j))^{2}
$$

and therefore

$$
\begin{equation*}
T_{1}=\sum_{e_{i j} \in \mathcal{E}} b_{i j} w_{i j}\left(u_{k}(i)-u_{k}(j)\right)^{2} \tag{6}
\end{equation*}
$$

with $b_{i j}$ a Bernoulli random variable indicating whether $e_{i j} \in \mathcal{E}_{F}$. For T_{2}, notice that the terms in the sum correspond to boundary edges and, moreover, whenever $e_{i j} \in \mathcal{E}_{F}$ all vertices adjacent to v_{i} and v_{j} do not belong in \mathcal{V}_{F}. Another way to express T_{2} therefore is

$$
\begin{align*}
T_{2} & =\sum_{e_{i j} \in \mathcal{E}} b_{i j}\left(y(i)^{2} \sum_{e_{i \ell} \in \mathcal{E}, e_{i \ell} \neq e_{i j}} w_{i \ell}+y(j)^{2} \sum_{e_{j \ell} \in \mathcal{E}, e_{j \ell} \neq e_{i j}} w_{j \ell}\right) \\
& =\sum_{e_{i j} \in \mathcal{E}} b_{i j}\left(\left(u_{k}(i)-\frac{u_{k}(i)+u_{k}(j)}{2}\right)^{2}\left(d_{i}-w_{i j}\right)+\left(u_{k}(j)-\frac{u_{k}(i)+u_{k}(j)}{2}\right)^{2}\left(d_{j}-w_{i j}\right)\right) \\
& =\sum_{e_{i j} \in \mathcal{E}} b_{i j} w_{i j}\left(u_{k}(i)-u_{k}(j)\right)^{2} \frac{d_{i}+d_{j}-2 w_{i j}}{4 w_{i j}} . \tag{7}
\end{align*}
$$

A similar result also holds for the remaining term $u_{k}^{\top} \Pi^{\perp} u_{k}=\left\|\Pi^{\perp} u_{k}\right\|_{2}^{2}$ of (4):

$$
\begin{align*}
\left\|\Pi^{\perp} u_{k}\right\|_{2}^{2} & =\sum_{e_{i j} \in \mathcal{E}} b_{i j}\left(\left(u_{k}(i)-\frac{u_{k}(i)+u_{k}(j)}{2}\right)^{2}+\left(u_{k}(i)-\frac{u_{k}(i)+u_{k}(j)}{2}\right)^{2}\right) \\
& =\sum_{e_{i j} \in \mathcal{E}} b_{i j} w_{i j}\left(u_{k}(i)-u_{k}(j)\right)^{2} \frac{1}{2 w_{i j}} . \tag{8}
\end{align*}
$$

If we substitute (6), (7), and (8) into (4) we find that

$$
\begin{align*}
u_{k}^{\top} \widetilde{L} u_{k}-\lambda_{k} & =\sum_{e_{i j} \in \mathcal{E}} b_{i j} w_{i j}\left(u_{k}(i)-u_{k}(j)\right)^{2}\left(1+\frac{d_{i}+d_{j}-2 w_{i j}}{4 w_{i j}}-\frac{\lambda_{k}}{w_{i j}}\right) \\
& =\frac{1}{4} \sum_{e_{i j} \in \mathcal{E}} b_{i j} w_{i j}\left(u_{k}(i)-u_{k}(j)\right)^{2}\left(\frac{d_{i}+d_{j}+2\left(w_{i j}-2 \lambda_{k}\right)}{w_{i j}}\right) \tag{9}
\end{align*}
$$

and furthermore

$$
\begin{equation*}
\mathbf{E}\left[u_{k}^{\top} \widetilde{L} u_{k}\right]-\lambda_{k}=\frac{1}{4} \sum_{e_{i j} \in \mathcal{E}} P\left(e_{i j} \in \mathcal{E}_{F}\right)\left(\frac{d_{i}+d_{j}+2\left(w_{i j}-2 \lambda_{k}\right)}{w_{i j}}\right) w_{i j}\left(u_{k}(i)-u_{k}(j)\right)^{2} \tag{10}
\end{equation*}
$$

The expression above is always smaller than

$$
\begin{equation*}
\mathbf{E}\left[u_{k}^{\top} \widetilde{L} u_{k}\right]-\lambda_{k} \leq \frac{\lambda_{k}}{4} \max _{e_{i j} \in \mathcal{E}}\left\{P\left(e_{i j} \in \mathcal{E}_{F}\right) \frac{d_{i}+d_{j}+2\left(w_{i j}-2 \lambda_{k}\right)}{w_{i j}}\right\}=\frac{\lambda_{k}}{4} \vartheta_{k}(T, \phi) \tag{11}
\end{equation*}
$$

where $\vartheta_{k}(T, \phi)$ is a function of the sampling probabilities, the eigenvalue λ_{k}, and the degree distribution of G. Noticing that (9) is a non-negative random variable whenever $\lambda_{k} \leq 0.5 \min _{e_{i j} \in \mathcal{E}} \frac{d_{i}+d_{j}}{2}+w_{i j} / 2$ (the condition is equivalent to $d_{i}+d_{j}+2\left(w_{i j}-2 \lambda_{k}\right)>0$ implying that $u_{k}^{\top} \widetilde{L} u_{k}-\lambda_{k}$ is a sum of non-negative terms) and using Markov's inequality, we find that

$$
\begin{equation*}
P\left(u_{k}^{\top} \widetilde{L} u_{k} \geq \lambda_{k}(1+\epsilon)\right)=P\left(\frac{u_{k}^{\top} \widetilde{L} u_{k}-\lambda_{k}}{\lambda_{k}} \geq \epsilon\right) \leq \frac{\mathbf{E}\left[u_{k}^{\top} \widetilde{L} u_{k}\right]-\lambda_{k}}{\epsilon \lambda_{k}} \leq \frac{\vartheta_{k}(T, \phi)}{4 \epsilon} \tag{12}
\end{equation*}
$$

which gives the desired probability bound.

The RSS constant therefore depends on the probability that each edge $e_{i j}$ is contracted. This is given by: Lemma 2.2. At the termination of $R E C$, each edge $e_{i j}$ of \mathcal{E} can be found in \mathcal{E}_{F} with probability

$$
\begin{equation*}
p_{i j} \frac{1-e^{-T P_{i j}}}{P_{i j}} \leq P\left(e_{i j} \in \mathcal{E}_{F}\right)=P\left(b_{i j}=1\right) \leq p_{i j} \frac{1-e^{-T P_{i j}}}{1-e^{-P_{i j}}} \tag{13}
\end{equation*}
$$

where $p_{i j}=\phi_{i j} / \Phi$ and $P_{i j}=\sum_{e_{p q} \in \mathcal{N}_{i j}} p_{p q}$.
Proof. The event $X_{i j}(t)$ that edge $e_{i j}$ is still in the candidate set \mathcal{C} at the end of the t-th iteration is

$$
\begin{align*}
P\left(X_{i j}(t)\right) & =P\left(X_{i j}(t-1) \cap\left\{e_{i j} \text { is not selected at } t\right\}\right) \\
& =P\left(X_{i j}(t-1)\right) \prod_{p q \in \mathcal{N}_{i j}}\left(1-p_{p q}\right)=\prod_{\tau=1}^{t}\left(\prod_{p q \in \mathcal{N}_{i j}}\left(1-p_{p q}\right)\right)=a_{i j}^{t} . \tag{14}
\end{align*}
$$

Therefore, the probability that $e_{i j}$ is selected after T iterations can be written as

$$
\begin{align*}
P\left(e_{i j} \in \mathcal{E}_{F}\right) & =\sum_{t=1}^{T} P\left(e_{i j} \text { is selected at } t\right) \\
& =\sum_{t=1}^{T} p_{i j} P\left(X_{i j}(t-1)\right) \\
& =p_{i j} \sum_{t=0}^{T-1} a_{i j}^{t}=p_{i j} \frac{1-a_{i j}^{T}}{1-a_{i j}} \tag{15}
\end{align*}
$$

According to the Weierstrass product inequality

$$
\begin{equation*}
a_{i j}=\prod_{e_{p q} \in \mathcal{N}_{i j}}\left(1-p_{p q}\right) \geq 1-\sum_{e_{p q} \in \mathcal{N}_{i j}} p_{p q} \tag{16}
\end{equation*}
$$

and since the function $f(x)=\left(1-x^{T}\right) /(1-x)$ is monotonically increasing in $[0,1]$ and setting $P_{i j}=$ $\sum_{e_{p q} \in \mathcal{N}_{i j}} p_{p q}$ we have that

$$
\frac{1-a_{i j}^{T}}{1-a_{i j}} \geq \frac{1-\left(1-P_{i j}\right)^{T}}{P_{i j}}=\frac{1-e^{\log \left(1-P_{i j}\right) T}}{P_{i j}} \geq \frac{1-e^{-T P_{i j}}}{P_{i j}}
$$

where the last step takes advantage of the series expansion $\log (1-p)=-\sum_{i=1}^{\infty} p^{i} / i \leq-p$. Similarly, for the upper bound

$$
\begin{equation*}
a_{i j}=\prod_{e_{p q} \in \mathcal{N}_{i j}}\left(1-p_{p q}\right)=e^{\log \left(\prod_{e_{p q} \in \mathcal{N}_{i j}}\left(1-p_{p q}\right)\right)}=e^{\sum_{e_{p q} \in \mathcal{N}_{i j}} \log \left(1-p_{p q}\right)} \leq e^{-\sum_{e_{p q} \in \mathcal{N}_{i j}} p_{p q}}=e^{-P_{i j}} \tag{17}
\end{equation*}
$$

and therefore $\frac{1-a_{i j}^{T}}{1-a_{i j}} \leq \frac{1-e^{-T P_{i j}}}{1-e^{-P_{i j}}}$, as claimed.
Based on Lemma 2.2, the expression of $\vartheta_{k}(T, \phi)$ is

$$
\begin{align*}
\vartheta_{k}(T, \phi) & \leq \max _{e_{i j} \in \mathcal{E}}\left\{p_{i j} \frac{1-e^{-T P_{i j}}}{1-e^{-P_{i j}}} \frac{d_{i}+d_{j}+2\left(w_{i j}-2 \lambda_{k}\right)}{w_{i j}}\right\} \\
& \leq \max _{e_{i j} \in \mathcal{E}}\left\{P_{i j} \frac{1-e^{-T P_{i j}}}{1-e^{-P_{i j}}}\right\} \max _{e_{i j} \in \mathcal{E}}\left\{\frac{p_{i j}}{P_{i j}} \frac{d_{i}+d_{j}+2\left(w_{i j}-2 \lambda_{k}\right)}{w_{i j}}\right\} \tag{18}
\end{align*}
$$

The function $f\left(P_{i j}\right)=P_{i j} \frac{1-e^{-T P_{i j}}}{1-e^{-P_{i j}}}$ has a positive derivative in the domain of interest and thus it attains its maximum at $P_{\max }$ when $P_{i j}$ is also maximized. Setting $c_{1}=N P_{\max }$ and after straightforward algebraic manipulation, we find:

$$
\begin{align*}
\vartheta_{k}(T, \phi) & \leq P_{\max } \frac{1-e^{-c_{1} T / N}}{1-e^{-P_{\max }}} \max _{e_{i j} \in \mathcal{E}}\left\{\frac{p_{i j}}{P_{i j}} \frac{d_{i}+d_{j}+2\left(w_{i j}-2 \lambda_{k}\right)}{w_{i j}}\right\} \\
& =P_{\max } \frac{1-e^{-c_{1} T / N}}{1-e^{-P_{\max }}} \max _{e_{i j} \in \mathcal{E}}\left\{\frac{\phi_{i j}}{\sum_{e_{p q} \in \mathcal{N}_{i j}} \phi_{p q}}\left(\frac{\sum_{e_{p q} \in \mathcal{N}_{i j}} w_{p q}}{w_{i j}}+3-\frac{4 \lambda_{k}}{w_{i j}}\right)\right\} . \tag{19}
\end{align*}
$$

For any potential function and graph such that $P_{\max }=O(1 / N)$, at the limit $c_{2}=\frac{P_{\max }}{1-e^{-P_{\max }}} \rightarrow 1$ and the above expression reaches

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \vartheta_{k}(T, \phi) \leq\left(1-e^{-c_{1} T / N}\right) \max _{e_{i j} \in \mathcal{E}}\left\{\frac{\phi_{i j}}{\sum_{e_{p q} \in \mathcal{N}_{i j}} \phi_{p q}}\left(\frac{\sum_{e_{p q} \in \mathcal{N}_{i j}} w_{p q}}{w_{i j}}+3-\frac{4 \lambda_{k}}{w_{i j}}\right)\right\} \tag{20}
\end{equation*}
$$

The final probability estimate is achieved by using Lemma 2.1 along with the derived bound on $\vartheta_{k}(T, \phi)$.

3 Proof of Theorem 4.2

We adopt a variational approach and reason that, since

$$
\begin{equation*}
\tilde{\lambda}_{k}=\min _{U} \max _{x}\left\{\frac{x^{\top} L x}{x^{\top} x}, x \in U \text { and } x \neq 0|\operatorname{dim}(U)=k| x=\Pi x\right\} \tag{21}
\end{equation*}
$$

for any matrix Z the following inequality holds

$$
\begin{equation*}
\tilde{\lambda}_{k} \leq \max _{x}\left\{\left.\frac{x^{\top} L x}{x^{\top} x} \right\rvert\, x \in \operatorname{span}(Z) \text { and } x \neq 0\right\} \tag{22}
\end{equation*}
$$

as long as the columnspace of Z is of dimension k and does not intersect with the nullspace of Π.
Write \widetilde{U}_{k-1} to denote the $n \times(k-1)$ matrix with the $k-1$ first eigenvectors of L_{c} and further set $Y_{k-1}=C^{\top} \widetilde{U}_{k-1}$. We will consider the $N \times k$ matrix Z with

$$
Z(:, i)=\left\{\begin{array}{ll}
C^{\top} \widetilde{u}_{i} & \text { if } i<k \tag{23}\\
z & \text { if } i=k,
\end{array} \quad \text { where } \quad z=\Pi\left(I-Y_{k-1} Y_{k-1}^{\top}\right) u_{k}\right.
$$

It can be confirmed that Z 's columnspace meets the necessary requirements. Now, we can express any $x \in \operatorname{span}(Z)$ as $x=Y_{k-1} a+b z=\Pi\left(Y_{k-1} a+b z\right)$ with $\|a\|^{2}+b^{2}\|z\|^{2}=1$ and therefore

$$
\begin{align*}
x^{\top} L x & =\left(a^{\top} Y_{k-1}^{\top}+b z^{\top}\right) \Pi L \Pi\left(Y_{k-1} a+b z\right) \\
& =\left(a^{\top} Y_{k-1}^{\top}+b z^{\top}\right) \widetilde{L}\left(Y_{k-1} a+b z\right) \\
& =a^{\top} Y_{k-1}^{\top} \widetilde{L} Y_{k-1} a+b^{2} z^{\top} \widetilde{L} z+2 b z^{\top} \widetilde{L} Y_{k-1} a \\
& =a^{\top} Y_{k-1}^{\top} \widetilde{L} Y_{k-1} a+b^{2} z^{\top} \widetilde{L} z, \tag{24}
\end{align*}
$$

where in the last step we exploited the fact that, by construction, z does not lie in the span of \widetilde{U}_{k-1} (matrix \widetilde{L} does not rotate its own eigenvectors). Since $Y_{k-1} a \in \operatorname{span}\left(\widetilde{U}_{k-1}\right)$, the first term in the equation above in bounded by $\widetilde{\lambda}_{k-1}$ and the equality is attained only when $a(k-1)=1$ (in which case b must be zero). By the variational argument however, we are certain that the upper bound in 22 has to be at least as large as $\widetilde{\lambda}_{k-1}$, implying that

$$
\begin{equation*}
\tilde{\lambda}_{k} \leq \max \left\{\tilde{\lambda}_{k-1}, \frac{z^{\top} L z}{z^{\top} z}\right\} \tag{25}
\end{equation*}
$$

with the two cases corresponding to the choices $a(k-1)=1$ and $b=1$, respectively. In addition, we have that

$$
\begin{equation*}
z^{\top} L z=u_{k}^{\top}\left(I-Y_{k-1} Y_{k-1}^{\top}\right) \Pi L \Pi\left(I-Y_{k-1} Y_{k-1}^{\top}\right) u_{k}=\sum_{i \geq k} \widetilde{\lambda}_{i}\left(\widetilde{u}_{i}^{\top} C u_{k}\right)^{2} \tag{26}
\end{equation*}
$$

and $\|z\|^{2}=\left\|\Pi\left(I-Y_{k-1} Y_{k-1}^{\top}\right) u_{k}\right\|^{2}=\sum_{i \geq k}\left(\widetilde{u}_{i}^{\top} C u_{k}\right)^{2}$, meaning that

$$
\begin{equation*}
\frac{z^{\top} \widetilde{L} z}{z^{\top} z}=\frac{\sum_{i \geq k} \widetilde{\lambda}_{i}\left(\widetilde{u}_{i}^{\top} C u_{k}\right)^{2}}{\sum_{i \geq k}\left(\widetilde{u}_{i}^{\top} C u_{k}\right)^{2}} \leq \frac{u_{k}^{\top} \widetilde{L} u_{k}}{\sum_{i \geq k}\left(\widetilde{u}_{i}^{\top} C u_{k}\right)^{2}} \tag{27}
\end{equation*}
$$

and therefore the relation $\tilde{\lambda}_{k} \leq \max \left\{\tilde{\lambda}_{k-1},\left(1+\epsilon_{k}\right) \frac{\lambda_{k}}{\sum_{i \geq k} \theta_{k i}}\right\}$ holds whenever $k \leq K$.

4 Proof of Theorem 4.3

Proof. Li's Lemma [2] allows to express ϑ_{k} based on the squared inner products $\left(\widetilde{u}_{j}^{\top} C u_{i}\right)^{2}$ of the eigenvectors u_{i} of the Laplacian L and the lifted eigenvectors $C^{\top} \widetilde{u}_{j}$ of the coarsened Laplacian L_{c}.

$$
\begin{equation*}
\vartheta_{k}=\left\|\sin \Theta\left(U_{k}, C^{\top} \widetilde{U}_{k}\right)\right\|_{F}^{2}=\left\|\widetilde{U}_{k^{\perp}}^{\top} C U_{k}\right\|_{F}^{2}=\sum_{i \leq k} \sum_{j>k}\left(\widetilde{u}_{j}^{\top} C u_{i}\right)^{2} \tag{28}
\end{equation*}
$$

Moreover, the summed RSS inequalities for each $i \leq k$ give:

$$
\begin{equation*}
\sum_{i \leq k}\left(1+\epsilon_{i}\right) \lambda_{i} \geq \sum_{i \leq k} u_{i}^{\top} \widetilde{L} u_{i}=\sum_{i \leq k} \sum_{j=1}^{n} \widetilde{\lambda}_{j}\left(\widetilde{u}_{j}^{\top} C u_{i}\right)^{2}=\sum_{j \leq k} \widetilde{\lambda}_{j} \sum_{i \leq k}\left(\widetilde{u}_{j}^{\top} C u_{i}\right)^{2}+\sum_{j>k} \widetilde{\lambda}_{j} \sum_{i \leq k}\left(\widetilde{u}_{j}^{\top} C u_{i}\right)^{2} \tag{29}
\end{equation*}
$$

To continue, we use the equality

$$
\begin{equation*}
\sum_{2 \leq j \leq k} \sum_{i \leq k}\left(\widetilde{u}_{j}^{\top} C u_{i}\right)^{2}=\sum_{2 \leq i \leq k}\left(\left\|\Pi u_{i}\right\|_{2}^{2}-\sum_{j>k}\left(\widetilde{u}_{j}^{\top} C u_{i}\right)^{2}\right) \tag{30}
\end{equation*}
$$

based on which

$$
\begin{equation*}
\tilde{\lambda}_{k+1} \sum_{j>k} \sum_{i \leq k}\left(\widetilde{u}_{j}^{\top} C u_{i}\right)^{2}+\tilde{\lambda}_{2} \sum_{2 \leq i \leq k}\left(\left\|\Pi u_{i}\right\|_{2}^{2}-\sum_{j>k}\left(\widetilde{u}_{j}^{\top} C u_{i}\right)^{2}\right) \leq \sum_{i \leq k}\left(1+\epsilon_{i}\right) \lambda_{i}=\sum_{2 \leq i \leq k}\left(1+\epsilon_{i}\right) \lambda_{i} \tag{31}
\end{equation*}
$$

Our first $\sin \Theta$ bound is obtained by using the inequality $\lambda_{2} \leq \widetilde{\lambda}_{2}$ and re-arranging the terms:

$$
\begin{equation*}
\left\|\sin \Theta\left(U_{k}, C^{\top} \widetilde{U}_{k}\right)\right\|_{F}^{2} \leq \sum_{2 \leq i \leq k} \frac{\left(1+\epsilon_{i}\right) \lambda_{i}-\lambda_{2}\left\|\Pi u_{i}\right\|_{2}^{2}}{\widetilde{\lambda}_{k+1}-\lambda_{2}} \tag{32}
\end{equation*}
$$

For the second bound, we instead perform the following manipulation

$$
\begin{align*}
\sum_{j \leq k} \widetilde{\lambda}_{j} \sum_{i \leq k}\left(\widetilde{u}_{j}^{\top} C u_{i}\right)^{2} \geq \sum_{j \leq k} \lambda_{j} \sum_{i \leq k}\left(\widetilde{u}_{j}^{\top} C u_{i}\right)^{2} & =\sum_{j \leq k} \lambda_{j}\left(1-\sum_{i>k}\left(\widetilde{u}_{j}^{\top} C u_{i}\right)^{2}\right) \\
& \geq \sum_{j \leq k} \lambda_{j}-\lambda_{k} \sum_{i \leq k}\left(\left\|\Pi^{\perp} u_{i}\right\|_{2}^{2}+\sum_{j \geq k}\left(\widetilde{u}_{j}^{\top} C u_{i}\right)^{2}\right) \tag{33}
\end{align*}
$$

which together with 28 and 29 results to

$$
\begin{equation*}
\left\|\sin \Theta\left(U_{k}, C^{\top} \widetilde{U}_{k}\right)\right\|_{F}^{2} \leq \sum_{i \leq k} \frac{\left(1+\epsilon_{i}\right) \lambda_{i}-\lambda_{i}+\lambda_{k}\left\|\Pi^{\perp} u_{i}\right\|_{2}^{2}}{\widetilde{\lambda}_{k+1}-\lambda_{k}}=\sum_{2 \leq i \leq k} \frac{\epsilon_{i} \lambda_{i}+\lambda_{k}\left\|\Pi^{\perp} u_{i}\right\|_{2}^{2}}{\widetilde{\lambda}_{k+1}-\lambda_{k}} \tag{34}
\end{equation*}
$$

The final bound is obtained as the minimum of 32 and (34).

5 Proof of Corollary 5.1

Proof. The proof follows a known argument in the analysis of spectral clustering first proposed by Boutsidis [1] and later adapted by Martin et al. 3]. In particular, these works proved that:

$$
\begin{equation*}
\mathcal{F}_{K}\left(\Psi, \widetilde{S}^{*}\right)^{1 / 2} \leq \mathcal{F}_{K}\left(\Psi, S^{*}\right)^{1 / 2}+2 \gamma_{K} \tag{35}
\end{equation*}
$$

with $\gamma_{K}=\|\Psi-\widetilde{\Psi} Q\|_{F}=\left\|U_{K}-C^{\top} \widetilde{U}_{K} Q\right\|_{F}$ and Q being some unitary matrix of appropriate dimensions. However, as demonstrated by Yu and coauthors [4], it is always possible to find a unitary matrix Q such that

$$
\begin{equation*}
\gamma_{K}^{2}=\left\|U_{K}-C^{\top} \widetilde{U}_{K} Q\right\|_{F}^{2} \leq 2\left\|\sin \Theta\left(U_{K}, C^{\top} \widetilde{U}_{K}\right)\right\|_{F}^{2} \leq 2 \sum_{k=2}^{K} \frac{\epsilon_{k} \lambda_{k}+\lambda_{K}\left\|\Pi^{\perp} u_{k}\right\|_{2}^{2}}{\delta_{K}} \tag{36}
\end{equation*}
$$

where the last inequality follows from Theorem 4.3 and $\widetilde{\lambda}_{K+1} \geq \lambda_{K+1}$. At this point, we could opt to take a union bound with respect to the events $\left\{\epsilon_{k} \geq \epsilon\right\}$ and $\left\{\left\|\Pi^{\perp} u_{k}\right\|_{2}^{2} \geq \epsilon\right\}$ using the results of Section 3 . A more careful analysis however follows the steps of the proof of Theorem 3.1 simultaneously for all terms:

$$
\begin{align*}
\sum_{k=2}^{K} \mathbf{E}\left[\epsilon_{k}\right] \lambda_{k} & +\lambda_{K} \mathbf{E}\left[\left\|\Pi^{\perp} u_{k}\right\|_{2}^{2}\right]=\sum_{k=2}^{K} \sum_{e_{i j} \in \mathcal{E}} P\left(e_{i j} \in \mathcal{E}_{F}\right) w_{i j}\left(u_{k}(i)-u_{k}(j)\right)^{2}\left[\frac{d_{i}+d_{j}+2 w_{i j}+2 \lambda_{K}-4 \lambda_{k}}{4 w_{i j}}\right] \\
& \leq \sum_{k=2}^{K} \lambda_{k} \max _{e_{i j} \in \mathcal{E}}\left\{P\left(e_{i j} \in \mathcal{E}_{F}\right)\left[\frac{d_{i}+d_{j}+2 w_{i j}+2 \lambda_{K}-4 \lambda_{k}}{4 w_{i j}}\right]\right\} \\
& \leq \sum_{k=2}^{K} \lambda_{k} P_{\max } \frac{1-e^{-T P_{\max }}}{1-e^{-P_{\max }}} \max _{e_{i j} \in \mathcal{E}}\left\{\frac{\phi_{i j}}{\sum_{e_{p q} \in \mathcal{N}_{i j}} \phi_{p q}}\left(\frac{\sum_{e_{p q} \in \mathcal{N}_{i j}} w_{p q}}{w_{i j}}+3+\frac{2 \lambda_{K}-4 \lambda_{k}}{w_{i j}}\right)\right\} \\
& =c_{2} \frac{1-e^{-c_{1} T / N}}{4} \sum_{k=2}^{K} \lambda_{k} \max _{e_{i j} \in \mathcal{E}}\left\{\frac{\phi_{i j}}{\sum_{e_{p q} \in \mathcal{N}_{i j}} \phi_{p q}}\left(\frac{\sum_{e_{p q} \in \mathcal{N}_{i j}} w_{p q}}{w_{i j}}+3+\frac{2 \lambda_{K}-4 \lambda_{k}}{w_{i j}}\right)\right\} \tag{37}
\end{align*}
$$

where as before $c_{1}=N P_{\max }$ and $c_{2}=P_{\max } /\left(1-e^{-P_{\max }}\right)$. Assuming further that a heavy-edge potential is used, N is sufficiently large, and G has bounded degree such that $c_{1}=4 \varrho_{\max }=O(1)$, the above simplifies to

$$
\begin{align*}
\mathbf{E}\left[\gamma_{K}^{2}\right] & \leq \frac{1-e^{-4 \varrho_{\max } T / N}}{2 \delta_{K}} \sum_{k=2}^{K} \lambda_{k}\left(1+\max _{e_{i j} \in \mathcal{E}}\left\{\frac{3 w_{i j}+2 \lambda_{K}-4 \lambda_{k}}{\sum_{e_{p q} \in \mathcal{N}_{i j}} w_{p q}}\right\}\right) \\
& \leq \frac{1-e^{-4 \varrho_{\max } T / N}}{2 \delta_{K}} \sum_{k=2}^{K} \lambda_{k}\left(1+\max _{e_{i j} \in \mathcal{E}}\left\{\frac{6+4 \lambda_{K}-8 \lambda_{k}}{d_{\mathrm{avg}} \varrho_{\min }}\right\}\right) \tag{38}
\end{align*}
$$

The last inequality used the relation $\min _{e_{i j}} \sum_{e_{p q} \in \mathcal{N}_{i j}} w_{p q}=\varrho_{\min } d_{\text {avg }} / 2$ and the fact that $w_{i j} \leq 1$. Setting $c_{3}=\frac{\sum_{k=2}^{K} \lambda_{k}^{2}}{\sum_{k=2}^{K} \lambda_{k}}$, gives

$$
\begin{equation*}
\mathbf{E}\left[\gamma_{K}^{2}\right] \leq \frac{1-e^{-4 \varrho_{\max } T / N}}{2 \delta_{K}}\left(\sum_{k=2}^{K} \lambda_{k}\right)\left(1+\frac{6+4 \lambda_{K}-8 c_{3}}{d_{\mathrm{avg}} \varrho_{\min }}\right) \tag{39}
\end{equation*}
$$

From Markov's inequality, then

$$
\begin{equation*}
P\left(\left[\mathcal{F}_{K}\left(\Psi, \widetilde{S}^{*}\right)^{1 / 2}-\mathcal{F}_{K}\left(\Psi, S^{*}\right)^{1 / 2}\right]^{2} \geq \epsilon \sum_{k=2}^{K} \frac{2 \lambda_{k}\left(1-e^{-4 \varrho_{\max } T / N}\right)}{\delta_{K}}\right) \leq \frac{1}{\epsilon}\left(1+\frac{6+4 \lambda_{K}-8 c_{3}}{d_{\mathrm{avg}} \varrho_{\min }}\right) \tag{40}
\end{equation*}
$$

The final result follows by the inequality $1-e^{-4 \varrho_{\max } T / N} \leq 4 r \varrho_{\max }$ (see $\sqrt{9}$) in the main document).

6 The MNIST digit graph

The following figure illustrates an instance of the clustering problem we considered. The graph is constructed from $N=1000$ images, each depicting a digit between 0 and 4 from the MNIST database. Contracted edges are shown in red.

References

[1] C. Boutsidis, P. Kambadur, and A. Gittens. Spectral clustering via the power method-provably. In International Conference on Machine Learning, pages 40-48, 2015.
[2] R.-C. Li. Relative perturbation theory:(ii) eigenspace variations. Technical report, 1994.
[3] L. Martin, A. Loukas, and P. Vandergheynst. Fast approximate spectral clustering for dynamic networks. arXiv preprint arXiv:1706.03591, 2017.
[4] Y. Yu, T. Wang, and R. J. Samworth. A useful variant of the davis-kahan theorem for statisticians. Biometrika, 102(2):315-323, 2014.

