
Supplementary Material for the Article “Accelerating Greedy

Coordinate Descent Methods”

1 Proofs in Section 2

Lemma 2.2
f(xk+1) ≤ f(yk) + 〈∇f(yk), sk+1 − yk〉+ n

2 ‖s
k+1 − yk‖2L .

Proof:

f(xk+1) ≤ f(yk)− 1
2L

j1
k

(
∇j1kf(yk)

)2
≤ f(yk)− 1

2n‖∇f(yk)‖2L−1

= f(yk) + 〈∇f(yk), sk+1 − yk〉+ n
2 ‖s

k+1 − yk‖2L ,

(1)

where the first inequality of (1) derives from the smoothness of f(·), and is a simple instance of
equation (8) of the paper using x = yk, i = j1k , and h = − 1

L
j1
k

∇j1kf(yk). The second inequality of

(1) follows from the definition of j1k which yields:

n

[
1
L
j1
k

(
∇j1kf(yk)

)2]
≥

n∑
i=1

1
Li

(
∇if(yk)

)2
=
∥∥∥∇f(yk)

∥∥∥2
L−1

.

The last equality of (1) follows by using the definition of sk+1 and rearranging terms.

Lemma 2.3

f(xk+1) ≤ (1− θk)f(xk) + θkf(x∗) +
nθ2k
2 ‖x

∗ − zk‖2L −
nθ2k
2 ‖x

∗ − tk+1‖2L . (2)

Proof: Recall that we can rewrite tk+1 as

tk+1 = arg min
z
〈∇f(yk), z − zk〉+ nθk

2 ‖z − z
k‖2L . (3)

1



Following from Lemma 2.2, we have

f(xk+1) ≤ f(yk) + 〈∇f(yk), sk+1 − yk〉+ n
2 ‖s

k+1 − yk‖2L

= f(yk) + θk

(
〈∇f(yk), tk+1 − zk〉+ nθk

2 ‖t
k+1 − zk‖2L

)
= f(yk) + θk

(
〈∇f(yk), x∗ − zk〉+ nθk

2 ‖x
∗ − zk‖2L −

nθk
2 ‖x

∗ − tk+1‖2L
)

= (1− θk)
(
f(yk) + 〈∇f(yk), xk − yk〉

)
+ θk

(
f(yk) + 〈∇f(yk), x∗ − yk〉

)
+
nθ2k
2 ‖x

∗ − zk‖2L −
nθ2k
2 ‖x

∗ − tk+1‖2L

≤ (1− θk)f(xk) + θkf(x∗) +
nθ2k
2 ‖x

∗ − zk‖2L −
nθ2k
2 ‖x

∗ − tk+1‖2L

(4)

where the first equality of (4) utilizes sk+1 − yk = θk(t
k+1 − zk). The second equality of (4)

follows as an application of the Three-Point-Property (Lemma 2.1) together with (3), where we set
φ(x) = 〈∇f(yk), x− zk〉 and h(x) = nθk

2 ‖x‖
2
L (whereby Dh(x, v) = nθk

2 ‖x− v‖
2
L). The third equality

of (4) is derived from yk = (1− θk)xk + θkz
k and rearranging the terms. And the last inequality of

(4) is an application of the gradient inequality at yk applied to xk and also to x∗.

Lemma 2.4

n
2 ‖x

∗ − zk‖2L − n
2 ‖x

∗ − tk+1‖2L = n2

2 ‖x
∗ − zk‖2L − n2

2 Ej2k

[
‖x∗ − zk+1‖2L

]
.

Proof:

n
2 ‖x

∗ − zk‖2L −
n
2 ‖x

∗ − tk+1‖2L = n
2

〈
tk+1 − zk, 2x∗ − 2zk

〉
L
− n

2

∥∥tk+1 − zk
∥∥2
L

= n2

2 Ej2k

[〈
zk+1 − zk, 2x∗ − 2zk

〉
L
−
∥∥zk+1 − zk

∥∥2
L

]
= n2

2 ‖x
∗ − zk‖2L −

n2

2 Ej2k

[
‖x∗ − zk+1‖2L

]
,

(5)

where the first and third equations above are straightforward arithmetic rearrangements, and the
second equation follows from the two easy-to-verify identities tk+1 − zk = nEj2k

[
zk+1 − zk

]
and∥∥tk+1 − zk

∥∥2
L

= nEj2k

[∥∥zk+1 − zk
∥∥2
L

]
.

2 Proofs in Section 3

Theorem 3.1.Consider the Accelerated Semi-Greedy Coordinate Descent method for the strongly
convex case (Algorithm 2 with rule (5) in the main paper for ASCD). If f(·) is coordinate-wise
L-smooth and µ-strongly convex with respect to ‖ · ‖L, it holds for all k ≥ 1 that:

Eξk

[
f(xk)− f∗ + n2

2 (a2 + b)‖zk − x∗‖2L
]
≤
(

1−
√
µ

n+
√
µ

)k (
f(x0)− f∗ + n2

2 (a2 + b)‖x0 − x∗‖2L
)
.

(6)

2



In order to prove Theorem 3.1, we first prove the following three lemmas:

Lemma 3.1.

a2‖x∗ − zk‖2L + b‖x∗ − yk‖2L = (a2 + b)‖x∗ − uk‖2L + a2b
a2+b
‖yk − zk‖2L .

Proof:

(a2 + b)‖x∗ − uk‖2L + a2b
a2+b
‖yk − zk‖2L

= (a2 + b)
(
‖x∗‖2L − 2〈x∗, uk〉L + ‖uk‖2L

)
+ a2b

a2+b
‖yk − zk‖2L

= (a2 + b)‖x∗‖2L − 2〈x∗, a2zk + byk〉L + 1
a2+b
‖a2zk + byk‖2L + a2b

a2+b
‖yk − zk‖2L

= (a2 + b)‖x∗‖2L − 2〈x∗, a2zk + byk〉L + a2‖zk‖2L + b‖yk‖2L

= a2‖x∗ − zk‖2L + b‖x∗ − yk‖2L ,

(7)

where the second equality utilizes uk = a2

a2+b
zk+ b

a2+b
yk and the other equalities are just mathematical

manipulations.

Lemma 3.2. Define tk+1 := uk − a
a2+b

1
nL
−1∇f(yk), then

‖x∗ − tk+1‖2L − ‖x∗ − uk‖2L = nEj2k

[
‖x∗ − zk+1‖2L − ‖x∗ − uk‖2L

]
Proof:

‖x∗ − tk+1‖2L − ‖x∗ − uk‖2L = 2〈x∗ − uk, uk − tk+1〉L + ‖uk − tk+1‖2L

= 2nEj2k

[
〈x∗ − uk, uk − zk+1〉L + ‖uk − zk+1‖2L

]
= nEj2k

[
‖x∗ − zk+1‖2L − ‖x∗ − uk‖2L

]
,

(8)

where the second equality is from the relationship of tk+1 = uk − a
a2+b

1
nL
−1∇f(yk) and zk+1 =

uk − a
a2+b

1
nL

j2
k

∇j2kf(yk)ej2k
, and the first and third equations are just rearrangement.

Lemma 3.3.
a2 ≤ (1− a)(a2 + b) .

Proof: Remember that b = µa
n2 and a > 0, thus the above inequality is equivalent to

a ≤ (1− a)(a+ µ
n2 ) .

Substituting a =
√
µ

n+
√
µ , the above inequality becomes

√
µ
n ≤

√
µ

n+
√
µ + µ

n2 .

3



We furnish the proof by noting
√
µ
n −

√
µ

n+
√
µ = µ

n(n+
√
µ) ≤

µ
n2 .

Proof of Theorem 3.1: Recall that tk+1 = uk − a
a2+b

1
nL
−1∇f(yk), then it is easy to check

that
tk+1 = arg min

z
a〈∇f(yk), z − zk〉+

n

2
a2‖z − zk‖2L +

n

2
b‖z − yk‖2L

by writing the optimality conditions of the right-hand side.

We have

f(xk+1)− f(yk)

≤ 〈∇f(yk), xk+1 − yk〉+ 1
2‖x

k+1 − yk‖2L

= − 1
2L

j1
k

(
∇j1kf(yk)

)2
≤ − 1

2n‖∇f(yk)‖2L−1

≤ a〈∇f(yk), tk+1 − zk〉+ n
2a

2‖tk+1 − zk‖2L

= a〈∇f(yk), x∗ − zk〉+ n
2a

2‖x∗ − zk‖2L −
n
2a

2‖x∗ − tk+1‖2L + n
2 b‖x

∗ − yk‖2L

−n
2 b‖y

k − tk+1‖2L −
n
2 b‖t

k+1 − x∗‖2L

≤ a〈∇f(yk), x∗ − zk〉+ n
2a

2‖x∗ − zk‖2L −
n
2a

2‖x∗ − tk+1‖2L + n
2 b‖x

∗ − yk‖2L −
n
2 b‖t

k+1 − x∗‖2L

= a〈∇f(yk), x∗ − zk〉+ n
2 (a2 + b)

(
‖x∗ − uk‖2L − ‖x∗ − tk+1‖2L

)
+ n

2
a2b
a2+b
‖yk − zk‖2L

= a〈∇f(yk), x∗ − zk〉+ n2

2 (a2 + b)Ej2k

[
‖x∗ − uk‖2L − ‖x∗ − zk+1‖2L

]
+ n

2
a2b
a2+b
‖yk − zk‖2L

≤ a〈∇f(yk), x∗ − zk〉+ n2

2 (a2 + b)Ej2k

[
‖x∗ − uk‖2L − ‖x∗ − zk+1‖2L

]
+ n2

2
a2b
a2+b
‖yk − zk‖2L

= a〈∇f(yk), x∗ − zk〉+ n2

2

(
(a2 + b)‖x∗ − uk‖2L + a2b

a2+b
‖yk − zk‖2L

)
− n2

2 (a2 + b)Ej2k
[
‖x∗ − zk+1‖2L

]
= a〈∇f(yk), x∗ − zk〉+ n2

2

(
a2‖x∗ − zk‖2L + b‖x∗ − yk‖2L

)
− n2

2 (a2 + b)Ej2k

[
‖x∗ − zk+1‖2L

]
,

(9)
where the first inequality is due to coordinate-wise smoothness, the first equality utilizes xk+1 = yk−
1
L
j1
k

∇j1kf(yk)ej1k
, the second inequality follows from the fact that j1k is the greedy coordinate of ∇f(yk)

in the ‖ · ‖L−1 norm, the third inequality follows from the basic inequality ‖v‖2L + ‖w‖2L−1 ≥ 2〈v, w〉
for all v, w, the second equality is from Three Point Property by noticing

tk+1 = arg min
z

a〈∇f(yk), z − zk〉+
n

2
a2‖z − zk‖2L +

n

2
b‖z − yk‖2L ,

the third equality follows from Lemma 3.1, and the fourth and sixth equalities each utilize Lemma
3.2.

4



On the other hand, by strong convexity we have

f(yk)− f(x∗) ≤ 〈∇f(yk), yk − x∗〉 − 1
2µ‖y

k − x∗‖2L

= 〈∇f(yk), yk − zk〉+ 〈∇f(yk), zk − x∗〉 − 1
2µ‖y

k − x∗‖2L

= 1−a
a 〈∇f(yk), xk − yk〉+ 〈∇f(yk), zk − x∗〉 − 1

2µ‖y
k − x∗‖2L

≤ 1−a
a

(
f(xk)− f(yk)

)
+ 〈∇f(yk), zk − x∗〉 − 1

2µ‖y
k − x∗‖2L,

(10)

where the second equality uses the fact that yk = (1− a)xk + azk and the last inequality is from
the gradient inequality.

By rearranging (10), we obtain

f(yk)− f(x∗) ≤ (1− a)
(
f(xk)− f(x∗)

)
+ a〈∇f(yk), zk − x∗〉 − 1

2
µa‖yk − x∗‖2L . (11)

Notice that b = µa
n2 and a2 ≤ (1− a)(a2 + b) following from Lemma 3.3. Thus summing up (9) and

(11) leads to

Ej2k

[
f(xk+1)− f(x∗) + n2

2 (a2 + b)‖zk+1 − x∗‖2L
]

≤ (1− a)
(
f(xk)− f(x∗)

)
+ n2

2 a
2‖zk − x∗‖2L

≤ (1− a)
(
f(xk)− f(x∗) + n2

2 (a2 + b)‖zk − x∗‖2L
)
,

(12)

which furnishes the proof using a telescoping series.

5



3 More Material on the Numerical Experiments

3.1 Implementation Detail

To be consistent with the notation in statistics and machine learning we use p to denote the
dimension of the variables in the optimization problems describing linear and logistic regression.
Then the per-iteration computation cost of AGCD and ASCD is dominated by three computations:
(i) p-dimensional vector operations (such as in computing yk using xk and zk), (ii) computation
of the gradient ∇f(·), and (iii) computation of the maximum (weighted) magnitude coordinate of
the gradient ∇f(·). [3] proposed an efficient way to avoid (i) by changing variables. Distinct from
the dual approaches discussed in [3], [4], and [1], here we only consider the primal problem in the
regime n > p, and therefore the cost of (ii) dominates the cost of (i) in these cases. For this reason
in our numerical experiments we use the simple implementation of ARCD proposed by Nesterov [6]
and which we adopt for AGCD and ASCD as well. We note that both the randomized methods and
the greedy methods can take advantage of the efficient calculations proposed in [3] as well.

For the linear regression experiments we focused on synthetic problem instances with different
condition numbers κ of the matrix XTX and where X is dense. In this case the cost for computation
(i) is O(p). And by taking advantage of the coordinate update structure, we can implement (ii) in
O(p) operations by pre-computing and storing XTX in memory, see [6] and [4] for further details.
The cost of (iii) is simply O(p).

The data (X, y) for the linear regression problems is generated as follows. For a given number
of samples n and problem dimension p (in the experiments we used n = 200 and p = 100), we
generate a standard Gaussian random matrix X̄ ∈ Rp×n with each entry drawn ∼ N(0, 1). In
order to generate the design matrix X with fixed condition number κ, we first decompose of X̄ as
X̄ = UT D̄V . Then we rescale the diagonal matrix D̄ of singular values linearly to D such that
the smallest singular value of D is 1√

κ
and the largest singular value of D is 1. We then compute

the final design matrix X = UTDV and therefore the condition number of XTX becomes κ. We
generate the response vector y using the linear model y ∼ N(Xβ∗, σ2), with true model β∗ chosen
randomly by a Gaussian distribution as well. For the cases with finite κ, we are able to compute the
strong convexity parameter µ exactly because the objective function is quadratic, and we use that µ
to implement our Algorithm Framework for strongly convex problems (Algorithm Framework 2).
When κ =∞, we instead use the smallest positive eigenvalue of XTX to compute µ.

For the logistic regression experiments, the cost of (ii) at each iteration of AGCD and ASCD can be
much larger than O(p) because there is no easy way to update the full gradient ∇f(·). For these
problems we have

∇f(β) = − 1

n
XTw(β) (13)

where X is the sample matrix with xi composing the i-th row, and w(β)i := 1
1+exp(yiβT xi)

. Notice

that calculating w(β) can be done using a rank 1-update with cost O(n). But calculating the matrix-
vector product XTw(β) will cost O(np), which dominates the cost of (i) and/or (iii). However, in
the case when X is a sparse matrix with density ρ, the cost can be decreased to O(ρnp).

6



0 50 100 150 200 250 300 350
running time

10−2

10−1

op
ti
m
al
it
y 
g
ap

ASCD
ARCD
AGCD

0 50000 100000 150000 200000 250000
number of iterations

10−2

10−1

op
ti
m
al
it
y 
g
ap

ASCD
ARCD
AGCD

Figure 1: Plots showing the optimality gap versus run-time (in seconds) on the left and versus the number
of iterations on the right, for the logistic regression instance madelon with µ̄ = 10−7, solved by ASCD, ARCD
and AGCD.

0 200 400 600 800 1000
running time

10−5

10−4

10−3

10−2

10−1

op
ti
m
al
it
y 
g
ap

ASCD
GCD
AGCD

Figure 2: Plots showing the optimality gap versus run-time (in seconds) for the logistic regression instance
madelon with µ̄ = 10−6, solved by ASCD, GCD and AGCD.

3.2 Comparing the Algorithms using Running Time and the Number of Itera-
tions

Figure 1 shows the optimality gap versus running time (seconds) in the left plot and and versus the
number of iterations in the right plot, logistic regression problem using the dataset a1a in LIBSVM
[2], with µ̄ = 10−7. Here we see that AGCD and ASCD are vastly superior to ARCD in terms of
the number of iterations, but not nearly as much in terms of running time, because one iteration of
AGCD or ASCD can be more expensive than an iteration of ARCD.

3.3 Comparing Accelerated Method with Non-Accelerated Method

Figure 2 shows the optimality gap versus running time (seconds) of GCD, ASCD and AGCD for
the logistic regression problem instance madelon in LIBSVM [2], with µ̄ = 10−6. Here we see that
ASCD and AGCD are superior to non-accelerated GCD.

7



3.4 Numerical Results for Logistic Regression with Other Datasets

We present numerical results for logistic regression problems for several other datasets in LIBSVM
solved by ASCD, ARCD and AGCD in Figure 3. Here we see that AGCD always has superior
performance as compared to ASCD and ARCD, and ASCD outperforms ARCD in most of the
instances.

4 Regarding Connections with a Concurrent Paper [5]

In a concurrent paper [5], the authors develop computational theory for matching pursuit algorithms,
which can be viewed as a generalized version of greedy coordinate descent where the directions
do not need to form an orthogonal basis. The paper also develops an accelerated version of the
matching pursuit algorithms, which turns out to be equivalent to the algorithm ASCD discussed
here in the special case where the chosen directions are orthogonal. Although the focus in [5] and in
our paper are different – [5] is more focused on (accelerated) greedy direction updates along a certain
linear subspace whereas our focus is on when and how one can accelerate greedy coordinate updates
– both of the works share a similar spirit and similar approaches in developing accelerated methods.
Moreover, both works use a decoupling of the coordinate update for the {xk} sequence (with a
greedy rule) and the {zk} sequence (with a randomized rule). In fact, [5] is consistent with the
argument in our paper as to why one cannot accelerate greedy coordinate descent in general.

8



Dataset µ̄ = 10−3 µ̄ = 10−5 µ̄ = 10−7 µ̄ = 0

heart

0 2 4 6 8 10

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

0 2 4 6 8 10

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

0 2 4 6 8 10

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

0 2 4 6 8 10

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

ASCD
ARCD
AGCD

madelon

0 200 400 600 800 1000

10−3

10−2

10−1

0 200 400 600 800 1000

10−7

10−6

10−5

10−4

10−3

10−2

10−1

0 200 400 600 800 1000

10−4

10−3

10−2

10−1

0 200 400 600 800 1000
10−7

10−6

10−5

10−4

10−3

10−2

10−1 ASCD
ARCD
AGCD

rcv1

0 200 400 600 800 1000

10−3

10−2

10−1

100

0 200 400 600 800 1000
10−4

10−3

10−2

10−1

100

0 200 400 600 800 1000
10−4

10−3

10−2

10−1

100

0 200 400 600 800 1000

3×10−1

4×10−1

6×10−1

ASCD
ARCD
AGCD

url

0 2500 5000 7500 10000 12500 15000 17500 20000

10−2

10−1

0 2500 5000 7500 10000 12500 15000 17500 20000

10−2

10−1

0 2500 5000 7500 10000 12500 15000 17500 20000

10−2

10−1

0 2500 5000 7500 10000 12500 15000 17500 20000

10−1

ASCD
ARCD
AGCD

Figure 3: Plots showing the optimality gap versus run-time (in seconds) for some other logistic regression
instances in LIBSVM, solved by ASCD, ARCD and AGCD.

9



References

[1] Zeyuan Allen-Zhu, Zheng Qu, Peter Richtarik, and Yang Yuan, Even faster accelerated coordinate
descent using non-uniform sampling, International Conference on Machine Learning, 2016.

[2] Chih-Chung Chang and Chih-Jen Lin, Libsvm: a library for support vector machines, ACM
transactions on intelligent systems and technology (TIST) 2 (2011), no. 3, 27.

[3] Yin Tat Lee and Aaron Sidford, Efficient accelerated coordinate descent methods and faster
algorithms for solving linear systems, Proceedings of the 2013 IEEE 54th Annual Symposium on
Foundations of Computer Science (Washington, DC, USA), FOCS ’13, IEEE Computer Society,
2013, pp. 147–156.

[4] Qihang Lin, Zhaosong Lu, and Lin Xiao, An accelerated randomized proximal coordinate gra-
dient method and its application to regularized empirical risk minimization, SIAM Journal on
Optimization 25 (2015), no. 4, 2244–2273.

[5] Francesco Locatello, Anant Raj, Sai Praneeth Reddy, Gunnar Rätsch, Bernhard Schölkopf,
Sebastian U Stich, and Martin Jaggi, Revisiting first-order convex optimization over linear
spaces, arXiv preprint arXiv:1803.09539 (2018).

[6] Yu Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems,
SIAM Journal on Optimization 22 (2012), no. 2, 341–362.

10


