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Appendix

A. Proof of Lemma 3
Recall that θ is a finite index. For each (i, j) such that Nij > 0, we have
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Since
∑
i,j∈[W ]Nij(1− C̃2

ij) is a constant, Eq.(1) is equivalent to the optimization problem argminx∈[−1,+1]W L(x).

B. Proof of Theorem 1
The proof directly follows from Lemma 4 and Lemma 5. We will next prove these Lemmas.

Proof of Lemma 4: Take any two workers i, j that are connected in G = ([W ], E). Let t ∈ N be such that (i, t), (j, t) ∈ A.
By assumption, Yi,tYj,t = g2tZi,tZj,t = Zi,tZj,t. Now, by the law of large numbers,
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.
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Zi,tZj,t = E [ZiZj ]

=E [Zi]E [Zj ] = sisj ,

where (Zi)i ∼ ΠW
i=1Rad(si). Note that Cij = Cji. We define Cij = 0 when (i, j) 6∈ E.

Now, WLOG assume that workers 1, 2, . . . , 2k + 1 form a cycle in G: (1, 2), . . . , (2k, 2k + 1), (2k + 1, 1) ∈ E. Then,
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assuming that C2,3, C4,5, . . . , C2k,2k+1 6= 0. Since G is connected, for any worker i there exists a path from worker 1 to
worker i. If this path was given by the vertices 1, 2, . . . , ` then
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It remains to show that P(s) can be recovered. Let i, j ∈ [W ] be different workers. Then, if π ⊂ E is a path in G from i to
j, we have Π(u,v)∈E sgn(Cu,v) = Π(u,v)∈E sgn(su) sgn(sv) = sgn(si) sgn(sj) regardless of how π is chosen. Now, if i
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and j are such that for some path π connecting them Π(u,v)∈E sgn(Cu,v) = +1, we assign i, j to the same group. Since G
is connected, this creates at most two groups and the resulting “partition” must match P(s).

Proof of Lemma 5: Take s, α which are used in the definition of richness of Θ. We construct two other skill vectors s′ and
s′′ as follows: We set s′1 = αs1 and s′′1 = s1/α. Now, if worker i is at an even distance from worker 1 on some path in
G then s′i = αsi and s′′i = si/α, otherwise we set s′i = si/α and s′′i = αsi. Note that all workers can be accessed from
worker 1 because G is connected. Note that if there are multiple paths from worker 1 to some other worker then all of these
have the same parity, or the graph had an odd cycle. Now, both s and s′ give rise to the same products, sisj , along any edge
(i, j) ∈ E. Since both are in Θ by assumption, the result is proven.

Reverse Direction for Theorem 1: We prove this by contraposition. First, assume that (i) does not hold. We want to prove
that learnability fails. If (i) does not hold, we can take s, s′ ∈ [−1, 1]W different skill vectors such that |s| = |s′| and
P(s) = P(s′) and s, s′ ∈ S(Θ). It follows that s = −s′. Take any g ∈ {±1}W . Note that the instances (s,A, g) and
(−s,A,−g) lead to the same joint distribution over the observed labels. Hence, no inference schema can tell these instances
apart, thus any inference schema will suffer linear regret on one of these instances. Now, if (ii) does not hold, Lemma 5
gives two skill vectors s, s′ which are different and s 6= ±s′, which again give the same likelihood to any data. This again
leads to that any inference schema will suffer a linear regret on one of these instances.

C. Proof of Theorem 2
Recall that we are given the interaction matrixN which is nonnegative, irreducible, aperiodic, with integer entries, symmetric,
and with zero diagonal; and also a vector s ∈ RW . We need to argue that there does not exist a vector x 6= {±s} such that,
for each i = 1, . . . ,W , we have

W∑
j=1

Nij(xixj − sisj)xj = 0. (5)

We begin by adopting the following notation. For a vector x, Dx will refer to the diagonal matrix with x on the diagonal.
For a matrix A, diag [A] will refer to the diagonal of A stacked as a vector (note that this is an unusual notation). Also,
let us refer to the set of matrices which are nonnegative, irreducible, aperiodic, symmetric and with have zero diagonal as
admissible.

Assume that x satisfies (5). First, assume that none of the components of x are zero. The case x has zero components will
be dealt with later. And we also make the simplifying assumptions that s > 0 and that we are looking for x > 0. In the
case of s has negative components, we can always recover the absolute value |s| of s by the absolute value |x|of x. If we
assume si > 0, we can figure out all other signs of s and get one solution x by the assumption that the graph is non-bipartite.
Similarly, there is another solution −x if we assume si < 0. Since we only consider skill vectors that have a positive sum,
the optimal solution must be one of {±x} that has a positive sum.

Then, we will argue that given s > 0 we cannot find x > 0, x 6= s and admissible W such that (5) holds. We can multiply
the ith equation of (5) by xi. Our first observation is that we may rewrite Eq. (5) as

diag
[
DxNDx(xxT − ssT )

]
= 0. (6)

It suffices to argue that we cannot find x > 0, x 6= s and admissible F such that

diag
[
F (xxT − ssT )

]
= 0.

By x > 0 we mean that xi > 0 for all i, i.e., no component of xi is zero. We were able to drop the Dx from the equation
because N is admissible if and only if DxNDx is.

We proceed as follows. Since

xixj − sisj = si

(
xi
si

xj
sj
− 1

)
sj ,

defining ui = xi/si we have that u > 0 and that

xxT − ssT = Ds(uu
T − 11T )Ds .
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We must therefore argue that it is impossible to find u > 0, u 6= 1 and admissible F such that

diag
[
DsFDs(uu

T − 11T )Ds

]
= 0.

Since s > 0 it will suffice to argue that we cannot find u > 0, u 6= 1 and admissible Z such that

diag
[
Z(uuT − 11T )

]
= 0. (7)

Without loss of generality, we can assume that u1 ≤ u2 ≤ · · · ≤ uW ; we can always relabel indices to make this hold.

Now there are three possibilities:

1. u1uW > 1.

2. u1uW = 1.

3. u1uW < 1.

We argue that in each case we cannot find a suitable u that satisfies Eq. (7). Indeed, let us consider the first possibility.
In that case the last column of uuT − 11T , with entries uiuW − 1, is strictly positive, and therefore, considering that
[Z(uuT − 11T )]WW = 0, we obtain that the last row of Z must be zero – contradicting irreducibility. Similarly, in case 3,
the first column of uuT − 11T , with entries u1ui − 1, is negative, and, considering that [Z(uuT − 11T )]11 = 0, we see that
the first row of Z must be zero, which can not hold true.

It remains to consider case 2. Consider any u > 0, u 6= 1. We may assume that u1 < uW (ruling out the possibility that a u
proportional to the all-ones vector satisfies Eq. (7) is trivial).We break up {1, . . . ,W} into three blocks. The first block is
all the indices j such that uj = u1. The third block is all the indices j such that that uj = uW . All the other indices go into
block 2. Note that block 2 may be empty, for example if every entry of u is equal to u1 or uW .

The advantage of partitioning this way is that the matrix uuT − 11T has the following sign structure:

uuT − 11T =

 − − 0
− ∗ +
0 + +


where − represents a strictly negative submatrix, + represents a strictly positive submatrix, while ∗ represents a submatrix
that can have elements of any sign. The strict negativity comes from the fact that u1 < uW .

Partitioning Z in a compatible manner, we have that

diag

 Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

 − − 0
− ∗ +
0 + +

 = 0.

Considering the (1, 1) diagonal block of the above product, noting that Z ≥ 0, we obtain Z11 = Z12 = 0; and considering
the (3, 3) diagonal block of the above product we obtain Z32 = Z33 = 0. By symmetry, also Z21 = 0 and Z33 = 0.

From here we can easily derive a contradiction. Indeed, if the middle block is nonempty, the matrix is reducible; and if the
second block is empty, it is periodic with an even period, finishing the proof for the case when none of the components of x
can have zero entries.

Finally, we can easily rule out stationary points as unstable when x has zero entries. Note that the Hessian P (x) in matrix
form is DsP (x/s)Ds, where x/s is componentwise division, P is given in the main body of the text. Note that P (x) is
positive (semi)definite if and only if P (x/s) is positive (semi)definite. Further, by the form of P , P (x/s) is not positive
semidefinite if any of the components of x are zero. This completes the proof, noting that gradient algorithms when
initialized randomly will not converge to non-local minima.
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D. Proof of Theorem 3
Fix s ∈ [−1, 1]W . Let

f(x) =
∑
i<j

Nij(xixj − sisj)2. (8)

be the “noisey-free” objective function underlying s and let Ps(x) = ∇2f(x) be the Hessian of f at x. By straightforward
calculation,

∂f

∂xi
(x) =

W∑
k=1

2Nik(xixk − sisk)xk,

and

(Ps(x))ii =
∂2f

∂x2i
(x) =

W∑
k=1

2Nikx
2
k ,

(Ps(x))ij =
∂2f

∂xixj
(x) = 4Nijxixj − 2sisjNij , i 6= j.

Therefore,

∇2f(x) = DsP1(x/s)Ds .

Note that in the main body of the paper, we denoted P1(u) by P (u), dropping the 1 subindex. We will continue to use this
notation here. Recall that smin = mini |si|. From the above, by the continuity of P = P1, it follows immediately that f is
strongly convex in a small enough neighborhood of s:

Lemma 6. There exists a positive number δ such that f is strongly convex when restricted to the set

Bδ = {x ∈ [−1, 1]W : ‖x/s− 1‖∞ ≤ δ} .

In particular, for any x ∈ Bδ ,
λmin

(
∇2f(x)

)
≥ s2min µ ,

with µ = λmin(P (1))/2.

Note that µ > 0 by Proposition 2.1 of (Desai & Rao, 1994).

Proof. Clearly, λmin(∇2f(x)) ≥ s2minλmin(P (x/s)). In particular, λmin(∇2f(s)) ≥ 2s2minµ. The statement then follows
from that Ps, and hence also λmin(Ps(·)) is a continuous function of its argument.

As an immediate corollary we get:

Corollary 2. For any x ∈ Bδ with δ as in the previous lemma,

‖x− s‖ ≤ ‖∇f(x)‖2 /(s
2
minµ) .

Proof. For x = s there is nothing to be shown. Hence, assume x ∈ Bδ and x 6= s. By the (s2minµ)-strong convexity of f on
Bδ (cf. Theorem 2.1.9 of Nesterov (2004)), since both x and s are in Bδ ,

(∇f(x)−∇f(s))T (x− s) ≥ s2minµ ‖x− s‖2.

Using that ∇f(s) = 0 and applying Cauchy-Schwarz, we obtain

‖∇f(x)‖‖x− s‖ ≥ s2minµ ‖x− s‖2 .

The result follows by dividing both sides by ‖x− s‖.
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Type of workers α β Bayes error Prediction error (const. noise)
Adversary vs. hammer 0.5 0.5 0.0036± 0.0014 0.5990± 0.4860

Asym. with more positive skills 5 1 0.0038± 0.0014 0.0041± 0.0013

Asym. with more negative skills 2 5 0.0314± 0.0062 0.9667± 0.0067

Hammer 2 2 0.0615± 0.0083 0.4162± 0.4273

Spammer 1 3 0.0129± 0.0034 0.9864± 0.0041

Table 3. Average prediction errors with different skills distributions.

Now, consider x s.t. ∇L(x) = 0 and mini |xi| ≥ ε for some ε > 0. Denote by |∆| the matrix (|∆ij |). Using Nij ≥ 0, the
inequality ‖diag[A]‖2 =

∑
iAii

2 ≤ ‖A‖2F which holds for any square matrix A, and that maxi |xi| ≤ 1, combined with
(4), we get ∥∥diag

[
NDx(xxT − ssT )

]∥∥ = ‖diag[NDx∆]‖ ≤ ‖N |∆| ‖F ≤ ‖N‖F ‖∆‖F . (9)

Let

π(N) = inf{
∥∥diag

[
NDy(yyT − ssT )

]∥∥ : y 6∈ Bδ, min
i
|yi| ≥ ε} .

Call N admissible if it is positive integer valued, irreducible and non-bipartite and let N denote the set of such matrices. It
follows that x ∈ Bδ when ‖∆‖F ≤ c := infN∈N π(N)/ ‖N‖F. Note that c > 0.

Now, since x ∈ Bδ holds, Corollary 2, (4) and (9) together give that

‖x− s‖ ≤ ‖∇f(x)‖
s2minµ

≤ ‖diag[NDx∆]‖
s2minµ

≤
‖N‖F ‖∆‖F
s2minµ

,

finishing the proof.

E. Additional Experiments and Details

E.1. Multi-Class

For the multiclass data-sets (i.e., Dogs and Web) we run our algorithm with two different approaches. One is to use
one-vs-rest strategy for each class k ∈ K by assuming class-independent models determine the probability of the worker
flipping the ground truth. Another method is to assume homogeneous Dawid-Skene model instead of the single coin
model, which construct a confusion matrix for each worker with only a single parameter. More specifically, the diagonal
elements of the confusion matrix will be identical for each worker and the off-diagonal elements of each row will be
the same. After representing labels as vectors containing a 1 in the column of the class index they represented, we
minimize a weighted least-squares objective 1

2

∑
(i,j)∈E Nij [C̃ij − |K|xixj − (|K| − 2)xi − (|K| − 2)xj ]

2 by PGD, where

C̃ij = 4(|K|−1)
T

∑T
t=1〈Yi,t, Yj,t〉 − |K|. For different data-sets, we choose the model that best fits the data. Then, in

order to predict the label, a score function for class-conditional skill is calculated for each class k using score(k) =∑
(i,t)∈A log 1+si

1−si1(Yi,t = k), where 1(·) is a ±1 indicator. The label is given by finding the class corresponding to the
maximum of the score function.

E.2. Experiments for Different Skill-Distribution

We randomly assign binary classes to T = 300 tasks and select five pairs of parameters. Average prediction errors are
presented in Table 3 averaged over 10 independent runs. Parameters α = 5, β = 1, correspond to reliable workers leading to
small prediction error; the prediction error with parameters α = 2, β = 2 and α = 0.5, α = 0.5, is almost random because
of
∑
i∈[W ] si is no longer positive, which validates our theory. Similar situation arises for α = 2, β = 5 and α = 5, β = 1,

because the skills are all flipped relative to our assumption that the sum of the skills is positive.

E.3. Graph Size

We focus on how the graph size affects the performance of PGD algorithm. Note that graph size is associated with the
number of workers. Our goal is to demonstrate that for a constant amount of noise, prediction accuracy of PGD does not
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Number of workers 21 51 71 91

Bayes error 0.0425± 0.0042 0.0622± 0.0040 0.0634± 0.0033 0.0574± 0.0030

Prediction error (const. noise) 0.0425± 0.0042 0.0641± 0.0126 0.0662± 0.0072 0.0618± 0.0063

Table 4. Average prediction errors for different graph sizes.

Table 5. Prediction errors for different weightings
Worker type

Assigned most tasks [Nij > 0] B(Nij) = Nij B(Nij) = N2
ij

Spammers 0.33± 0.03 0.33± 0.03 0.55± 0.17

Positive skill workers 0.17± 0.06 0.09± 0.02 0.09± 0.02

degrade with graph-size. We again consider the case when the worker-interaction graph is a star-graph with an odd-cycle of
length 3. We increase the size of worker-interaction graph by adding nodes to the star-graph. Skills s are selected between
0.8 and −0.3 uniformly. To fix the noise level, we define Cij = sisj + ξij ,∀(i, j) ∈ E where ξij is randomly selected from
[−0.2, 0.2]. Note that the noise level is quite large relative to what we expect in terms of accuracy of correlation estimates.
We iteratively run PGD for 50 times. The average prediction errors with different graph size it presented in Table 4. It can
be seen that the prediction error is not sensitive to the graph size compared to the Bayes error.

E.4. Weighting function:

It is straighforward from our proof of Theorem 2 to see that PGD algorithm converges to the global optimal for any
non-negative weights. Our objective is based on weighting with number of counts in Eq. 3. However, there are other options
that one could consider. (Dalvi et al., 2013) has suggested using B(Nij) = N2

ij , while we use Nij . Another possibility is to
use binary weights. We iteratively run PGD 10 times for each weighing function with T = 300 tasks for different types of
task assignements. If Nij’s are all equal, these choices produce identical results. We consider two cases: (a) Spammers are
assigned a majority of tasks; (b) Positively skilled workers are assigned most tasks. The prediction errors are compared in
Table 5. Note that quadratic weighting is quite bad in this case because it tends to ignore positively skilled workers. On the
other hand unweighted case does not accurately estimate spammers and also results in poor choice.


