
Mixed batches and symmetric discriminators for GAN training

7. Supplementary material
In what follows, we aim at proving a universal approximation theorem for the class of permutation invariant neural networks
we have defined. To ease readings, products, sums and real function applications are assumed to be broadcasted when need
be. Throughout the paper the batch dimension n is constant and ommited from set indices.
Definition 1. A function f : Rn×k 7→ Rl is symmetric if for any permutation of indexes σ and for all x ∈ Rn×k,
f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn). The set of continuous symmetric functions from Rn×k to Rl is denoted by Ilk
Definition 2. A function f : Rn×k 7→ Rn×l is permutation equivariant if for any permutation of indexes σ and for al x ∈ Rn,
f(xσ(1), . . . , xσ(n)) = f(x)σ(1), . . . , f(x)σ(n).

When symmetric functions and permutation equivariant functions are restricted to a compact, we assume that the compact
itself is symmetric.

In what follows, we use ρ as a reducing operator on vectors defined for x ∈ Rn×k by

ρ(x)j = 1
n

n∑
i=1

xi,j . (15)

Definition 3. Let the sets Elk be sets that contain permutation equivariant neural networks from Rn×k to Rn×l, recursively
defined thus:

• For all k ∈ N, the identity function on Rn×k belongs to Ekk .

• For all f ∈ Ekr , Γ ∈ Rl×k, Λ ∈ Rl×k and β ∈ Rl, and for act, a sigmoid activation function, g defined as

g(x)i,j =
k∑
p=1

Γj,pact(f(x))i,p +
k∑
p=1

Λj,pρ(act ◦ f(x))p + βj) (16)

is in Elr.

The number of layers of the network is defined as the induction depth of the previous construction. The set of thus constructed
permutation equivariant neural networks with number of layers L is denoted by E(L)lk. Note that this class of function is
trivially stable by composition, i.e. if g1 ∈ El2l1 and g2 ∈ El3l2 , the g2 ◦ g1 ∈ El3l1 .

Definition 4. Let I lk be a set containing symmetric neural networks from Rn×k to Rl defined as

I lk = ρ(Elk). (17)

We have constructed sets I lk, containing permutation invarient networks. We now show that the way we they are constructed
is not too restictive, i.e. that any analytical symmetric function can be approximated with arbitrary precision by a sufficiently
expressive network of our construct. In other words we aim at proving Theorem 1 2.
Theorem 2. For all n, k, l and for all compact K, I lk

∣∣
K

is dense in Ilk
∣∣
K

.

The first step of the proof is to show that the closure of I lk
∣∣
K

is a ring, i.e. that it is stable by sum, product and that each
element has an inverse for +, as well as a vectorial space, making it an algebra. The second step is to prove that this closure
contains a generative familly of the set of all polynomials that operate symmetrically on the batch dimension and because
symmetric polynomials are dense in the set of all symmetric functions, this proves the theorem.

Lemma 1. If f1 ∈ El2l1
∣∣∣
K

and f2 ∈ El3l2
∣∣∣
f1(K)

then f2 ◦ f1 ∈ El3l1
∣∣∣
K

.

Proof. Let ε > 0, f2 is continuous on a compact set, thus uniformly continuous, and there exists an η > 0 such that
‖x− x′‖ < η implies ‖f2(x)− f2(x′)‖ < ε

2 . Now let g1 ∈ El2l1
∣∣∣
K

be such that ‖g1 − f1‖∞ ≤ η and g2 ∈ El3l2
∣∣∣
K

such that

‖g2 − f2‖∞ ≤ ε
2 , then, for x in K

‖f2 ◦ f1(x)− g2 ◦ g1(x)‖ ≤ ‖f2 ◦ f1(x)− g2 ◦ f1(x)‖+ ‖g2 ◦ f1(x)− g2 ◦ g1(x)‖
≤ ε
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Lemma 2. For any continuous functions g : Rk 7→ Rl, the restriction of the function G : Rn×k 7→ Rn×k, defined as
G(x) = (g(x1), . . . , g(xn)), to a compact K is in Elk

∣∣
K

. More precisely, for all L ≥ 2, the restriction of G to K is in

E(L)lk
∣∣
K

.

Proof. This is a consequence of the neural network universal approximation theorem, as stated e.g. in (Cybenko, 1989).

Lemma 3. If f1 ∈ El1k
∣∣∣
K

, f2 ∈ El2k
∣∣∣
K

and f1 and f2 have the same number of layers (i.e. they have the same induction

depth), then concat1(f1, f2) ∈ El1,l2k

∣∣∣
K

, with

concat1(x, y)i,j =
{
xi,j if j ≤ l1
yi,j−l1 otherwise

(18)

Proof. By induction on the number of layers L,

• if L = 0, the result is clear.

• if L > 0, let g1, Γ1, Λ1 and β1 as well as g2, Γ2, Λ2 and β2 be the parameters associated to f1 and f2, then, by
induction, concat1(g1, g2) is a permutation equivariant network, and concat1(f1, f2) is obtained by setting Γ to be the
block diagonal matrix obtained with Γ1 and Γ2, Λ, the block diagonal matrix obtained with Λ1 and Λ2, and β the
concatenation of both β’s.

Lemma 4. If f1 ∈ El1k
∣∣∣
K

, f2 ∈ El2k
∣∣∣
K

, then concat1(f1, f2) ∈ El1+l2
k

∣∣∣
K

.

Proof. Let ε > 0, let g1 ∈ El1k
∣∣∣
K

and g2 ∈ El2k
∣∣∣
K

be such that ‖g1−f1‖∞ ≤ ε
4 and ‖g2−f2‖∞ ≤ ε

4 . Denote by L1 and L2

the numbers of layers of g1 and g2. We assume L1 ≥ L2 without loss of generality. By lemma 2, there exist h1 ∈ El1l1
∣∣∣
K

and

h2 ∈ El2l2
∣∣∣
K

with h1 of depth 2 and h2 of depth L1−L2 + 2 such that ‖h1− Id‖∞ ≤ ε
4 on g1(K) and ‖h2− Id‖∞ ≤ ε

4 on

g2(K). The networks h1 ◦g1 and h2 ◦g2 have the same number of layers, consequently, concat1(h1 ◦g1, h2 ◦g2) ∈ El1,l2k

∣∣∣
K

.
Besides,

‖concat1(f1, f2)− concat1(h1 ◦ g1, h2 ◦ g2)‖∞ (19)
≤‖f1 − g1‖∞ + ‖h1 ◦ g1 − g1‖∞ + ‖f2 − g2‖∞ + ‖h2 ◦ g2 − g2‖∞ (20)
≤ε (21)

yielding the result.

Lemma 5. If f1 and f2 are in Elk
∣∣
K

, then f1 + f2 is too.

Proof. By lemma 3, concat1(f1, f2) is in E2l
k

∣∣
K

. Consider the layer g, with kernels Γi,j =
{

1 if j = i or j = k + i

0 otherwise
,

1 ≤ i ≤ l, 1 ≤ j ≤ 2l, Λ = 0, β = 0. By lemma 1, as both concat1(f1, f2) and g are in closures of permutation equivariant
networks, their composition is too. This composition is act(f1 + f2). By the universal approximation theorem act−1 is also
in the closure so f1 + f2 is in the closure.

More generally, following similar reasonings, closures of permutation equivariant networks are vectorial spaces. It follows
that closures of permutation invariant networks are vectorial spaces too.
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Lemma 6. If f ∈ I lk
∣∣
K

, then F defined by
F (x)i,j = f(x)j (22)

for all i, j, is in Elk
∣∣
K

Proof. By definition, for any ε > 0, there exists a G in Elk
∣∣
K

such that f and ρ(G) are at distance at most ε2 . Let α be a non
zero real number such that act−1(αG(x)) is well defined for any x ∈ K. Consider the equivariant layer

m(x)i,j = α−1ρ(act(x))j . (23)

Let η1 be a positive real number, and Lη1 be a compact set that contains both act−1(αG(K)) and any ball of radius η1
contained in this set. m is uniformly continuous on Lη1 , and consequently there exists an η2 such that if x and y are at
distance at most η2, m(x) and m(y) are at distance at most ε2 . Now, by composition and the universal approximation
theorem, let h ∈ Elk be such that h and act−1(αG) are at distance at most min(η1, η2). Then m ◦ act−1(αG) and m ◦ h are
at distance at most ε2 , and by triangular inequality, F and m ◦ h are at distance at most ε.

Lemma 7. If f1 and f2 are in I lk
∣∣
K

, then f1f2 is too.

Proof. Let F1 and F2 be the extensions of f1, f2 as defined in lemma 6. There exists a C ∈ R such that for all i, j, x ∈ K,
F1(x)i,j + C > 0, and similarily for F2. Consequently, by lemma 1, lemma 2 and lemma 5, exp(log(F1 + C) +
log(F2 + C)) = F1F2 + F1C + F2C + C2 ∈ Elk

∣∣
K

. As this closure is a vectorial space, F1F2 ∈ Elk
∣∣
K

. Consequently,

f1f2 = ρ(F1F2) ∈ I lk
∣∣
K

.

We have now shown that I lk
∣∣
K

is a ring. We are left to prove that it contains a generative familly of the continuous symmetric
functions. Let us first exhibit a familly of continuous symmetric functions that is contained in the set of interest, and that we
will later show generate all continuous symmetric function.

Lemma 8. For all f , restriction of a function from Rl to Rk to a compact set K, the symmetric function F , defined on
Kn×l by

F (x) =
n∑
i=1

f(xi) (24)

is in I lk.

Proof. By the universal approximation theorem, f is in I lk
∣∣
K

. By lemma 6, there exists a G in Elk
∣∣
K

that replicates f along

the batch axis of an equivariant network. Consequently, ρ(G) = F is in I lk
∣∣
K

.

We are going to prove that this familly of functions generates the set of all symmetric polynomials. Deriving a generalization
of Stone Weierstrass theorem to symmetric functions, we obtain the final result.

To keep things general, in what follows, X denotes an arbitrary set, F an algebra of functions on X , and S is the
symmetrization operator on functions of Xn, i.e. for all (x1, . . . , xn) ∈ Xn,

(Sf)(x1, . . . , xn) =
∑
σ

f(xσ(1), . . . , xσ(n)) (25)

where the sum is over all permutations of [1, n].

Let P be the algebra of functions of Xn generated by the functions f(xk) : x→ f(xk) for f in F , with a slight abuse of
notations. P is linearly generated by the monomials f1(x1) . . . fn(xn) for fk arbitrary functions of F . We are interested in
the symmetrization of P , SP . By linearity of S, SP is generated by the symmetrized monomials,

Sf1(x1) . . . fn(xn) =
∑
σ

n∏
k=1

fk(xσ(k)). (26)
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Lemma 9. SP is generated as an algebra by Sf(x1) for f ∈ F . Notably, Sf(x1) takes the special form

Sf(x1) =
∑
σ

f(xσ(1)) = (n− 1)!
n∑
k=1

f(xk). (27)

Typically, for our case, X = Rl for l the number of input features, F is an algebra of functions containing the multivariate
polynomials on Rl, and SP thus contains the set of all polynomials which are symmetric along the batch dimension.

Proof. Call rank of a monomial f1(x1) . . . fn(xn), the number of functions fk such that fk 6= 1. Let k1, . . . , kr be these
indices. Up to renaming fk1 to f1, etc., the monomial can be written as f1(xk1) . . . fr(xkr ).

We will work by induction on r. For r = 1 the claim is trivial.

Since S does not care about permuting the variables, we have

Sf1(xk1) . . . fr(xkr
) = Sf1(x1) . . . fr(xr) =

∑
σ∈SK

r∏
i=1

fi(xσ(i)) (28)

and now the values σ(r + 1), . . . , σ(n) have no influence so that

Sf1(x1) . . . fn(xn) = (n− r)!
∑
σ∈Injn

r

r∏
i=1

fi(xσ(i)) (29)

where Injnr is the set of injective functions from r to n.

Assume we can generate all symmetric monomials up to rank r. By definition we can generate Sfr+1(x1) for any fr+1 ∈ F .
Then we can generate the product

1
(n− r − 1)! (Sfr+1(x1))

 ∑
σ∈Injn

r

r∏
i=1

fi(xσ(i))

 = (
∑
k∈n

fr+1(xk))

 ∑
σ∈Injn

r

r∏
i=1

fi(xσ(i))


=
∑
σ∈Injn

r

∑
k∈n

fr+1(xk)
r∏
i=1

fi(xσ(i))

Now, for each σ, we can decompose according to whether k ∈ Im σ or k ∈ n \ Im σ, where Im σ = {σ(1), . . . , σ(r)} is
the image of σ. We obtain two terms

. . . =
∑
σ∈Injn

r

∑
k∈Imσ

fr+1(xk)
r∏
i=1

fi(xσ(i)) +
∑
σ∈Injn

r

∑
k∈n\Imσ

fr+1(xk)
r∏
i=1

fi(xσ(i))

But if k is not in Im σ, then (σ(1), . . . , σ(r), k) is an injective function from r + 1 to n. So summing over σ then on
k ∈ n \ Im σ is exactly equivalent to summing over σ ∈ Injnr+1. So the second term above is∑

σ∈Injn
r+1

(
r∏
i=1

fi(xσ(i))
)
fr+1(σ(r + 1)) =

∑
σ∈Injn

r+1

r+1∏
i=1

fi(xσ(i)) = Sf1(xk1) . . . fr+1(xkr+1)

which is the one we are interested in.

So if we prove that we can generate the first term, we are done.

Let us consider the first term, with k ∈ Im σ. Now, since k ∈ Im σ, we can decompose over the cases k = σ(1), . . . , k =
σ(r), namely, ∑

σ∈Injn
r

∑
k∈Imσ

fr+1(xk)
r∏
i=1

fi(xσ(i)) =
∑
σ∈Injn

r

r∑
j=1

fr+1(xσ(j))
r∏
i=1

fi(xσ(i)) (30)

=
r∑
j=1

∑
σ∈Injn

r

r∏
i=1

f̃ij(xσ(i)) (31)
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where

f̃ij :=
{
fi i 6= j

fifr+1 i = j
(32)

Now since F is a ring, fifr+1 ∈ F . For each j the term

∑
σ∈Injn

r

r∏
i=1

f̃ij(xσ(i)) (33)

is equal to Sf̃1j . . . f̃rj up to a factor (n− (r + 1))!. By our induction hypothesis, each term can be generated. This ends
the proof.

Lemma 10. For any compact K, any l ∈ N, the intersection of I1
l with the set of multivariate polynomials is dense in I1

l

for the infinity norm.

Proof. Let ε > 0, and f be in I1
l . There exists a multivariate polynomials P such that ‖P − f‖∞ ≤ ε. Let us consider the

symmetrized polynomial

P̃ (x1, . . . , xn) = 1
n!
∑
σ

P (xσ(1), . . . , xσ(n)). (34)

Then P̃ is in the intersection, and, for x ∈ K,

‖P̃ (x)− f(x)‖ = ‖ 1
n!
∑
σ

(P (xσ(1), . . . , xσ(n))− f(xσ(1), . . . , xσ(n)))‖ (35)

≤ 1
n!
∑
σ

‖P (xσ(1), . . . , xσ(n))− f(xσ(1), . . . , xσ(n))‖ (36)

≤ ε. (37)

We now have all the ingredients to end the proof. For a given compact K of Rl, for any multivariate polynomial P of Rl,
any ε > 0, there trivially exists an element f of I1

k at distance at most ε of x →
n∑
i=1

P (xi). This means that the closure

of the considered set contains all such functions. As this closure is an algebra (it is both a ring and a vectorial space), by
lemma 8, it contains the intersection of I2

l with the set of multivariate polynomials. By lemma 10, it contains I1
l , which

ends the proof.

8. Other details
8.1. pbalanced and punbalanced are well normalized:

We now show that punbalanced is well defined. The computation for pbalanced is almost identical and left to the reader.∫
y

punbalanced(y)dy = 2
B + 1

∑
β∈{0,1}B

#β
BC#β

B

∫
y

px(y)βpx̃(y)1−βdy

= 2
B + 1

B∑
#β=1

C#β
B

#β
BC#β

B

= 2
(B + 1)B

B∑
#β=1

#β

= 2
(B + 1)B

B(B + 1)
2

= 1
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9. Optimal discriminator for general beta prior
We hereby give a derivation of the optimal discriminator expression, when mixing parameters, p’s are drawn from Beta(a, b).
This extends Eq. (7), as Beta(1, 1) = U([0, 1]).

Beta prior on batch mixing proportion. Consider mixed batches of samples of size B. The i-th sample of the batch is a
real sample if βi = 1 and a false sample if βi = 0. Given a certain mixing proportion p, assuming that sample origine are
sampled independantly according to a Bernoulli of parameter p, the probability of a certain β is

P(β | p) =
∏
i

pβi(1− p)1−βi , (38)

Considering a beta prior distribution Beta(a, b) on the mixing parameter p ∈ [0, 1], the posterior distribution on the number
of real sample in the batch #β =

∑
i βi is given by the beta-binomial compound distribution

P(#β) =
∫
p

Beta(p | a, b)P(#β|p) (39)

=
(
B

#β

)
B(#β + a,B −#β + b)

B(a, b) (40)

where B(·, ·) is the beta function. For a = 1, b = 1, i.e. a uniform distribution on mixing parameters, the beta-binomial
compound distribution reduces to a uniform distribution on #β. From the expression of P(#β) it follows that

P(β) = B(#β + a,B −#β + b)
B(a, b) . (41)

Optimal discriminator. Let y = mβ(x, x̃) denote a mixed batch of samples. The discriminator minimizes the KL
divergence between D(y) and β, averaged over batches and mixing vectors β, see Eq. (4) in the main paper. This reduces to
minimizing the expected cross-entropy. For a given batch and mixing vector β,

L(D(y),#β) = −#β
B

lnD(y)− B −#β
B

ln(1−D(y)). (42)

Averaging over batches and mixing vectors,

IEβ,y[L(D(y),#β)] =
∫
y

P(y)
∑
β

P(β|y)L(D(y),#β) (43)

= −
∫
y

P(y)
[

IEβ|y

[
#β
B

]
lnD(y) + IEβ|y

[
B −#β

B

]
ln(1−D(y))

]
(44)

From the latter it yields that for any y, the optimal discriminator value D∗(y) is

D∗(y) = IEβ|y

[
#β
B

]
, (45)

i.e. the posterior expectation of the fraction of training samples in the batch.

Posterior analysis. Through Bayes rule, the posterior expectation yields

D∗(y) = IEβ|y

[
#β
B

]
=
∑
β

#β
B P(y|β)P(β)
P(y) . (46)

The marginal on the batch y is

P(y) =
∑
β

P(y | β)P(β) (47)

=
∑
β

P(y|β)B(#β + a,B −#β + b)
B(a, b) . (48)
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The numerator in Eq. (46) can be written as a distribution on y,

Q(y) =
∑
β

P(y|β)Q(β) (49)

Q(β) = a+ b

a
P(β)#β

B
. (50)

The distribution Q on β sums to 1, as IEP(#β)[#β] = Ba
a+b .

This finally yields

D∗(y) = a

a+ b

Q(y)
P(y) , (51)

which for the uniform prior on p simplifies to

D∗(y) = 1
2
Q(y)
P(y) . (52)

Expressing P(y | β). Notice that mβ(x, x̃) = y is equivalent to for all i in {1, ..., B}, xi = yi and βi = 1 or x̃i = yi and
βi = 0. Denote by p1 (resp. p2) the distribution of real samples (resp. generated samples).

From the previous observation, it yields that

P(y | β) =
B∏
i=1

p1(yi)βip2(yi)1−βi . (53)

From the latter and Eq. (52) we obtain the optimal discriminator expression.
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10. Additional experiments

Figure 7. Sample images generated by our best model trained on STL10.

We additionally provide results on the STL-10 dataset, where M-BGAN yields numerical results slightly below Spectral
Normalization. Except for the adaptation of the network to 48×48 images, as done in (Miyato et al., 2018), the experimental
setup of the experimental section is left unchanged.

Table 2. Comparison to the state of the art in terms of inception score (IS) and Fréchet inception distance (FID) on the STL-10 dataset.

Model IS FID

WGP (Miyato et al., 2018) 8.4 55
M-BGAN 8.7 51
SN (Miyato et al., 2018) 8.7 47.5
SN (Hinge loss)(Miyato et al., 2018) 8.8 43.2

11. M-BGAN as an ensembling method
Intuitively, the M-BGAN loss performs a simple ensembling of many strongly dependant permutation invariant discrimina-
tors, at no additional cost.

In the general case, ensembling of N independant discriminators D1, . . . , DN amounts to training each discriminator
independently, and using the averaged gradient signal to train the generator. Ensembling is expected to alleviate some of
the difficulties of GAN training: as long as one of the discriminators still provides a significant gradient signal, training of
the generator is possible. With equation (14), M-BGAN is an ensemble of B permutation invariant discriminators, with
respective outputs 1-th(o1, . . . , oB), . . . , B-th(o1, . . . , oB), where i-th is the function that returns the i-th greatest element
of a B dimensional vector. Indeed,

1
N

N∑
i=1

l(i-th(o1, . . . , oB), y) = 1
N

N∑
i=1

l(oi, y). (54)

which is the M-BGAN loss. The ensembled discriminators of the M-BGAN all share the same weights. We believe this
ensembling effect at least partially explains the improved performance of M-BGAN.


