
Dimensionality-Driven Learning with Noisy Labels

Xingjun Ma * 1 Yisen Wang * 2 Michael E. Houle 3 Shuo Zhou 1 Sarah M. Erfani 1 Shu-Tao Xia 2

Sudanthi Wijewickrema 1 James Bailey 1

Abstract
Datasets with significant proportions of noisy
(incorrect) class labels present challenges for
training accurate Deep Neural Networks (DNNs).
We propose a new perspective for understanding
DNN generalization for such datasets, by inves-
tigating the dimensionality of the deep represen-
tation subspace of training samples. We show
that from a dimensionality perspective, DNNs ex-
hibit quite distinctive learning styles when trained
with clean labels versus when trained with a pro-
portion of noisy labels. Based on this finding,
we develop a new dimensionality-driven learn-
ing strategy, which monitors the dimensionality
of subspaces during training and adapts the loss
function accordingly. We empirically demonstrate
that our approach is highly tolerant to significant
proportions of noisy labels, and can effectively
learn low-dimensional local subspaces that cap-
ture the data distribution.

1. Introduction
Deep Neural Networks (DNNs) have demonstrated excellent
performance in solving many complex problems, and have
been widely employed for tasks such as speech recognition
(Hinton et al., 2012), computer vision (He et al., 2016) and
gaming agents (Silver et al., 2016). DNNs are capable of
learning very complex functions, and can generalize well
even for a huge number of parameters (Neyshabur et al.,
2014). However, recent studies have shown that DNNs may
generalize poorly for datasets which contain a high propor-
tion noisy (incorrect) class labels (Zhang et al., 2017). It is
important to gain a fuller understanding of this phenomenon,
with a view to development of new training methods that can
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achieve good generalization performance in the presence of
variable amounts of label noise.

One simple approach for noisy labels is to ask a domain
expert to relabel or remove suspect samples in a preprocess-
ing stage. However, this is infeasible for large datasets and
also runs the risk of removing crucial samples. An alterna-
tive is to correct noisy labels to their true labels via a clean
label inference step (Vahdat, 2017; Veit et al., 2017; Jiang
et al., 2017; Li et al., 2017). Such methods often assume
the availability of a supplementary labelled dataset contain-
ing pre-identified noisy labels which are used to develop
a model of the label noise. However, their effectiveness is
tied to the assumption that the data follow the noise model.
A different approach to tackle noisy labels is to utilize cor-
rection methods such as loss correction (Patrini et al., 2017;
Ghosh et al., 2017), label correction (Reed et al., 2014), or
additional linear correction layers (Sukhbaatar & Fergus,
2014; Goldberger & Ben-Reuven, 2017).

In this paper, we first investigate the dimensionality of the
deep representation subspaces learned by a DNN and pro-
vide a dimensionality-driven explanation of DNN general-
ization behavior in the presence of (class) label noise. Our
analysis employs a dimensionality measure called Local In-
trinsic Dimensionality (LID) (Houle, 2013; 2017a), applied
to the deep representation subspaces of training examples.
We show that DNNs follow two-stage of learning in this
scenario: 1) an early stage of dimensionality compression,
that models low-dimensional subspaces that closely match
the underlying data distribution, and 2) a later stage of di-
mensionality expansion, that steadily increases subspace
dimensionality in order to overfit noisy labels. This second
stage appears to be a key factor behind the poor general-
ization performance of DNNs for noisy labels. Based on
this finding, we propose a new training strategy, termed
Dimensionality-Driven Learning, that avoids the dimen-
sionality expansion stage of learning by adapting the loss
function. Our main contributions are:

• We show that from a dimensionality perspective, DNNs
exhibit distinctive learning styles with clean labels ver-
sus noisy labels.

• We show that the local intrinsic dimensionality can
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be used to identify the stage shift from dimensionality
compression to dimensionality expansion.

• We propose a Dimensionality-Driven Learning strategy
(D2L) that modifies the loss function once the turning
point between the two stages of dimensionality com-
pression and expansion is recognized, in an effort to
prevent overfitting.

• We empirically demonstrate on MNIST, SVHN,
CIFAR-10 and CIFAR-100 datasets that our
Dimensionality-Driven Learning strategy can ef-
fectively learn (1) low-dimensional representation
subspaces that capture the underlying data distribution,
(2) simpler hypotheses, and (3) high-quality deep
representations.

2. Related Work
2.1. Generalization of DNNs

Zhang et al. (2017) showed that DNNs are capable of mem-
orizing completely random labels and exhibit poor general-
ization capability. They argued that DNNs employ case-by-
case memorization on training samples and their labels in
this scenario. Krueger et al. (2017) highlighted that DNNs
exhibit different learning styles on datasets with clean labels
versus those on datasets with noisy inputs or noisy labels.
They showed that DNNs require more capacity, longer train-
ing time to fit noisy labels and the learned hypothesis is
more complex. Arpit et al. (2017) further substantiated
this finding by identifying two stages of learning of DNNs
with noisy labels: an early stage of simple pattern learn-
ing and refining, and a later stage of label memorization.
They also showed that dropout regularization can hinder
overfitting to noisy labels. Shwartz-Ziv & Tishby (2017)
demonstrated that, on data with clean labels, DNNs with
tanh layers undergo an initial label fitting phase and then
a subsequent compression phase. They also argued that
information compression is related to the excellent general-
ization performance of DNNs. However, Saxe et al. (2018)
conducted experiments where information compression was
not found to occur for ReLU (Glorot et al., 2011) DNNs.

While these works have studied the differences between
learning with clean labels and learning with noisy labels,
a full picture of this phenomenon and its implications for
DNN generalization is yet to emerge. Our study adds an-
other perspective based on subspace dimensionality analysis,
and shows how this can lead to the development of an effec-
tive learning strategy.

2.2. Noisy Label Learning

A variety of approaches have been proposed to robustly
train DNNs on datasets with noisy labels. One strategy is to

explicitly or implicitly formulate the noise model and use
a corresponding noise-aware approach. Symmetric label
noise that is independent of the true label was modeled in
(Larsen et al., 1998), and asymmetric label noise that is con-
ditionally independent of individual samples was modeled
in (Natarajan et al., 2013; Sukhbaatar et al., 2014). There
are also more complex noise models for training samples
where true labels and noisy labels can be characterized by
directed graphical models (Xiao et al., 2015), conditional
random fields (Vahdat, 2017), neural networks (Veit et al.,
2017; Jiang et al., 2017) or knowledge graphs (Li et al.,
2017). These methods aim to correct noisy labels to their
true labels via a clean label inference step or by assigning
smaller weights to noisy label samples. For the modeling of
label noise, they often require an extra dataset with ground
truth of pre-identified noisy labels to be available, or an
expensive detection process. They may also rely on specific
assumptions about the noise model. Another approach is to
use a refined training strategy that utilizes correction meth-
ods to adjust the loss function to eliminate the influence of
noisy samples (Wang et al., 2018). Backward and Forward
are two such correction methods that use an estimated or
learned factor to modify the loss function (Patrini et al.,
2017). A linear layer is added on top of the network to fur-
ther augment the correction architecture in (Sukhbaatar &
Fergus, 2014; Goldberger & Ben-Reuven, 2017). Bootstrap
replaces the target labels with a combination of raw target
labels and their predicted labels (Reed et al., 2014).

Our proposed Dimensionality-Driven Learning strategy is
also a loss correction method, one that avoids overfitting by
using the estimation of the local intrinsic dimensionality of
learned local subspaces to regulate the learning process. In
Section 5 we empirically compare Dimensionality-Driven
Learning with other loss correction strategies.

2.3. Supervised Learning and Dimensionality

The Local Intrinsic Dimensionality (LID) model (Houle,
2017a) was recently used for successful detection of ad-
versarial examples for DNNs by (Ma et al., 2018). This
work demonstrates that adversarial perturbations (one type
of input noise) tend to increase the dimensionality of the
local subspace immediately surrounding a test sample, and
that features based on LID can be used for identifying such
perturbations. However, in this paper we show how LID can
be used in a new way, as a tool for assessing the learning
behavior of a DNN, and developing an adaptive learning
strategy against noisy labels.

Other works have also considered the use of dimensionality
measures for regularization in manifold learning (Roweis
& Saul, 2000; Belkin et al., 2004; 2006). For example, an
intrinsic geometry regularization over Reproducing Kernel
Hilbert Spaces (RKHS) was proposed in (Belkin et al., 2006)
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to enforce smoothness of solutions relative to the underlying
manifold, and a Laplacian-based regularization using the
weighted neighborhood graph was proposed in (Belkin et al.,
2004). In contrast to these works, which treated dimension-
ality as a characteristic of the global data distribution, we
explore how knowledge of local dimensional characteristics
can be used to monitor and modify DNN learning behavior
for the noisy label scenario.

3. Dimensionality of Deep Representation
Subspaces

We now brie�y introduce the LID measure for assessing the
dimensionality of data subspaces residing in the deep repre-
sentation space of DNNs. We then connect dimensionality
theory with the learning process of DNNs.

3.1. Local Intrinsic Dimensionality (LID)

Local Intrinsic Dimensionality (LID) is an expansion-based
measure of intrinsic dimensionality of the underlying data
subspace/submanifold (Houle, 2017a). In the theory of in-
trinsic dimensionality, classical expansion models (such as
the expansion dimension (Karger & Ruhl, 2002) and gener-
alized expansion dimension (Houle et al., 2012)) measure
the rate of growth in the number of data objects encountered
as the distance from the reference sample increases. Intu-
itively, in Euclidean space, the volume of anD-dimensional
ball grows proportionally tor D when its size is scaled by
a factor ofr . From the above rate of volume growth with
distance, the dimensionD can be deduced from two volume
measurements as:

V2=V1 = ( r 2=r1)D ) D = ln( V2=V1)=ln( r 2=r1): (1)

The aforementioned expansion-based measures of intrinsic
dimensionality would determineD by estimating the vol-
umes in terms of the numbers of data points captured by the
balls. Transferring the concept of expansion dimension from
the Euclidean space to the statistical setting of continuous
distance distributions, the notion of ball volume is replaced
by the probability measure associated with the balls. This
leads to the formal de�nition of LID (Houle, 2017a):
De�nition 1 (Local Intrinsic Dimensionality).
Given a data samplex 2 X , let r > 0 be a random variable
denoting the distance fromx to other data samples. If
the cumulative distribution functionF (r ) is positive and
continuously differentiable at distancer > 0, the LID ofx
at distancer is given by:

LIDF (r ) , lim
� ! 0

ln
�
F ((1 + � )r )

�
F (r )

�

ln(1 + � )
=

rF 0(r )
F (r )

; (2)

whenever the limit exists. TheLID at x is in turn de�ned as
the limit of the radiusr ! 0:

LIDF = lim
r ! 0

LIDF (r ): (3)

LIDF describes the relative rate at which its cumulative
distance functionF (r ) increases as the distancer increases.
In the ideal case where the data in the vicinity ofx are
distributed uniformly within a local submanifold,LIDF

equals the dimension of the submanifold. Nevertheless, in
more general cases, LID also provides a rough indication of
the dimension of the submanifold containingx that would
best �t the data distribution in the vicinity ofx. We refer
readers to (Houle, 2017a;b) for more details about LID.

Estimation of LID: Given a reference sample pointx � P ,
whereP represents a global data distribution,P induces
a distribution of distances relative tox — each sample
x � � P being associated with the distance valued(x; x � ).
With respect to a datasetX drawn fromP, the smallest
k nearest neighbor distances fromx can be regarded as
extreme events associated with the lower tail of the induced
distance distribution. From the statistical theory of extreme
values, the tails of continuous distance distributions can
be seen to converge to the Generalized Pareto Distribution
(GPD), a form of power-law distribution (Coles et al., 2001;
Hill, 1975). Several estimators of LID were developed in
(Amsaleg et al., 2015; Levina & Bickel, 2005), of which the
Maximum Likelihood Estimator (MLE) exhibited the best
trade-off between statistical ef�ciency and complexity:

dLID(x) = �

 
1
k

kX

i =1

log
r i (x)

rmax (x)

! � 1

: (4)

Here, r i (x) denotes the distance betweenx and its i -th
nearest neighbor, andr max (x) denotes the maximum of
the neighbor distances. Note that the LID de�ned in Equa-
tion (3) is adistributionalquantity, and thedLID de�ned in
Equation (4) is itsestimate.

3.2. LID Estimation through Batch Sampling

Since computing neighborhoods with respect to the entire
datasetX can be prohibitively expensive, we will estimate
LID of a training examplex from its k-nearest neighbor
set within abatchrandomly selected fromX . Consider
a L-layer neural networkh : P ! Rc, whereh( i ) is the
intermediate transformation of thei -th layer, andc is a
positive number indicating the number of classes. Given a
batch of training samplesX B � X , and a reference point
x � P (not necessarily a training sample), we estimate the
LID score ofx as:

dLID(x; X B ) = �

 
1
k

kX

i =1

log
r i (g(x); g(X B ))

r max (g(x); g(X B ))

! � 1

;

(5)
whereg = h(L � 1) is the output of the second-to-last layer of
the network,r i (g(x); g(X B )) is the distance ofg(x) to its i -
th nearest neighbor in the transformed setg(X B ), andrmax

represents the radius of the neighborhood.dLID(x; X B )
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(a) CIFAR-10

(b) MNIST

Figure 1.The subspace dimensionality (average LID scores) and
train/test accuracy throughout training for a 12-layer CNN on
CIFAR-10 (a) and a 5-layer CNN on MNIST (b) dataset with clean
(left sub�gures) and noisy labels (right sub�gures). The average
LID scores were computed at layer 11 for CIFAR-10 and layer 4
for MNIST.

reveals the dimensional complexity of thelocal subspacein
the vicinity of x, taken after transformation byg. Provided
that the batch is chosen suf�ciently large so as to ensure that
thek-nearest neighbor sets remain in the vicinity ofg(x),
the estimate of LID atg(x) within the batch serves as an
approximation to the value that would have been computed
within the full datasetg(X ).

3.3. Subspace Dimensionality and Noisy Labels

We now show by means of an example how the subspace
dimensionality of training and test examples is affected by
the quality of label information, as the number of training
epochs is increased. For our example, we trained a 5-layer
Convolutional Neural Network (CNN) on MNIST (an image
data set with 10 categories of handwritten digits (LeCun
et al., 1998)) and a 12-layer CNN on CIFAR-10 (a natural
image data set with 10 categories (Krizhevsky & Hinton,
2009)) using SGD, cross-entropy loss, and two different la-
bel quality settings: (1) clean labels for all training samples;
(2) noisy labels for 40% of the training samples, generated
by uniformly and randomly replacing the correct label with
one of the 9 incorrect labels. LID values at layer4 for
MNIST and layer11 for CIFAR-10 were averaged over 10
batches of 128 points each, for a total of 1280 test points.
The resulting LID scores and the train/test accuracies are
shown in Figure 1. When learning with clean labels, we
observe a decreasing trend in LID score and an increasing
trend in accuracy as the number of training epochs increases.
However, when learning with noisy labels, we see a very dif-
ferent trend: �rst a decrease in LID followed by an increase,

accompanied by an initial increase in test accuracy followed
by a decrease. We observed similar dimensionality trends
for a 6-layer CNN on SVHN (Netzer et al., 2011) and a 44-
layer ResNet (He et al., 2016) on CIFAR-100 (Krizhevsky
& Hinton, 2009).

Clearly, in these two situations, the DNNs are exhibiting
different learning styles. For training data with clean labels,
the network gradually transforms the data to subspaces of
low dimensionality. Once the subspaces of the lowest di-
mensionality has been found, the network effectively stops
learning: the test accuracy stabilizes at its highest level and
the dimensionality stabilizes at its lowest. On the other
hand, for training data with noisy labels, the network ini-
tially learns a transformation of the data to subspaces of
lower dimensionality, although not as low as when training
on data with clean labels. Thereafter, the network progres-
sively attempts to accommodate noisy labels by increasing
the subspace dimensionality.

3.4. Two-Stage of Learning of DNNs on Noisy Labels

From the above empirical results, we �nd that DNNs follow
two-stage of learning in the presence of label noise: 1) an
early stage ofdimensionality compression, in which the di-
mensionalities associated with the underlying data manifold
are learned; and 2) a later stage ofdimensionality expansion,
in which the subspace dimensionalities steadily increase as
the learning process over�ts to the noisy data.

One possible explanation for this phenomenon can be found
in the effect of transformation on the neighborhood set of
test points. Given a training pointx 2 X , its initial spatial
location (before learning) would relate to a low-dimensional
local subspace determined by the underlying manifold (call
this subspaceA). Although the initial neighborhood ofx
would likely contain many data points that are also close to
manifoldA, the LID estimate would not necessarily be the
exact dimension ofA. LID reveals the growth characteris-
tics of the distance distribution fromx, which is in�uenced
by — but not equal to — the dimension of the manifold to
whichx is best associated.

As the learning process progresses, the manifold undergoes
a transformation by which it progressively achieves a better
�t to the training data. Ifx is labeled correctly, and if many
of its neighbors also have clean labels, the learning process
can be expected to converge towards a local subspace of
relatively low intrinsic dimensionality (as observed in the
left-hand plot of Figure 1); however, it should be noted
that the learning process still risks over�tting to the data, if
carried out too long. With over�tting, the dimensionality of
the local manifold would be expected to rise eventually.

If x is incorrectly labeled, each epoch in the learning process
progressively causesx — or more precisely, its transform
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(call it x0) — to migrate to a new local subspace (call itA0)
associated with members of the same label that was incor-
rectly applied tox. During this migration, the neighborhood
of x0 tends to contain more and more points ofA0 that share
the same label asx, and fewer and fewer points from the
original neighborhood inA. With respect to the points of
A0, the mislabeled pointx0 is spatially an outlier, since
its coordinates relate toA and notA0; thus, the presence
of x0 forces the local subspace around it to become more
high-dimensional in order to accommodate (or compress) it.
This distortion results in adimensionality expansionin the
vicinity of x0 that would be expected to be re�ected in LID
estimates based atx0. Stopping the learning process earlier
allowsx0 to �nd its neighborhood inA before the local sub-
space is corrupted by too many neighbors fromA0, which
thus leads to better learning of the true data distribution and
improved generalization to test data.

This explanation of the effect of incorrect labeling in terms
of local subspaces is consistent with the one recently given
in (Ma et al., 2018) for the effect of adversarial perturbation
on DNN classi�cation. In this situation, rather than directly
assigning an incorrect label to the test item while leaving its
spatial coordinates unchanged, the adversary must instead
attempt to move a test point into a region associated with an
incorrect class by means of an antagonistic learning process.
In both cases, regardless of how the test point is modi�ed,
the neighborhoods of the transformed points are affected in
a similar manner: as the neighborhood membership evolves,
the local intrinsic dimensionality can be expected to rise.
The associated changes in LID estimates have been used
as the basis for the effective detection of a wide variety of
adversarial attacks (Ma et al., 2018). Recent theoretical
work for adversarial perturbation in nearest-neighbor classi-
�cation further supports the relationship between LID and
local transformation of data, by showing that the magnitude
of the perturbation required in order to subvert the classi�-
cation diminishes as the local intrinsic dimensionality and
data sample size grow (Amsaleg et al., 2017).

4. Dimensionality-Driven Learning Strategy

In the previous section, we observed that learning in the
presence of noisy labels has two stages: dimensional com-
pression, followed by dimensional expansion. Motivated
by these observations, we propose a Dimensionality-Driven
Learning (D2L) strategy whose objective is to avoid the
over�tting and loss of test accuracy associated with dimen-
sional expansion.

Given a training samplex, we denote its raw label asy
and its predicted label asby, where bothy andby are `one-
hot' indicator vectors.( dLID0; � � � ; dLID i ; � � � ; dLIDT ) is a
sequence of LID scores, wheredLID i represents the LID
score computed from the second-to-last DNN layer at the

i -th training epoch (T epochs in total). Each LID score is
produced as follows.m batches of samples are randomly
selectedX 1

B ; : : : ; X m
B and for eachX i

B and each of its
membersx, dLID(x; X i

B ) is computed. This givesm � j X i
B j

LID estimates, which are then averaged to compute the
LID score for the epoch (later, in the experiments, we use
m = 10 andjX i

B j = 128

To avoid dimensionality expansion during training with
noisy labels, we propose to reduce the effect of noisy labels
on learning the true data distribution using the following
adaptive LID-corrected labels:

y� = � i y + (1 � � i )by; (6)

where� i is a LID-based factor that updates at thei -th train-
ing epoch:

� i = exp
�

� �
dLID i

min i � 1
j =0

dLID j

�
; (7)

where� = i=T is a weighting that indicates decreasing
con�dence in the raw labels when the training proceeds
to the dimensionality expansion stage (that is, when LID
begins to increase). The training loss can then be re�ned as:

L = �
1
N

NX

n =1

X

y �
n

y�
n logP(y�

n jxn ); (8)

where N is the total number of training samples and
P(y�

n jxn ) is the predicted class probability ofy�
n givenxn .

Interpreting Equations(6) - (8), we can regard D2L as a sim-
ulated annealing algorithm that attempts to �nd an optimal
trade-off between subspace dimensionality and prediction
performance. The role of� is an exponential decay factor
that allows for interpolation between raw and predicted label
assignments according to the degree of dimensional expan-
sion observed over the learning history. Here, dimensional
expansion is assessed in terms of the ratio of two average
LID scores: the score observed at the current epoch, and the
lowest score encountered at earlier epochs. As the learning
enters the dimensional expansion stage, this ratio exceeds
1, and the exponential decay factor begins to favor the cur-
rent predicted label. The complete D2L learning strategy is
shown in Algorithm 1. Note that the computational cost of
LID estimation through batch sampling is low compared to
the overall training time (tLID =ttraining � 1 � 2%), as it
requires only the pairwise distances within a few batches.

To identify the turning point between the two stages of learn-
ing, we employ an epoch window of sizew 2 [1; T � 1] so
as to alloww epochs of initialization for the network, and to
reduce the variation of stochastic optimization. The turning
point is �agged when the LID score of the current epoch is
two standard deviations higher than the mean LID score of




