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Abstract

We consider an `2-regularized non-convex optimization problem for recovering signals from their noisy
phaseless observations. We design and study the performance of a message passing algorithm that aims
to solve this optimization problem. We consider the asymptotic setting m,n→∞, m/n→ δ and obtain
sharp performance bounds, where m is the number of measurements and n is the signal dimension. We
show that for complex signals the algorithm can perform accurate recovery with only m =

(
64
π2 − 4

)
n ≈

2.5n measurements. Also, we provide sharp analysis on the sensitivity of the algorithm to noise. We
highlight the following facts about our message passing algorithm: (i) Adding `2 regularization to the
non-convex loss function can be beneficial even in the noiseless setting; (ii) spectral initialization has
marginal impact on the performance of the algorithm.

1 Motivation

Phase retrieval refers to the task of recovering a signal x∗ ∈ Cn×1 from its m phaseless linear measurements:

ya =

∣∣∣∣ n∑
i=1

Aaix∗,i

∣∣∣∣+ wa, a = 1, 2, . . . ,m, (1.1)

where x∗,i is the ith component of x∗, Aai
i.i.d∼ CN (0, 1

m ) and wa ∼ N (0, σ2
w) a Gaussian noise. The recent

surge of interest has led to a better understanding of the theoretical aspects of this problem. Early theoretical
results on phase retrieval, such as PhaseLift (Candès et al., 2013) and PhaseCut (Waldspurger et al., 2015),
are based on semidefinite relaxations. For random Gaussian measurements, a variant of PhaseLift can
recover the signal exactly (up to global phase) in the noiseless setting using O(n) measurements (Candès &
Li, 2014). A different convex optimization approach for phase retrieval was proposed in Goldstein & Studer
(2016) and Bahmani & Romberg (2016). This method does not involve lifting and is computationally more
attractive than its SDP-based counterparts. Apart from these convex relaxation approaches, non-convex
optimization approaches have recently raised intensive research interests. These algorithms typically consist
of a carefully designed initialization step (usually accomplished via a spectral method (Netrapalli et al.,
2013)) followed by low-cost iterations such as alternating minimization algorithm (Netrapalli et al., 2013) or
gradient descent variants like Wirtinger flow (Candès et al., 2015; Ma et al., 2017), truncated Wirtinger flow
(Chen & Candès, 2017), amplitude flow (Wang et al., 2016; Zhang & Liang, 2016), incremental reshaped
Wirtinger flow (Zhang et al., 2017) and reweighted amplitude flow (Wang et al., 2017a). Other approaches
include Kaczmarz method (Wei, 2015; Chi & Lu, 2016; Tan & Vershynin, 2017; Jeong & Güntürk, 2017),
trust region method (Sun et al., 2016), coordinate decent (Zeng & So, 2017), prox-linear (Duchi & Ruan,
2017), Polyak subgradient (Davis et al., 2017), block coordinate decent (Barmherzig & Sun, 2017).

Thanks to such research we now have access to several algorithms, inspired by different ideas, that are
theoretically guaranteed to recover x∗ exactly in the noiseless setting. Despite all these progresses, there is
still a gap between the theoretical understanding of the recovery algorithms and what practitioners would
like to know. For instance, for many algorithms, including Wirtinger flow and amplitude flow, the exact
recovery is guaranteed with either cn log n or cn measurements, where c is often a fixed but large constant
that does not depend on n. In both cases, it is often claimed that the large value of c or the existence of
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log n is an artifact of the proving technique and the algorithm is expected to work with cn for a reasonably
small value of c. Such claims have left many users wondering

Q.1 Which algorithm should we use? The theoretical analyses may not be sharp and many factors may
have impact on the simulations including the distribution of the noise, the true signal x∗, and the
number of measurements.

Q.2 When can we trust the performance of these algorithms in the presence of noise?

Q.3 What is the impact of initialization schemes, such as spectral initialization?

Researchers have developed certain intuition based on a combination of theoretical and empirical results,
to give heuristic answers to these questions. However, as demonstrated in a series of papers in the context
of compressed sensing, such folklores are sometimes inaccurate (Zheng et al., 2017). To address Question
Q.1, several researchers have adopted the asymptotic framework m,n → ∞, m/n → δ, and provided sharp
analyses for the performance of several algorithms (Dhifallah & Lu, 2017; Dhifallah et al., 2017; Abbasi et al.,
2017). This line of work studies recovery algorithms that are based on convex optimization. In this paper,
we adopt the same asymptotic framework and study the following popular non-convex problem, known as
amplitude-based optimization (Zhang & Liang, 2016; Wang et al., 2016):

min
x

m∑
a=1

(ya − |(Ax)a|)2
+
µ

2
‖x‖22. (1.2)

where (Ax)a denotes the a-th entry of Ax. Note that compared to them, (1.2) has an extra `2-regularizer.
Regularization is known to reduce the variance of an estimator and hence is expected to be useful when
w 6= 0. However, as we will clarify later in Section 2, since the loss function

∑m
a=1 (ya − |(Ax)a|)2

is non-
convex, regularization can help the iterative algorithm that aims to solve (1.2) even in the noiseless settings.
To answer Q.1 to Q.3, we study a message passing algorithm that aims to solve (1.2). As a result of our
studies, we present sharp characterization of the mean square error (even the constants are sharp) in both
noiseless and noisy settings. Furthermore, in simulation section (Section 4.3), we compare our algorithm with
other existing methods and present a quantitative characterization of the gain that spectral initialization
can offer to our algorithms.

For phase retrieval, a Bayesian GAMP algorithm has been discussed in Schniter & Rangan (2015); Barbier
et al. (2017). However, they did not provide rigorous performance analysis, particularly, how they handle the
difficulty related to initialization, for which we will provide a solution in this paper. Further, the algorithm in
Barbier et al. (2017) is based on the Bayesian framework, and performance analyses of Bayesian algorithms
are often very challenging under “non-ideal” situations which the algorithms are not designed for. This
paper considers an AMP algorithm referred as AMP.A for solving the popular optimization problem (1.2).
Contrary to the Bayesian GAMP, the asymptotic performance of AMP.A does not depend on the signal and
noise distributions except for their second moments. Further, given the fact that the most popular schemes in
practice are iterative algorithms derived for solving non-convex optimization problems, the detailed analyses
of AMP.A presented in our paper may also shed light on the performance of these algorithms and suggest
new ideas to improve their performances.

2 AMP.A Algorithm

Our algorithm is based on the approximate message passing (AMP) framework (Donoho et al., 2009; Bayati &
Montanari, 2011), in particular the generalized approximate message passing (GAMP) algorithm developed
and analyzed in Rangan (2011) and Javanmard & Montanari (2013). Following the steps proposed in
Rangan (2011), we obtain the following algorithm called, Approximate Message Passing for Amplitude-based
optimization (AMP.A) (the derivation is shown in Appendix B in supplementary). Starting from an initial
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estimate x0 ∈ Cn×1, AMP.A proceeds as follows for t ≥ 0:

pt = Axt − λt−1

δ
· g(pt−1,y)

−divp(gt−1)
, (2.1a)

xt+1 = λt ·
(
xt + AH g(pt,y)

−divp(gt)

)
. (2.1b)

In these iterations
g(p, y) = y · p|p| − p,

and

λt =
−divp(gt)

−divp(gt) + µ
(
τt + 1

2

) , (2.1c)

τ t =
1

δ

τ t−1 + 1
2

−divp(gt−1)
· λt−1. (2.1d)

In the above, p/|p| at p = 0 can be any fixed number and does not affect the performance of AMP.A.
Further, the “divergence” term divp(gt) is defined as

divp(gt)
∆
=

1

m

m∑
a=1

1

2

(
∂g(pta, ya)

∂pRa
− i

∂g(pta, ya)

∂pIa

)

=
1

m

m∑
a=1

ya
2|pta|

− 1,

(2.2)

where pRa and pIa denote the real and imaginary parts of pta respectively (i.e., pta = pRa + ipIa).
The first point that we would like to discuss here is the benefits of the regularization on AMP.A. Since

the optimization problem in (1.2) is non-convex, iterative algorithms intended to solve it can get stuck at
bad local minima. In this regard, regularization can still help AMP.A to escape bad local minima through
continuation concept even in the noiseless setting. Continuation is popular in convex optimization for
improving the convergence rate of iterative algorithms (Hale et al., 2008). In continuation we start with a
value of µ for which AMP.A is capable of finding the global minimizer of (1.2). Then, once AMP.A converges
we gradually change µ towards the target value of µ for which we want to solve the problem and use the
previous fixed point of AMP.A as the initialization for the new AMP.A. We continue this process until we
reach the value of µ we are interested in. For instance, if we would like to solve the noiseless phase retrieval
problem then µ should eventually go to zero so that we do not introduce unnecessary bias.

A more general version of the continuation idea we discussed above is to let µ change at every iteration
(denoted as µt), and set λt according to µt:

λt =
−divp(gt)

−divp(gt) + µt
(
τt + 1

2

) , (2.3)

This way not only we can automate the continuation process, but also let AMP.A decide which choice of
µ is appropriate at a given stage of the algorithm. Our discussion so far has been heuristic. It is not clear
whether and how much the generalized continuation can benefit the algorithm. To give a partial answer to

this question, we focus on the following particular continuation strategy: µt =
1+2divp(gt)

1+2τt
and obtain the

following version of AMP.A:

pt = Axt − 2

δ
g(pt−1,y), (2.4a)

xt+1 = 2
[
−divp(gt) · xt + AHg(pt,y)

]
. (2.4b)

Note that this choice of µt removes divp(gt) from the denominator of (2.1), stabilizes the algorithm, and
significantly improves the convergence behavior of AMP.A. A key property of AMP (including GAMP) is
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that its asymptotic behavior can be characterized exactly via the state evolution platform (Donoho et al.,
2009; Bayati & Montanari, 2011; Rangan, 2011). Based on a standard asymptotic framework developed
in Bayati & Montanari (2011) we can analyze the state evolution (SE), that captures the performance of
AMP.A under the asymptotic framework. We assume that the sequence of instances {x∗(n),A(n),w(n)} is
a converging sequence defined in Bayati & Montanari (2011). Further, without loss of generality, we assume
1
n‖x∗(n)‖2 → κ = 1. Then, roughly speaking, the estimate xt can be modeled as αtx∗ + σth, where h
behaves like an iid standard complex normal noise. Further, the scaling constant αt and the noise standard
deviation σt evolve according to a known deterministic rule, called the state evolution (SE), defined below.

Definition 1. Starting from fixed (α0, σ
2
0) ∈ C×R+\(0, 0), the sequences {αt}t≥1 and {σ2

t }t≥1 are generated
via the following recursion:

αt+1 = ψ1(αt, σ
2
t ),

σ2
t+1 = ψ2(αt, σ

2
t ; δ, σ2

w),
(2.5)

where ψ1 : C× R+ 7→ C and ψ2 : C× R+ 7→ R+ are respectively given by (with θα being the phase of α):

ψ1(α, σ2) = eiθα ·
∫ π

2

0

|α| sin2 θ(
|α|2 sin2 θ + σ2

) 1
2

dθ, (2.6a)

ψ2(α, σ2; δ, σ2
w) =

4

δ

(
|α|2 + σ2 + 1

)
− 4

δ

∫ π
2

0

2|α|2 sin2 θ + σ2(
|α|2 sin2 θ + σ2

) 1
2

dθ + 4σ2
w. (2.6b)

The state evolution framework for generalized AMP (GAMP) algorithms (Rangan, 2011) was formally
proved in Javanmard & Montanari (2013). To apply the results in (Rangan, 2011; Javanmard & Montanari,
2013) to AMP.A, however, we need two generalizations. First, we need to extend the results to complex-
valued models. This is straightforward by applying a complex-valued version of the conditioning lemma
introduced in Rangan (2011); Javanmard & Montanari (2013). Second, existing results in Rangan (2011)
and Javanmard & Montanari (2013) require the function g to be smooth. Our simulation results in Section
4 show that SE predicts the performance of AMP.A despite the fact that g is not smooth. For theoretical
purpose, we use the smoothing idea discussed in Zheng et al. (2017) to prove the connection between the
SE equations presented in (2.5) and the iterations of AMP.A in (2.4) rigorously. Let ε > 0 be a small fixed
number,

pt = Axtε −
2

δ
gε(p

t−1,y), (2.7a)

xt+1
ε = 2

[
−divp(gt,ε) · xtε + AHgε(p

t,y)
]
, (2.7b)

where gε(p
t−1,y) refers to a vector produced by applying gε : C× R+ 7→ C below component-wise:

gε(p, y)
∆
= y · hε(p)− p,

where for p = p1 + ip2, hε(p) is defined as hε(p)
∆
= p1+ip2√

p2
1+p2

2+ε
. Note that as ε → 0, gt,ε → gt and hence we

expect the iterations of smoothed-AMP.A converge to the iterations of AMP.A.

Theorem 1 (asymptotic characterization). Let {x∗(n),A(n),w(n)} be a converging sequence of instances.
For each instance, let x0(n) be an initial estimate independent of A(n). Assume that the following hold
almost surely

lim
n→∞

1

n
xH
∗ x

0 = α0 and lim
n→∞

1

n
‖x0‖2 = σ2

0 + |α0|2.

Let xtε(n) be the estimate produced by the smoothed AMP.A initialized by x0(n) (which is independent of
A(n)) and p−1(n) = 0. Let ε1, ε2, . . . denote a sequence of smoothing parameters for which εi → 0 as i→∞
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Then, for any iteration t ≥ 1, the following holds almost surely

lim
j→∞

lim
n→∞

1

n

n∑
i=1

|xtεj ,i(n)− eiθt x∗,i|2

= E
[
|Xt − eiθtX∗|2

]
=
∣∣1− |αt|∣∣2 + σ2

t ,

(2.8)

where θt = ∠αt, Xt = αtX∗ + σtH and X∗ ∼ pX is independent of H ∼ CN (0, 1). Further, {α}t≥1 and
{σ2

t }t≥1 are determined by (2.5) with initialization α0 and σ2
0.

The proof of theorem can be found in Appendix A.2 in supplementary.

3 Main results for SE mapping

3.1 Convergence of the SE for noiseless model

We now analyze the dynamical behavior of the SE. Before we proceed, we point out that in phase retrieval,
one can only hope to recover the signal up to global phase ambiguity (Netrapalli et al., 2013; Candès et al.,
2013, 2015), for generic signals without any structure. In light of (2.8), AMP.A is successful if |αt| → 1 and
σ2
t → 0 as t→∞. By analyzing the SE, i.e, the update rule for (αt, σ

2
t ) in (2.6), the following two values of

δ will play critical roles in the analysis:

δAMP
∆
=

64

π2
− 4 ≈ 2.48 and δglobal

∆
= 2.

The importance of δAMP and δglobal is revealed by the following two theorems (proofs can be found in
Appendix A.3 and A.4 in supplementary file respectively):

Theorem 2 (convergence of SE). Consider the noiseless model where σ2
w = 0. If δ > δAMP, then for any

0 < |α0| ≤ 1 and σ2
0 ≤ 1, the sequences {αt}t≥1 and {σ2

t }t≥1 defined in (2.5) converge to

lim
t→∞

|αt| = 1 and lim
t→∞

σ2
t = 0.

Theorem 3 (local convergence of SE). When σ2
w = 0, then (α, σ2) = (1, 0) is a fixed point of the SE in

(2.6). Furthermore, if δ > δglobal, then there exist two constants ε1 > 0 and ε2 > 0 such that the SE converges
to this fixed point for any α0 ∈ (1 − ε1, 1) and σ2

0 ∈ (0, ε2). On the other hand if δ < δglobal, then the SE
cannot converge to (1, 0) except when initialized there.

There are a couple of points that we would like to emphasize here:

1. α0 6= 0 is essential for the success of AMP.A. This can be seen from the fact that α = 0 is always a
fixed point of ψ1(α, σ2) for any σ2 > 0. From our definition of α0 in Theorem 1, α0 = 0 is equivalent
to limn→∞ 1

n 〈x∗,x0〉 = 0. This means that the initial estimate x0 cannot be orthogonal to the true
signal vector x∗, otherwise there is no hope to recover the signal no matter how large δ is. This will
be discussed in more details in Section 4.1.

2. Fig. 1 exhibits the basin of attraction of (α, σ2) = (1, 0) as a function of δ. As expected, the basin
of attraction shrinks as δ decreases. According to Theorem 3, if SE is initialized in the basin of
attraction of (α, σ) = (1, 0), then it still converges to (α, σ2) even if δglobal < δ < δAMP. However,
there are two points we should emphasize here: (i) we find that when δ < δAMP, standard initialization
techniques, such as the spectral method, do not help AMP.A much. Again details are discussed in
Section 4 . Hence, the question of finding initialization in the basin of attraction of (α, σ2) = (1, 0)
(when δ < δAMP) remains open for future research. (ii) As δ decreases from δAMP to δglobal the basin
of attraction of (α, σ2) = (1, 0) shrinks.
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Figure 1: The regions below the curves exhibit the basin of attraction of (α, σ2) = (1, 0) for different values of
δ respectively (left to right: δ = 2.45, 2.4, 2.35). The results are obtained by running the state evolution (SE)
of AMP.A (complex-valued version) with α0 and σ2

0 chosen from 100×100 values equispaced in [0, 1]× [0, 1].

3.2 Noise sensitivity

So far we have only discussed the performance of AMP.A in the ideal setting where the noise is not present
in the measurements. In general, one can use (2.5) to calculate the asymptotic MSE (AMSE) of AMP.A as
a function of the variance of the noise and δ. However, as our next theorem demonstrates it is possible to
obtain an explicit and informative expression for AMSE of AMP.A in the high signal-to-noise ratio (SNR)
regime.

Theorem 4 (noise sensitivity). Suppose that δ > δAMP = 64
π2 − 4 and 0 < |α0| ≤ 1 and σ2

0 < 1. Then, in

the high SNR regime, the asymptotic MSE defined by (θt
∆
= ∠x

H
∗ x

t

n )

AMSE(δ, σ2
w) , lim

t→∞
lim
n→∞

‖xt − eiθtx∗‖22
n

,

behaves as

lim
σ2
w→0

AMSE(σ2
w, δ)

σ2
w

=
4

1− 2
δ

.

The proof of this theorem can be found in Appendix E.4 in supplementary. Note that as intuitively
expected, as δ decreases the sensitivity of the algorithm to noise increases. Hence, one should set the
number of measurements according to the accepted noise level in the recovered signal.

4 Initialization and Simulations

4.1 Initialization

As shown in Section 3.1, to achieve successful reconstruction, the initial estimate x0 cannot be orthogonal
to the true signal x∗, namely,

α0 = lim
n→∞

1

n
xH
∗ x

0 6= 0. (4.1)

In many important applications (e.g., astronomic imaging and crystallography (Millane, 1990)), the signal
is known to be real and nonnegative. In such cases, the following initialization of AMP.A meets the non-
orthogonality requirement:

x0 = ρ1, ρ 6= 0.
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(At the same time, we set g(p−1,y) = 0.) However, finding initializations that satisfy (4.1) is not straightfor-
ward for generic complex-valued signals. Also, random initialization does not necessarily work either, since
asymptotically speaking a random vector will be orthogonal to x∗. One promising direction to alleviate this
issue is the spectral initialization method that was introduced in (Netrapalli et al., 2013) for phase retrieval
and subsequently studied in Candès et al. (2015); Chen & Candès (2017); Wang et al. (2016); Lu & Li
(2017); Mondelli & Montanari (2017). Specifically, the “direction” of the signal is estimated by the principal
eigenvector v (‖v‖2 = n) of the following matrix:

D
∆
= AHdiag{T (y1), . . . , T (ym)}A, (4.2)

where T : R+ → R is a nonlinear processing function, and diag{a1, . . . , am} is a diagonal matrix with
diagonal entries given by {a1, . . . , am}. The exact asymptotic performance of the spectral method was
characterized in Lu & Li (2017) under some regularity assumptions on T . The analysis in Lu & Li (2017)
reveals a phase transition phenomenon: the spectral estimate is not orthogonal to the signal vector x∗ (i.e.,
(4.1) holds) if and only if δ is larger than a threshold δweak. Later, Mondelli & Montanari (2017) derived the
optimal nonlinear processing function T (in the sense of minimizing δweak) and showed that the minimum
weak threshold is δweak = 1 for the complex-valued model.

The above discussions suggest that the spectral method can provide the required non-orthogonal initial-
ization for AMP.A. However, the naive combination of the spectral estimate with AMP.A will not work. As
shown in Figure 2, the performance of AMP.A that is initialized with the spectral method does not follow
the state evolution. This is due to the fact that x0 is heavily correlated with the matrix A and violates
the assumptions of SE. A trivial remedy is data splitting, i.e, we generate initialization and apply AMP.A
on two separate sets of measurements (Netrapalli et al., 2013). However, this simple solution is sub-optimal
in terms of sample complexity. To avoid such loss, we propose the following modification to the spectral
initialization method, that we call decoupled spectral initialization:

Decoupled spectral initialization: Let δ > 2. Set v to be the eigenvector of D corresponding to the
largest eigenvalue defined in (4.2). Let x0 = ρ · v, where ρ is a fixed number which will be discussed later.
Define

p0 = (1− 2τT (y)) ◦Ax0, (4.3)

where ◦ denotes entry-wise product and τ is the unique solution of1

ϕ1(δ, τ) =
1

δ
, τ ∈ (0, τ?), (4.4)

and τ? is the unique solution of

ϕ2(δ, τ?) =
1

δ
, τ? ∈ (0, τmax), (4.5)

where

ϕ1(δ, τ)
∆
= E

[
(δ |Z|2 − 1)

2τT (Y )

1− 2τT (Y )

]
, (4.6a)

ϕ2(δ, τ)
∆
= E

[(
2τT (Y )

1− 2τT (Y )

)2
]
. (4.6b)

The expectations above are over Z ∼ CN (0, 1/δ) and Y = |Z|+W , where W ∼ CN (0, σ2
w) is independent

of Z.

Now we use x0 and p0 as the initialization for AMP.A. So far, we have not discussed how we can set ρ and
T . In this paper, we use the following T (y) derived by Mondelli & Montanari (2017):

T (y)
∆
=

δy2 − 1

δy2 +
√
δ − 1

. (4.7)

1The uniqueness of solution in (4.4) and (4.5) is guaranteed by our choice of T (y) in (4.7)(Lu & Li, 2017; Mondelli &
Montanari, 2017). Yet, in noisy case, (4.4) and (4.5) can only be calculated precisely if we know the variance of the noise.
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Note that our initial estimate is given by x0 = ρ · v (where ‖v‖ =
√
n). Recall from Theorem 2 that we

require 0 < |α0| < 1 and 0 ≤ σ2
0 < 1 for δ > δAMP. To satisfy this condition, we can simply set ρ = ‖y‖/√n,

which is an accurate estimate of ‖x∗‖/
√
n in the noiseless setting (Lu & Li, 2017)2. Under this choice, we

have |α0|2 + σ2
0 = ρ2 = 1. Hence, as long as α0 6= 0, we have 0 < |α0| < 1 and 0 ≤ σ2

0 < 1. The choice we
have picked for ρ is not necessarily optimal. We will discuss the optimal spectral initialization and what it
can offer to AMP.A in Section 4.3.

In summary, our initialization in (4.3) intuitively satisfies “enough independency” requirement such that
the SE for AMP.A still holds and this is supported by our numerical results in Section 4.3. We have clarified
this intuition in Section 4.2. Our numerical experiments in Section 4.3 show that the estimate x0 behaves
as if it is independent of the matrix A. Our finding is summarized below.

Finding 1. Let x0 and p0 be generated according to (4.3), and {xt}t≥1 and {pt}t≥1 generated by the AMP.A
algorithm as described in (2.4). The AMSE converges to

lim
n→∞

1

n
‖xt − eiθtx∗‖22 = (1− |αt|)2

+ σ2
t ,

where θt = ∠(xH
∗ ,xt), {|αt|}t≥1 and {σ2

t }t≥1 are generated according to (2.5) and

|α0|2 =
1− δϕ2(δ, τ)

1 + δϕ3(δ, τ)
and σ2

0 = 1− |α0|2, (4.8)

where τ is the solution to (4.3) and ϕ3 are defined as (ϕ2 is defined in (4.6))

ϕ3(δ, τ)
∆
= E

[
(δ|Z|2 − 1)

(
2τT (Y )

1− 2τT (Y )

)2
]
, (4.9)

where Y = |Z|+W .

We expect to provide a rigorous proof of this finding in a forthcoming paper.

4.2 Intuition of our initialization

Note that in conventional AMP.A, we set initial g(p−1,y) = 0 and therefore p0 = Ax0. Hence, our
modification in (4.3) appears to be a rescaling procedure of p0. Note that solving the principal eigenvector
of D in (4.2) is equivalent to the following optimization problem:

v = argmin
‖x‖=√n

−
m∑
a=1

T (ya) ·
∣∣(Ax)a

∣∣2. (4.10)

Following the derivations proposed in Rangan (2011), we obtain the following approximate message passing
algorithm for spectral method (denoted as AMP.S):

τ̂ t =
1

δ

1

divp(ht−1)
·
√
n

‖r̂t−1‖
, (4.11a)

p̂t = Ax̂t − 1

δ

h
(
p̂t−1,y, τ̂ t−1

)
divp(ht−1)

·
√
n

‖r̂t−1‖
, (4.11b)

r̂t = x̂t − AHh (p̂t,y, τ̂ t)

divp(ht)
, (4.11c)

x̂t+1 = −
√
n

‖r̂t‖
· r̂t, (4.11d)

where we defined h(p̂, y, τ̂)
∆
= 2T (y)

1−2τ̂T (y) · p̂. The optimizer v of (4.10) can be regarded as the limit of the

estimate x̂t under correct initialization of AMP.S. Note that AMP.S acts as a proxy and we do not intend

2Or one can always choose ρ to be small enough. However, this might slow down the convergence rate.
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to use it for the eigenvector calculations. (There are standard numerical recipes for that purpose.) But, the
correction term used in (4.3) is suggested by the Onsager correction term in AMP.S. To see that let p̂∞, x̂∞,
τ̂∞ represent the limits of p̂t, x̂t, τ̂ t respectively. Then, from (4.11a) and (4.11b), we obtain the following
equation

p̂∞
(a)
= Ax̂∞ − τ̂∞h (p̂∞,y, τ̂∞) ,

(b)
= Ax̂∞ − τ̂∞ 2T (y)

1− 2τ̂∞T (y)
◦ p̂∞︸ ︷︷ ︸

Onsager term

(4.12)

By solving (4.12), we obtain (4.3) with rescaling of ‖y‖√
n

(since x̂∞ =
√
nv and x0 = ‖y‖v). Further, (4.4)

and (4.5) that determine the value of τ̂∞ can be simplified through solving the fixed point of the following
state evolution of AMP.S:

α̂ =
α̂ ϕ1(δ, τ̂)√

α̂2 ϕ2
1(δ, τ̂) + 1

δϕ2(δ, τ̂) + α̂2

δ ϕ3(δ, τ̂)
, (4.13a)

1 =
1

δ

1√
α̂2 ϕ2

1(δ, τ̂) + 1
δϕ2(δ, τ̂) + α̂2

δ ϕ3(δ, τ̂)
, (4.13b)

where ϕ1, ϕ2 are defined in (4.6) and ϕ3 is defined in (4.9).

4.3 Simulation results

We now provide simulation results to verify our analysis and compare AMP.A in (2.4) with existing algo-
rithms. Notice that our analysis of the SE is based on a smoothing idea. Our simulation results in this
section show that, for the complex-valued settting, the SE predicts the performance of AMP.A even without
smoothing g.

1) Accuracy of state evolution
We first consider the noiseless setting. Fig. 2 verifies the accuracy of SE predictions of AMP.A together

with the proposed initialization (i.e., (4.3)). The true signal is generated as x∗ ∼ CN (0, I). We measure the
following two quantities (averaged over 10 runs):

α̂t =
xH
∗ x

t

‖x∗‖2
and σ̂2

t =
‖xt − α̂tx∗‖2
‖x∗‖2

.

We expect α̂t and σ̂2
t to converge to their deterministic counterparts αt and σ2

t (as described in Finding 1).
Indeed, Fig. 2 shows that the match between the simulated α̂t and σ̂2

t (solid curves) and the SE predictions
(dotted curves) is precise. For reference, we also include the simulation results for the “blind approach”
where the spectral initialization is incorporated into AMP.A without applying the proposed correction (i.e.,
we use p0 = Ax0 instead of (4.3)). From Fig. 2, we see that this blind approach deviates significantly
from the SE predictions. Note that the blind approach still recovers the signal correctly for the current
experiment, albeit σ̂2

t deviates from theoretical predictions. However, we found that (results are not shown
here) the blind approach is unstable, and can perform rather poorly for other popular choices of T (such as
the orthogonality-promoting method proposed in (Wang et al., 2016)).

We next consider a noisy setting. In Fig. 3, we plot the simulated MSE and the corresponding SE
predictions for two different cases. For the figure on the left panel, the true signal is generated as x∗ ∼
CN (0, I), and the decoupled spectral initialization discussed in Section 4.1 is used. For the figure on
the right panel, the signal is nonnegative and we use the initialization x0 = 1 and g(p−1,y) = 0. The
nonnegative signal is generated in the following way: we set 90% of the entries to be zero and remaining
10% to be constants. (Note that the signal is sparse, but the sparsity information is not exploited in the
AMP.A algorithm.) The signal-to-noise ratio (SNR) is defined to be E[‖Ax‖2]/E[‖w‖2]. The figure displays
the following MSE performance:

MSE = inf
θ∈[0,2π)

‖xt − eiθx∗‖2
‖x∗‖2

.

9



iteration
0 10 20 30 40 50

j,
j

0.2

0.4

0.6

0.8

1

1.2

SE prediction
simulation
simulation - w/o correction

iteration
0 10 20 30 40

<
2

10-15

10-10

10-5

100

SE prediction
simulation
simulation - w/o correction

Figure 2: State evolution prediction for AMP.A with spectral initialization in the noiseless setting. Left:
predicted and simulated results of |α|. Right: predicted and simulated results of σ2. The solid curves show
the simulation results for the proposed initialization, and the dashed curves show the results for a naive
approach without the proposed correction (namely, we set p0 = Ax0). In these experiments, n = 5000 and
m = 20000. The optimal T in (4.7) is employed.

The SE prediction of the above MSE is given by (1− |αt|)2 + σ2
t . Again, we see from Fig. 3 that simulated

MSE matches the SE predictions reasonably well. Further, the right figure exhibits larger fluctuations. This
is mainly due to the fact that in our experiment the initialization for the right figure is less accurate than
that adopted for the left figure.

2) Basin of attraction of AMP.A and spectral initialization
In this Section, we aim to address Q.3 we raised in the introduction. As discussed in Section 4.1, the

spectral method can provide the required non-orthogonal estimate for AMP.A. Besides that, as discussed in
Q.3 in Section 1, it is interesting to see if the spectral method can help AMP.A for δ < δAMP. To answer this,
we need to examine whether (α0, σ

2
0) produced by the spectral estimate can fall into the attraction basin of

the good fixed point (α, σ2) = (1, 0). Currently, the basin of attraction cannot be analytically characterized,
but it can be conveniently computed via SE. Specifically, for a given (α0, σ

2
0), we run the SE for a sufficiently

large number of iterations and see if it converges to (1, 0) (up to a pre-defined tolerance).
Fig. 4 plots the basin of attraction of the fixed point (α, σ) = (1, 0) for δ = 2.4 or 2.41 (indicated by the

blue curve). The straight line is obtained in the following way: From (Lu & Li, 2017), for a given δ and
T , the ratio σ0/α0 can be computed by solving a set of fixed point equations, and this ratio determines a
straight line σ/α = σ0/α0 in the α−σ plane. The red line in Fig. 4 is obtained using T in (4.7). The region
above the red line can be potentially achieved by certain choices of T together with linear scaling. On the
other hand, no known T can achieve the region below the red line. As we see in this figure, the spectral
estimate cannot fall into the basin of attraction in the current example for δ = 2.4 (left subfigure). The
smallest δ such that two curves intersect is numerically found to be around δ = 2.41 (right subfigure) which
is quite close to δAMP ≈ 2.48. Notice that for δ > δAMP, AMP.A works for any α0 6= 0. This means that the
spectral method cannot help AMP.A much besides providing an estimate not orthogonal to the true signal.

3) Comparison with existing methods
Fig. 5 displays the success recovery rate of AMP.A and the Gerchberg-Saxton algorithm (GS) (Gerchberg,

1972), truncated Wirtinger flow (TWF) (Chen & Candès, 2017), truncated amplitude flow (TAF) (Wang
et al., 2017b), incremental reshaped Wirtinger flow (IRWF) (Zhang et al., 2017) and reweighted amplitude
flow (RAF) (Wang et al., 2017a). Notice that the GS algorithm involves solving a least squares problem in
each iteration and is thus computationally more expensive than other algorithms. For the figure in the left
panel, the signal is x∗ ∼ CN (0, I) and the initialization is generated via the spectral method with T defined
in (4.7). For the right panel, the signal is nonnegative (generated in the same way as that in Fig. 3) and the
initial estimate is x0 = 1 for all algorithms.

We see that AMP.A outperforms all other algorithms except at δ = 2.7 for the figure in the left panel.
Based on simulation results not shown in this paper, we find that AMP.A outperforms IRWF consistently
for a larger problem size (say n = 2000). However, we adopt the current setting where n = 1000 for ease of
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Figure 3: Simulated MSE and SE predictions in noisy settings. The solid curves show the average MSE over
10 runs. The error bars show one standard deviation.

,
0 0.5 1 1.5

<

0

0.2

0.4

0.6

0.8

1

attraction basin of
(,;<) = (1; 0)

achievable for
spectral 
method

,
0 0.5 1 1.5

<

0

0.2

0.4

0.6

0.8

1

attraction basin of
(,;<) = (1; 0)

achievable for
spectral 
method

Figure 4: Plot of the attraction basin of AMP.A and the achievable region of the spectral method. Left:
δ = 2.40. Right: δ = 2.41. In this figure, the vertical axis is σ instead of σ2.
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Figure 5: Recovery performance of various algorithms. We fix n = 1000 and vary δ. All algorithms have
run 1000 iterations. Reconstruction is considered successful if the final AMSE is smaller than 10−10. The
success rates are measured in 100 independent realizations of A and x∗. Left: spectral initialization with
random Gaussian signal. Right: x0 = 1 and p0 = Ax0. The signal is nonnegative.

comparison (Chen & Candès, 2017; Wang et al., 2017b; Zhang et al., 2017; Wang et al., 2017a). Comparing
the two figures in Fig. 5, we see that all algorithms are quite sensitive to the quality of initialization except
for AMP.A. Notice that in the asymptotic setting where n → ∞, AMP.A is able to recover the signal for
all δ > δAMP ≈ 2.48 based on our SE analysis.

Finally, we present simulation results for the real-valued case in Fig. 6. Due to the lack of space, a
thorough discussion of the real-valued AMP.A and its state evolution will be reported in a later paper. Yet,
in this paper, we want to emphasize two points through Fig. 6. First, we see that AMP.A outperforms
the competing algorithms with a clear phase transition between δ = 1.4 and δ = 1.5. This is consistent

with our analysis (δAMP = π2

4 − 1 in real value case). Second, we notice that the IRWF algorithm (which
performs best next to AMP.A in Fig. 5) is outperformed by RAF in this case. For reference, we also
included the performance of the Bayesian GAMP algorithm Schniter & Rangan (2015); Barbier et al. (2017)
(in conjunction with our own proposed decouple initialization to get the best performance of the Bayesian
GAMP), under the assumption that the signal distribution (in this case, Gaussian) is perfectly known. As
discussed in Section 1, this assumption can be unrealistic in practice. Nevertheless, the performance of
Bayesian GAMP algorithm is a meaningful benchmark and hence included in Fig. 5.3

5 Future work

There are a couple of research directions that can be pursued in the future. First, our simulation results
suggest that the AMP.A + decoupled spectral initialization can be described by a set of SE equations (see
Finding 1). We hope to establish a rigorous proof for this finding. It is also interesting to investigate
if the proposed decoupled spectral initialization can also work for other phase retrieval algorithms, e.g.,
PhaseMax. Finally, in the case of sparse signals and noisy measurements, it can be advantageous to replace
the `2 regularizer by a general `p (p ≥ 0) regularizer. How to tune the parameters in that case is largely
unknown and can be a promising future direction.

3 We also carried out simulations of Bayesian GAMP for the complex-valued case. However, we found that its performance
is not competitive under the setting of Fig. 5: its recovery rate is less than 95% at δ = 3.5, even when the MSE threshold is set
to 10−6. (Note that the MSE threshold is 10−10 for the curves in Fig. 5).
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A Proofs of our main results

A.1 Background on Elliptic Integrals

The functions that we have in (2.5) are related to the first and second kinds of elliptic integrals. Below we
review some of the properties of these functions that will be used throughout our paper. Elliptic integrals
(elliptic integral of the second kind) were originally proposed for the study of the arc length of ellipsoids.
Since their appearance, elliptic integrals have appeared in many problems in physics and chemistry, such as
characterization of planetary orbits. Three types of elliptic integrals are of particular importance, since a
large class of elliptic integrals can be reduced to these three. We introduce two of them that are of particular
interest in our work.

Definition 2. The first and second kinds of complete elliptic integrals, denoted by K(m) and E(m) (for
−∞ < m < 1) respectively, are defined as (Byrd & Friedman, 1971)

K(m) =

∫ π
2

0

1

(1−m sin2 θ)
1
2

dθ, (A.1a)

E(m) =

∫ π
2

0

(1−m sin2 θ)
1
2 dθ. (A.1b)

For convenience, we also introduce the following definition:

T (m) = E(m)− (1−m)K(m). (A.1c)

In the above definitions, we continued to use m, to follow the convention in the literature of elliptic
integrals. Previously, m was defined to be the number of measurements, but such abuse of notation should
not cause confusion as the exact meaning of m is usually clear from the context.

Below, we list some properties of elliptic integrals that will be used in this paper. The proofs of these
properties can be found in standard references for elliptic integrals and thus omitted (e.g., (Byrd & Friedman,
1971)).

Lemma 1. The following hold for K(m) and E(m) defined in (A.1):

(i) K(0) = E(0) = π
2 . Further, for ε→ 0, E(1− ε) and K(1− ε) behave as

E(1− ε) = 1 +
ε

2

(
log

4√
ε
− 0.5

)
+O(ε2 log(1/ε))

K(1− ε) = log

(
4√
ε

)
+O(ε log(1/ε)).

(ii) On m ∈ (0, 1), K(m) is strictly increasing, E(m) is strictly decreasing, and T (m) is strictly increasing.

(iii) For m > −1,

K(−m) =
1√

1 +m
K

(
m

1 +m

)
,

E(−m) =
√

1 +mE

(
m

1 +m

)
.

(iv) The derivatives of K(m), E(m) and T (m) are given by (for m < 1)

K ′(m) =
E(m)− (1−m)K(m)

2m(1−m)
,

E′(m) =
E(m)−K(m)

2m
,

T ′(m) =
1

2
K(m).

(A.3)
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Furthermore, we will use a few more elliptic integrals in our work. Next lemma and its proof connects
these elliptic integrals to Type I and Type II elliptic integrals.

Lemma 2. The following equalities hold for any m ≥ 0:∫ π
2

0

cos2 θ(
1 +m sin2 θ

) 3
2

dθ =

∫ π
2

0

sin2 θ(
1 +m sin2 θ

) 1
2

dθ, (A.4a)

∫ π
2

0

3m cos2 θ

(1 +m sin2 θ)
5
2

dθ +

∫ π
2

0

1

(1 +m sin2 θ)
3
2

dθ =

∫ π
2

0

1 + 2m sin2 θ(
1 +m sin2 θ

) 1
2

dθ. (A.4b)

Proof. We will only prove (A.4b). (A.4a) can be proved in the same way. The idea is to express the integrals
using elliptic integrals defined in (A.1), and then apply known properties of elliptic integrals (Lemma 1)
to simplify the results. The same tricks in proving (A.4b) are used to derive other related integrals in this
paper. Below, we will provide the full details for the proof of (A.4b), and will not repeat such calculations
elsewhere. The LHS of (A.4b) can be rewritten as:∫ π

2

0

3m

(1 +m sin2 θ)
5
2

dθ −
∫ π

2

0

3m sin2 θ

(1 +m sin2 θ)
5
2

dθ +

∫ π
2

0

1

(1 +m sin2 θ)
3
2

dθ =

∫ π
2

0

1 + 2m sin2 θ(
1 +m sin2 θ

) 1
2

dθ. (A.5)

The equality in (A.5) can be proved by combining the following identities together with straightfroward
manipulations:

(i):

∫ π
2

0

sin2 θ

(1 +m sin2 θ)
1
2

dθ =
(m+ 1)E

(
m

1+m

)
−K

(
m

1+m

)
m
√

1 +m
, (A.6a)

(ii):

∫ π
2

0

sin2 θ

(1 +m sin2 θ)
3
2

dθ =
K
(

m
1+m

)
− E

(
m

1+m

)
m
√

1 +m
, (A.6b)

(iii):

∫ π
2

0

1

(1 +m sin2 θ)
3
2

dθ =
1√

1 +m
E

(
m

1 +m

)
, (A.6c)

(iv):

∫ π
2

0

sin2 θ

(1 +m sin2 θ)
5
2

dθ =
−(1−m)E

(
m

1+m

)
+K

(
m

1+m

)
3m(1 +m)

3
2

, (A.6d)

(v):

∫ π
2

0

1

(1 +m sin2 θ)
5
2

dθ =
2(m+ 2)E

(
m

1+m

)
−K

(
m

1+m

)
3(1 +m)

3
2

, (A.6e)

where K(m) and E(m) denote the complete elliptic integrals of the first and second kinds (see (A.1)). First,
consider the identity (i) in (A.6):∫ π

2

0

sin2 θ

(1 +m sin2 θ)
1
2

dθ =
1

m

∫ π
2

0

(1 +m sin2 θ)
1
2 dθ − 1

m

∫ π
2

0

1

(1 +m sin2 θ)
1
2

dθ

(a)
=

1

m
[E(−m)−K(−m)]

(b)
=

1

m

[√
1 +mE

(
m

1 +m

)
− 1√

1 +m
K

(
m

1 +m

)]
,

where (a) is from the definition of K(m) and E(m) in (A.1), and (b) is from Lemma 1 (iii).
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Identity (ii) can be proved as follows:∫ π
2

0

sin2 θ

(1 +m sin2 θ)
3
2

dθ = −2
d

dm

∫ π
2

0

1

(1 +m sin2 θ)
1
2

dθ

= −2
d

dm
K(−m)

(a)
=

(1 +m)K(−m)− E(−m)

m(1 +m)

(b)
=
K
(

m
1+m

)
− E

(
m

1+m

)
m
√

1 +m
,

(A.7)

where (a) is due to Lemma 1 (iv) and (b) is from Lemma 1 (iii).
For identity (iii), we have∫ π

2

0

1

(1 +m sin2 θ)
3
2

dθ =

∫ π
2

0

1

(1 +m sin2 θ)
1
2

dθ −m ·
∫ π

2

0

sin2 θ

(1 +m sin2 θ)
3
2

dθ

(a)
= K(−m)−m · (1 +m)K(−m)− E(−m)

m(1 +m)

=
E(−m)

1 +m

(b)
=

1√
1 +m

E

(
m

1 +m

)
,

(A.8)

where step (a) follows from the third step of (A.7), and step (b) follows from Lemma 1 (iii).
Identity (iv) can be proved in a similar way:∫ π

2

0

sin2 θ

(1 +m sin2 θ)
5
2

dθ = −2

3
· d

dm

∫ π
2

0

1

(1 +m sin2 θ)
3
2

dθ

(a)
= −2

3
· d

dm

E(−m)

1 +m

(b)
=

(1 +m)K(−m)− (1−m)E(−m)

3m(1 +m)2

(c)
=
−(1−m)E

(
m

1+m

)
−K

(
m

1+m

)
3m(1 +m)

3
2

,

where (a) is from the third step of (A.8), step (b) is from Lemma 1 (iv) and (c) is from Lemma 1 (iii).
Lastly, identity (v) can be proved as follows:∫ π

2

0

1

(1 +m sin2 θ)
5
2

dθ =

∫ π
2

0

1

(1 +m sin2 θ)
3
2

dθ −m ·
∫ π

2

0

sin2 θ

(1 +m sin2 θ)
5
2

dθ

(a)
=

E(−m)

1 +m
−m · (1 +m)K(−m)− (1−m)E(−m)

3m(1 +m)2

(b)
=

2(m+ 2)E
(

m
1+m

)
−K

(
m

1+m

)
3(1 +m)

3
2

,

where step (a) follows from the derivations of the previous two identities and (b) is again due to Lemma 1
(iii).

A.2 Proof of Theorem 1

Since the proof of the real-valued and complex valued signals look similar, for the sake of notational simplicity
we present the proof for the real-valued signals. First note that according to Lemma 13 in Mondelli &
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Montanari (2017)4 for the smoothed AMP.A algorithm we know that almost surely

lim
n→∞

1

n

n∑
i=1

(
xt+1
εj ,i

(n)− sign(αt) · x∗,i
)2

= E(Xt+1
εj − sign(αt) ·X∗)2,

where Xt
ε = αε,tX∗ + σε,tH and X∗ ∼ pX is independent of H ∼ N (0, 1), and αε,t and σε,t satisfy the

following iterations:

αε,t+1 = E
[
∂zgε(P

t, Y )
]
,

σ2
ε,t+1 = E[g2

ε (P t, Y )],

where Y = |Z| + W , P t = αε,tZ + σε,tB, where B ∼ N (0, 1/δ) is independent of Z ∼ N (0, 1/δ) and
W ∼ N (0, 1/δ). It is also straightforward to use an induction step similar to the one presented in the proof
of Theorem 1 of (Zheng et al., 2017) and show that (αε,t, σ

2
ε,t)→ (αt, σ

2
t ) as i→∞, where (αt, σ

2
t ) satisfy

αt+1 = E
[
∂zg(P t, Y )

]
,

σ2
t+1 = E[g2(P t, Y )].

A.3 Proof of Theorem 2

The goal of this section is to prove Theorem 2. However, since the proof is very long we start with the proof
sketch to help the reader navigate through the complete proof.

A.3.1 Roadmap of the proof

First note that

Lemma 3. For any (α0, σ
2
0) ∈ C× R+\(0, 0), ψ1 and ψ2 satisfy the following properties:

(i) ψ1(α, σ2) = ψ1(|α|, σ2) · eiθα , with eiθα being the phase of α;

(ii) ψ2(α, σ2) = ψ2(|α|, σ2).

Hence, if θt denotes the phase of αt, then θt = θ0.

In light of this lemma, we can focus on real and nonnegative values of αt. Then our main goal is to study
the dynamics of the iterations:

αt+1 = ψ1(αt, σ
2
t ),

σ2
t+1 = ψ2(αt, σ

2
t ; δ),

(A.9)

Notice that according to the assumptions of the theorem, we assume that we initialized the dynamical system
with α0 > 0. Our first hope is that this dynamical system will not oscillate and will converge to the solutions
of the following system of nonlinear equations:

α = ψ1(α, σ2),

σ2 = ψ2(α, σ2; δ),
(A.10)

Hence, the first step is to characterize and understand the fixed points of the solutions of (A.10). Toward
this goal we should study the properties of ψ1(α, σ2) and ψ2(α, σ2; δ). In particular, we would like to know
how the fixed points of ψ1(α, σ2) behave for a given σ2 and how the fixed points of ψ2(α, σ2; δ) behave for a
given value of α and δ. The graphs of these functions are shown in Figure 7. We list some of the important
properties of these two functions. We refer the reader to Section A.3.2 to see more accurate statement of
these claims.

4The proof for a more general result was first presented in (Javanmard & Montanari, 2013). However, we found (Mondelli &
Montanari, 2017) easier to follow. The reader may also find Claim 1 in Rangan (2011) and related discussions useful, although
no formal proof was provided.
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Figure 7: Left: plot of ψ1(α, σ2) against α. σ2 = 0.3. Right: plot of ψ2(α, σ2; δ) against σ2. α = 0.3 and
δ = δAMP.

1. ψ1

(
α, σ2

)
is a concave and strictly increasing function of α > 0, for any σ2 > 0: This implies that

ψ1

(
α, σ2

)
can have two fixed points: one at zero and one at α > 0. Also, as is clear from the figure,

the second fixed point is the stable one.

2. If δ > δAMP, then ψ2 has always one stable fixed point. It may have one unstable fixed points (as a
function of σ2). See Fig. 10 for an example of this situation.

For the moment assume that the unstable fixed points do not affect the dynamics of AMP.A. Let F1(σ2)
denote the non-zero fixed point of ψ1 and F2(σ2) the stable fixed point of ψ2.5 We will prove in Lemma
10 that F1(σ2) is a decreasing function and hence F−1

1 (α) is well-defined on 0 < α ≤ 1. Moreover, we will

show that by choosing F−1
1 (0) = π2

16 , F−1
1 (α) is continuous on [0,1]. F−1

1 (α) and F2(α; δ) are shown in Fig.
8. Note that the places these curves intersect correspond to the fixed points of (A.10). Depending on the
value of δ the two curves show the following different behaviors:

1. When δ > δAMP, the dashed curve (see Fig. 8) is entirely below the solid curve except at (α, σ2) = (1, 0).
δAMP is the critical value of δ at which F2(0; δ) = F−1

1 (0). Formally, we will prove the following lemma:

Lemma 4. If δ ≥ δAMP = 64
π2 − 4, then F−1

1 (α) > F2(α; δ) holds for any α ∈ (0, 1).

You may find the proof of this lemma in Section A.3.4. Intuitively speaking, in this case we expect
the state evolution to converge to the fixed point (α, σ2) = (1, 0), meaning that AMP.A achieves exact
recovery.

2. When 2 < δ < δAMP, the two curves intersect at multiple locations, but F2(α) < F−1
1 (α) for the values

of α that are close to one. This implies that AMP.A can still exactly recover x∗ if the initialization is
close enough to x∗. However, this does not happen with spectral initialization. We will discuss this
case in Theorem 3 and we do not pursue it further here.

So far, we have studied the solutions of (A.10). But the ultimate goal of analysis of AMP.A is the analysis
of (A.9). In particular, it is important to show that the estimates (αt, σ

2
t ) converge to (1, 0) and do not

oscillate. Unfortunately, the dynamics of (αt, σ
2
t ) do not monotonically move toward the fixed point (1, 0),

which makes the analysis of SE complicated.
Suppose that δ > δAMP. We first show that (αt, σ

2
t ) lies within a bounded region if the initialization falls

into that region.

5In the literature of dynamical systems, these functions are sometimes called nullclines. Nullclines are useful for qualitatively
analyzing local dynamical behavior of two-dimensional maps (which is the case for the SE in this paper).
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Lemma 5. Suppose that α0 > 0 and σ2
0 ≤ 1. If δ > δAMP = 64

π2 −4, then the sequences {αt}t≥1 and {σ2
t }t≥1

generated by (2.5) satisfy the following:

0 ≤ αt ≤ 1 and 0 ≤ σ2
t ≤ σ2

max, ∀t ≥ 1,

where σ2
max

∆
= max

{
1, 4

δ

}
.

Proof. As discussed in Lemma 3, the assumption α0 > 0 implies that αt > 0, ∀t ≥ 1. Further, from the
property that 0 < ψ1(α, σ2) < 1 for α > 0 and σ2 > 0 (see Lemma 8 (ii)), we readily have 0 ≤ αt ≤ 1.
Similarly, Lemma 9 (iii) shows that if δ > δAMP, α ∈ [0, 1] and σ2 ∈ [0, σ2

max], then 0 ≤ ψ2(α, σ2; δ) ≤ σ2
max.

By our assumption, we have σ2
0 ≤ 1 ≤ σ2

max, and using induction we prove 0 ≤ σ2
t ≤ σ2

max.

From the above lemma, we see that to understand the dynamics of the SE, we only focus on the region

R ∆
=
{

(α, σ2)
∣∣0 < α ≤ 1, 0 < σ2 ≤ σ2

max

}
. Since the dynamic of AMP.A is complicated, we divide this region

into smaller regions. See Figure 9 for an illustration.

Definition 3. We divide R ∆
=
{

(α, σ2)
∣∣0 < α ≤ 1, 0 < σ2 ≤ σ2

max

}
into the following three sub-regions:

R0
∆
=

{
(α, σ2)

∣∣0 < α ≤ 1,
π2

16
< σ2 ≤ σ2

max

}
,

R1
∆
=

{
(α, σ2)

∣∣0 < α ≤ 1, F−1
1 (α) < σ2 ≤ π2

16

}
,

R2
∆
=
{

(α, σ2)
∣∣0 < α ≤ 1, 0 ≤ σ2 ≤ F−1

1 (α)
}
.

(A.11)

Our next lemma shows that if (αt, σ
2
t ) is in R1 or R2 for t ≥ 1, then (αt, σ

2
t ) converges to (1, 0). The

following lemma demonstrates this claim.

Lemma 6. Suppose that δ > δAMP. If (αt0 , σ
2
t0) is in R1 ∪R2 at time t0 (where t0 ≥ 1), and {αt}t≥t0 and

{σ2
t }t≥t0 are obtained via the SE in (2.5), then

(i) (αt, σ
2
t ) remains in R1 ∪R2 for all t > t0;

(ii) (αt, σ
2
t ) converges:

lim
t→∞

αt = 1 and lim
t→∞

σ2
t = 0.
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F2(α; δ).

This claim will be proved in Section A.3.5. Notice that the condition t0 ≥ 1 is important for part (i) to
hold: if (α0, σ

2
0) is close to the origin (and thus in R2), then (α1, σ

2
1) can move to R0. However, this cannot

happen when t ≥ 1. In the proof given in Section A.3.5, we showed that for any (α0, σ
2
0) ∈ R the possible

locations of (α1, σ
2
1) are bounded from below by a curve, and once (α, σ2) is above this curve and also in

region R1 or R2, then we will prove that it cannot go to R0. Finally, we will prove the following Lemma
that completes the proof.

Lemma 7. Suppose that δ > δAMP. Let {αt}t≥1 and {σ2
t }t≥1 be the sequences generated according to (2.5)

from any (α0, σ
2
0) ∈ R0. Then, there exists a finite number T ≥ 1 such that (αT , σ

2
T ) ∈ R1 ∪R2.

The proof of this result is in Section A.3.6. Combining the above two lemmas, it is straightforward to
see that (αt, σ

2
t )→ (1, 0), and hence the proof is complete.

Below we present the missing details.

A.3.2 Properties of ψ1 and ψ2

In this section we derive all the main properties of ψ1 and ψ2 that are used throughout the paper.

Lemma 8. ψ1

(
α, σ2

)
has the following properties (for α ≥ 0):

(i) ψ1

(
α, σ2

)
is a concave and strictly increasing function of α > 0, for any given σ2 > 0.

(ii) 0 < ψ1(α, σ2) ≤ 1, for α > 0 and σ2 > 0.

(iii) If 0 < σ2 < π2/16, then there are two nonnegative solutions to α = ψ1(α, σ2): α = 0 and α = F1(σ2) >
0. Further, F1(σ2) is strongly globally attracting, meaning that

α < ψ1(α, σ2) < F1(σ2), α ∈ (0, F1(σ2)), (A.12a)

and
F1(σ2) < ψ1(α, σ2) < α, α ∈ (F1(σ2),∞). (A.12b)

On the other hand, if σ2 ≥ π2/16 then α = 0 is the unique nonnegative fixed point and it is strongly
globally attracting.
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Proof. Part (i): From (2.6), it is easy to verify that ψ1(α, σ2) is an increasing function of α > 0. We now
prove its concavity. To this end, we calculate its first and second partial derivatives:

∂ψ1(α, σ2)

∂α
=

∫ π
2

0

sin2 θ · σ2

(α2 sin2 θ + σ2)
3
2

dθ, (A.13a)

∂2
1ψ1(α, σ2)

∂α2
=

∫ π
2

0

−3 sin4 θ · σ2α

(α2 sin2 θ + σ2)
5
2

dθ < 0, ∀α > 0, σ2 > 0. (A.13b)

Hence, ψ2(α, σ2) is a concave function of α for α > 0.

Part (ii): Positivity of ψ1 is obvious. Also, note that

ψ1(α, σ2) =

∫ π/2

0

sin2 θ

(sin2(θ) + σ2

α2 )
1
2

dθ ≤
∫ π/2

0

sin θdθ = 1.

Proof of (iii): The claim is a consequence of the concavity of ψ1 (with respect to α) and the following
condition:

∂ψ1(α, σ2)

∂α

∣∣∣∣
α=0

= 1⇐⇒ σ2 =
π2

16
.

The detailed proof is as follows. First, it is straightforward to verify that α = 0 is always a solution to
α = ψ1(α, σ2). Define

Ψ1(α, σ2)
∆
= ψ1(α, σ2)− α.

Since Ψ1(α, σ2) is a concave function of α (as ψ1(α, σ2) is concave), ∂Ψ1(α,σ2)
∂α is decreasing. Let’s first

consider σ2 > π2/16. In this case we know that

∂Ψ1(α, σ2)

∂α
≤ ∂Ψ1(α, σ2)

∂α

∣∣∣
α=0

=
∂ψ1(α, σ2)

∂α

∣∣∣
α=0
− 1 =

π

4σ
− 1 < 0, (A.14)

where the second equality can be calculated from (A.13a). Since Ψ1(α, σ2) is a decreasing function of α
and is equal to zero at zero, and it does not have any other solution. Now, consider case σ2 < π2/16. It is
straightforward to confirm that

∂Ψ1(α, σ2)

∂α

∣∣∣
α=0

=
∂ψ1(α, σ2)

∂α

∣∣∣
α=0
− 1 =

π

4σ
− 1 > 0.

Furthermore, from (A.13a) we have ∂ψ1(α,σ2)
∂α

∣∣∣
α→∞

= 0, and so

∂Ψ1(α, σ2)

∂α

∣∣∣
α→∞

→ −1.

Hence, Ψ1(α, σ2) = 0 has exactly one more solution for α > 0. Note that since from part (ii) ψ1(α, σ2) < 1,
the solution of α = ψ1(α, σ2) also satisfies α ≤ 1.

Finally, the strong global attractiveness follows from the fact that ψ1 is a strictly increasing function of
α.

Lemma 9. ψ2

(
α, σ2; δ

)
has the following properties:

(i) If δ < 2, then σ2 = 0 is a locally unstable fixed point to σ2 = ψ2

(
α, σ2; δ

)
, meaning that

∂ψ2(α, σ2; δ)

∂σ2

∣∣∣
α=1,σ2=0

> 1.

23



(ii) For any δ > 2, σ2 = ψ2

(
α, σ2; δ

)
has a unique fixed point in σ2 ∈ [0, 1] for any α ∈ [0, 1]. Further, the

fixed point is (weakly) globally attracting in σ2 ∈ [0, 1]:

σ2 < ψ2(α, σ2; δ), σ2 ∈ (0, F2(α)), (A.15a)

and
ψ2(α, σ2) < σ2, σ2 ∈ (F2(α), 1). (A.15b)

(iii) If δ ≥ δAMP, then for any α ∈ [0, 1], we have

0 ≤ ψ2(α, σ2; δ) ≤ σ2
max, σ2 ∈ [0, σ2

max],

where σ2
max

∆
= max{1, 4/δ}.

(iv) If δ ≥ δAMP, then for any α ∈ [0, 1], F2(α) is the unique (weakly) globally attracting fixed point of
σ2 = ψ2(α, σ2; δ) in σ2 ∈ [0, σ2

max]. Namely,

σ2 < ψ2(α, σ2; δ), σ2 ∈ (0, F2(α)), (A.16a)

and
ψ2(α, σ2) < σ2, σ2 ∈ (F2(α), σ2

max). (A.16b)

(v) For any δ > 0, ψ2(α, σ2; δ) is an increasing function of σ2 > 0 if

α > α∗
∆
=

1

2
√

1 + s2∗
E

(
1

1 + s2∗

)
≈ 0.53, (A.17)

where s2
∗ is the unique solution to

2E

(
1

1 + s2∗

)
= K

(
1

1 + s2∗

)
.

Here, K(·) and E(·) denote the complete elliptic integrals introduced in (A.1). Further, when α > α∗
and δ > δAMP, then F2(σ2) is strongly globally attracting in [0, σ2

max]. Specifically,

σ2 < ψ2(α, σ2; δ) < F2(α), σ2 ∈ (0, F2(α)),

and
F2(α) < ψ2(α, σ2) < σ2, σ2 ∈ (F2(α), σ2

max).

Proof. First note that the partial derivative of ψ2 w.r.t. σ2 is given by

∂ψ2(α, σ2; δ)

∂σ2
=

4

δ

(
1− 1

2

∫ π
2

0

σ2

(α2 sin2 θ + σ2)
3
2

dθ

)
. (A.18)

Part (i): Before we proceed, we first comment on the discontinuity of the partial derivative ∂ψ2(α,σ2;δ)
∂σ2

at σ2 = 0. Note that the formula in (A.18) was derived for non-zero values of σ2. Naively, one may plug

in σ2 = 0 in the equation and assume that ∂ψ2(α,σ2;δ)
∂σ2

∣∣∣
α=1,σ2=0

= 4
δ . This is not the case since the integral∫ π/2

0
dθ

sin θ is divergent. It turns out that the derivative ∂ψ2(α,σ2;δ)
∂σ2 is a continuous function of σ2. The

technical details can be found in Appendix D.

Since ∂ψ2(α,σ2;δ)
∂σ2 is continuous at σ2 = 0, we have

∂ψ2(α, σ2; δ)

∂σ2

∣∣∣
α=1,σ2=0

= lim
σ2→0

∂ψ2(1, σ2; δ)

∂σ2
.
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Note that if we set m = 1/σ2, then from (A.6) we have

∂ψ2(1, σ2; δ)

∂σ2
=

4

δ

(
1− 1

2

∫ π
2

0

σ2

(sin2 θ + σ2)
3
2

dθ

)
=

4

δ

(
1− 1

2

√
m

1 +m
E

(
m

m+ 1

))
.

It is then straightforward to use Lemma 1 to prove that

lim
m→∞

4

δ

(
1− 1

2

√
m

1 +m
E

(
m

m+ 1

))
=

2

δ
.

Hence, ∂ψ2(α,σ2;δ)
∂σ2

∣∣∣
α=1,σ2=0

> 1 for δ < 2.

Part (ii): We first prove that the following equation has at least one solution for any α ∈ [0, 1] and δ > 2:

σ2 = ψ2(α, σ2; δ), σ2 ∈ [0, 1].

It is straightforward to verify that

ψ2(α, σ2; δ)|σ2=0 =
4

δ
(1− α)2 ≥ 0. (A.19)

We next prove our claim by proving the following:

ψ2(α, σ2; δ)|σ2=1 < 1, ∀α ∈ [0, 1] and δ > 2. (A.20)

From (2.6b), we have

ψ2(α, σ2; δ)|σ2=1 < 1⇐⇒
∫ π

2

0

2α2 sin2 θ + 1

(α2 sin2 θ + 1)
1
2

dθ − α2

︸ ︷︷ ︸
g(α2)

> 2− δ

4
. (A.21)

We next show that g(α2) in (A.21) is a concave function of α2, and hence the minimum can only happen at
either α = 0 or α = 1. The first two derivatives w.r.t. α2 are given by:

dg(α2)

dα2
=

∫ π
2

0

sin2 θ
(
α2 sin2 θ + 3

2

)
(α2 sin2 θ + 1)

3
2

dθ − 1,

and
d2g(α2)

d(α2)2
= −

∫ π
2

0

sin4 θ
(

1
2α

2 sin2 θ + 5
4

)
(α2 sin2 θ + 1)

5
2

dθ < 0.

The concavity of g(α2) implies that its minimum happens at either α = 0 or α = 1. Hence, to prove (A.21),
it suffices to prove that

g(0) =
π

2
> 2− δ

4
and g(1) ≈ 1.509 > 2− δ

4
,

which holds for δ > 2. Hence, (A.21) holds. By combining (A.19) and (A.20) we conclude that ψ2(α, σ2; δ)
has at least one fixed point between σ2 = 0 and σ2 = 1. The next step is to prove the uniqueness of this
fixed point. For the rest of the proof, we discuss two cases separately: a) δ > 4 and b) 2 < δ ≤ 4.

(a) δ > 4. Define

Ψ2(α, σ2; δ)
∆
= ψ2(α, σ2; δ)− σ2. (A.22)

From (A.18), if δ > 4, then ∂ψ2(α,σ2;δ)
∂σ2 < 1, ∀σ2 > 0. This means that Ψ2(α, σ2; δ) defined in (A.22) is

monotonically decreasing in σ2 > 0. Hence, the solution to Ψ2(α, σ2; δ) = 0 is unique. Furthermore,
the following property is a direct consequence of the monotonicity of Ψ2(α, σ2; δ):

Ψ2(α, σ2; δ) < 0, ∀0 < σ2 < F2(α), (A.23a)

and
Ψ2(α, σ2; δ) > 0 > σ2, ∀F2(α) < σ2 < 1, (A.23b)

where F2(α) denotes the solution to Ψ2(α, σ2; δ) = 0.

25



(b) 2 < δ ≤ 4. In this case, we will prove that there exists a threshold on σ2, denoted as σ2
?(α; δ) below,

such that the following hold:

∂ψ2(α, σ2; δ)

∂σ2
< 1, ∀σ2 < σ2

?(α; δ) and
∂ψ2(α, σ2; δ)

∂σ2
> 1, ∀σ2 ∈ (σ2

?(α; δ),∞). (A.24)

This means that Ψ2(α, σ2; δ) = ψ2(α, σ2; δ) − σ2 is strictly decreasing on σ2 ∈ (0, σ2
?(α; δ)) and in-

creasing on σ2 ∈ (σ2
?(α; δ),∞). Note that since we have proved that Ψ2(α, σ2; δ) = 0 has at least one

solution, we conclude that there exist exactly two solutions to Ψ2(α, σ2; δ) = 0, one in (0, σ2
?(α; δ)) and

the second in (σ2
?(α; δ),∞), if Ψ2(α, σ2; δ)|σ2=σ2

?(α;δ) < 0. This is the case since Ψ2(α, σ2; δ)|σ2=1 < 0
(see (A.20)), and that Ψ2(α, σ2; δ)|σ2=1 < Ψ2(α, σ2; δ)|σ2=σ2

?(α;δ) (since the latter is the global minimum
of Ψ2(α, σ2; δ) in σ2 ∈ (0,∞)).

Also, it is easy to prove (A.23). In fact, the following holds:

Ψ2(α, σ2; δ) < 0, ∀0 < σ2 < F2(α),

and
Ψ2(α, σ2; δ) > 0 > σ2, ∀F2(α) < σ2 < F̂2(α; δ),

where F̂2(α; δ) > 1 denotes the larger solution to Ψ2(α, σ2; δ) = 0. See Fig. 10 for an illustration.
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Figure 10: Plot of ψ2(α, σ2; δ) for α = 0.7 and δ = 2.1.

From the above discussions, it remains to prove (A.24). To this end, it is more convenient to express
(A.18) using elliptic integrals discussed in Section A.1:

∂ψ2(α, σ2; δ)

∂σ2
=

4

δ

(
1− 1

2

∫ π
2

0

σ2

(α2 sin2 θ + σ2)
3
2

dθ

)
(A.25a)

=
4

δα

(
α− 1

2
√

1 + s2
E

(
1

1 + s2

)
︸ ︷︷ ︸

f(s)

)
, (A.25b)

where we introduced a new variable s
∆
= σ

α and the last step is derived using the identities in Lemma
2. Based on (A.25) we can now rewrite (A.24) as

f(s) > α

(
1− δ

4

)
, ∀s < σ?(α; δ)

α
and f(s) < α

(
1− δ

4

)
, ∀s ∈

(
σ?(α; δ)

α
,∞
)
. (A.26)
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To prove this, we first show that there exists s∗ such that f(s) is strictly increasing on (0, s∗) and
decreasing on (s∗,∞), namely,

f ′(s) > 0, for s < s∗, and f ′(s) < 0, for s > s∗. (A.27a)

s∗ is in fact the unique solution to the following equation:

2E

(
1

1 + s2∗

)
= K

(
1

1 + s2∗

)
. (A.27b)

This can be seen from f ′(s) derived below:

f ′(s) =
d

ds

1

2
√

1 + s2
E

(
1

1 + s2

)
=

s

2(1 + s2)
3
2

[
K

(
1

1 + s2

)
− 2E

(
1

1 + s2

)]
.

Further noting that E(·) is strictly decreasing in (0, 1) while K(·) is increasing, we proved (A.27).
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Figure 11: Illustration of f(s).

Based on the above discussions, we can finally turn to the proof of (A.26). From (A.25b), it is
straightforward to verify that f(0) = 1

2 . Therefore, when δ > 2, we have

α

(
1− δ

4

)
≤ 1− δ

4
<

1

2
= f(0), ∀δ > 2 and 0 ≤ α ≤ 1.

Hence, the following equation admits a unique solution (denoted as s?(α; δ) below):

f(s) = α

(
1− δ

4

)
, ∀δ > 2 and 0 ≤ α ≤ 1.

See Fig. 11 for an illustration. Also, from our above discussions on the monotonicity of f(s) it is
straightforward to show that

f(s) > α

(
1− δ

4

)
, ∀s < s?(α; δ) and f(s) < α

(
1− δ

4

)
,∀s ∈ (s?(α; δ),∞) ,

which proves (A.26) by setting σ?(α; δ)
∆
= α · s?(α; δ). This proves (A.24), which completes the proof.
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Part (iii): We will prove a stronger result: ψ2 ≤ 4/δ. From (2.6b), ψ2(α, σ2; δ) ≤ 4/δ is equivalent to

α2 + σ2 −
∫ π

2

0

2α2 sin2 θ + σ2

(α2 sin2 θ + σ2)
1
2

dθ ≤ 0,

which can be further reformulated as

α2 ≤
∫ π

2

0

2α2 sin2 θ

(α2 sin2 θ + σ2)
1
2

dθ + σ2

(∫ π
2

0

1

(α2 sin2 θ + σ2)
1
2

dθ − 1

)
. (A.28)

For 0 ≤ α ≤ 1 and σ2 ≤ σ2
max we have∫ π

2

0

1

(α2 sin2 θ + σ2)
1
2

dθ ≥
∫ π

2

0

1(
sin2 θ + σ2

max

) 1
2

dθ,

(a)
=

∫ π
2

0

1(
sin2 θ + 4

δAMP

) 1
2

dθ

≈ 1.09 > 1,

(A.29)

where step (a) from σ2
max = max {1, 4/δ} ≥ max {1, 4/δAMP} = 4/δAMP ≈ 1.6. Due to (A.29), to prove

(A.28), it suffices to prove

α2 ≤
∫ π

2

0

2α2 sin2 θ

(α2 sin2 θ + σ2)
1
2

dθ,

or

1 ≤
∫ π

2

0

2 sin2 θ

(α2 sin2 θ + σ2)
1
2

dθ,

which, similar to (A.29), can be proved by∫ π
2

0

2 sin2 θ

(α2 sin2 θ + σ2)
1
2

dθ ≥
∫ π

2

0

2 sin2 θ(
sin2 θ + 4

δAMP

) 1
2

dθ ≈ 1.02 > 1.

Part (iv): We bound the partial derivative of ψ2(α, σ2; δ) for σ2 ∈ [0, σ2
max] as:

ψ2(α, σ2; δ)

∂σ2
=

4

δ

(
1− 1

2

∫ π
2

0

σ2

(α2 sin2 θ + σ2)
3
2

dθ

)
(a)

≤ 4

δ

(
1− 1

2

∫ π
2

0

σ2

(θ2 + σ2)
3
2

dθ

)
(b)
=

4

δ

(
1− 1

2

∫ π
2σ

0

1

(θ̃2 + 1)
3
2

dθ̃

)
(c)

≤ 4

δAMP

(
1− 1

2

∫ π

2

√
4

δAMP

0

1

(θ̃2 + 1)
3
2

dθ̃

)
≈ 0.98 < 1,

(A.30)

where step (a) follows from the constraint 0 ≤ α ≤ 1 and the inequality sin θ ≤ θ; (b) is due to the variable
change θ̃ = θ/σ; (c) is a consequence of the constraint σ2 ≤ σ2

max = max{1, 4/δ} ≤ max{1, 4/δAMP} =
4/δAMP. As a result of (A.30), Ψ2(α, σ2; δ) = ψ2(α, σ2; δ)− σ2 is decreasing in σ2 ∈ [0, σ2

max]. It is easy to
verify that ψ2(0, α; δ) ≥ 0 for α ∈ [0, 1]. Further, Lemma 9 (iii) implies that

ψ2(σ2
max, α; δ)− σ2

max ≤ 0.
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Hence, there exists a unique solution (which we denote as F2(α)) to the following equation:

ψ2(σ, α; δ) = σ2, 0 ≤ σ2 ≤ σ2
max.

Finally, the property in (A.16) is a direct consequence of the fact that Ψ2(α, σ2; δ) = ψ2(α, σ2; δ) − σ2 is a
decreasing function of σ2 ≤ σ2

max.

Part (v): In (A.25), we have derived the following:

ψ2(α, σ2; δ)

∂σ2
=

4

δα
(α− f(s)) ,

where s
∆
= σ

α . From (A.25b), we see that ψ2(α, σ2; δ) is an increasing function of σ2 if the following holds:

α > f(s).

Further, (A.27) implies that the maximum of f(s) happens at s∗, i.e.,

max
s>0

f(s) =
1

2
√

1 + s2∗
E

(
1

1 + s2∗

)
∆
= α∗, (A.31)

where s2
∗ is the unique solution to

2E

(
1

1 + s2∗

)
= K

(
1

1 + s2∗

)
. (A.32)

Clearly, α > α∗ immediately implies α > f(s), which further guarantees that ψ2(α, σ2; δ) is monotonically
increasing on σ2 > 0. Finally, the strong global attractiveness of F2(α) is a direct consequence of part (iv)
of this lemma together with the monotonicity of ψ2.

A.3.3 Properties of F1 and F2

In this section we derive the main properties of the functions F1 and F2 introduced in Section A.3.1. These
properties play major roles in the results of the paper.

Lemma 10. The following hold for F1(σ2) and F2(α; δ) (for δ > 2):

(i) F1(0) = 1 and lim
σ2→π2

16

− F1(σ2) = 0. Further, by choosing F1(π
2

16 ) = 0, we have F1(σ2) is continuous

on
[
0, π

2

16

]
and strictly decreasing in

(
0, π

2

16

)
;

(ii) F2 is a continuous function of α ∈ [0, 1] and δ ∈ (2,∞). F2(1; δ) = 0, and F2(0; δ) =

(
−π+
√
π2+4(δ−4)

δ−4

)2

for δ 6= 4 and F2(0; 4) = 4/π2.

Proof. Part (i): We first verify F1(0) = 1 and lim
σ2→π2

16

− F1(σ2) = 0. First, F1(0) = 1 can be seen from the

following facts: (a) ψ1(α, 0) = 1 for α > 0, see (2.6a); and (b) By definition, F1(0) is the non-zero solution to

α = ψ1(α, 0). Then, by Lemma 8 (iii) and continunity of ψ1, we know F1 is continuous on [0, π
2

16 ), and further

lim
σ2→π2

16

− F1(σ2) = 0 since σ2 = π2

16 corresponds to a case where the non-negative solution to ψ1(α, σ2) = α

decreases to zero. Next, we prove the monotonicity of F1. Note that

F1(σ2) = ψ1(F1(σ2), σ2),

Differentiation w.r.t. σ2 yields

F ′1(σ2) = ∂2ψ1(F1(σ2), σ2) + ∂1ψ1(F1(σ2), σ2) · F ′1(σ2),

where ∂2ψ1(F1(σ2), σ2)
∆
= ∂ψ1(α,σ2)

∂σ2

∣∣∣
α=F1(σ2)

and ∂1ψ1(F1(σ2), σ2)
∆
= ∂ψ1(α,σ2)

∂α

∣∣∣
α=F1(σ2)

. Hence,[
1− ∂1ψ1(F1(σ2), σ2)

]
· F ′1(σ2) = ∂2ψ1(F1(σ2), σ2). (A.33)
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We have proved in (A.14) that ∂ψ1(α,σ2)
∂α

∣∣∣
α=0

< 1 when σ2 < π2

16 . Together with the concavity of ψ1 w.r.t. α

(cf. Lemma 8 (i)), we have

∂ψ1(α, σ2)

∂α

∣∣∣
α=F1(σ2)

<
∂ψ1(α, σ2)

∂α

∣∣∣
α=0

< 1, ∀σ2 <
π2

16
. (A.34)

Further, from (2.6a), it is straightforward to see that ψ1 is a strictly decreasing function of σ2, and thus

∂2ψ1(F1(σ2), σ2) =
∂ψ1(α, σ2)

∂α

∣∣∣
α=F1(σ2)

< 0. (A.35)

Substituting (A.34) and (A.35) into (A.33), we obtain

F ′1(σ2) < 0, ∀σ2 <
π2

16
.

Proof of (ii): By Lemma 9 (ii) and continuity of ψ2, it is straightforward to check that F2 is continuous.
Moreover, we have proved that σ2 = F2(α; δ) is the unique solution to the following equation (for δ > 2):

σ2 =
4

δ

(
α2 + σ2 + 1−

∫ π
2

0

2α2 sin2 θ + σ2

(α2 sin2 θ + σ2)
1
2

dθ

)
, σ2 ∈ [0, 1]. (A.36)

When α = 0, (A.36) reduces

σ2 =
4

δ

(
σ2 + 1− π

2
σ
)
, σ2 ∈ [0, 1],

which has two possible solutions (for δ 6= 4):

σ1 =
−π +

√
π2 + 4(δ − 4)

δ − 4
and σ2 =

−π −
√
π2 + 4(δ − 4)

δ − 4
.

(For the special case δ = 4, σ1 = 2/π.) However, σ2 is invalid due to our constraint 0 < σ2 < 1. This can be
seen as follows. First, σ2 < 0 for δ > 4 and hence invalid. When 2 < δ < 4, we have

σ2 =
π +

√
π2 − 4(4− δ)
4− δ >

π

4− δ > 1.

Hence, F2(0; δ) = σ1. When α = 1, (A.36) becomes:

σ2 =
4

δ

(
2 + σ2 −

∫ π
2

0

2 sin2 θ + σ2

(sin2 θ + σ2)
1
2

dθ

)
, σ2 ∈ [0, 1].

It is straightforward to verify that σ2 = 0 is a solution. Also, from Lemma 9 (ii), σ2 = 0 is a also the unique
solution. Hence, F2(1; δ) = 0.

A.3.4 Proof of Lemma 4

In Lemma 9, we have proved that F2(α; δ) is the unique globally attracting fixed point of ψ2 in σ2 ∈ [0, 1]
(for δ > 2), and from (A.15) we have

σ2 > F2(α; δ)⇐⇒ ψ2(α, σ2; δ) < σ2, σ2 ∈ [0, 1]. (A.37)

Here, our objective is to prove that F−1
1 (α) < F2(α; δ) holds for any α ∈ (0, 1) when δ ≥ δAMP. From (A.37)

and noting that F−1
1 (α) ≤ π2/16 < 1 (from Lemma 10), our problem can be reformulated as proving the

following inequality (for δ > δAMP):

ψ2(α, F−1
1 (α); δ) < F−1

1 (α), ∀α ∈ (0, 1). (A.38)

30



Since ψ2(α, F−1
1 (α); δ) is a strictly decreasing function of δ (see (2.6b)), it suffices to prove that (A.38) holds

for δ = δAMP:
ψ2(α, F−1

1 (α); δAMP) < F−1
1 (α), ∀α ∈ (0, 1). (A.39)

We now make some variable changes for (A.39). From (2.6a), ψ1 in can be rewritten as the following for
α > 0:

ψ1(α, σ2) =

∫ π
2

0

sin2 θ(
sin2 θ + σ2

α2

) 1
2

dθ.

By definition, F1(σ2) is the solution to α = ψ1(α, σ2), and hence the following holds:

α =

∫ π
2

0

sin2 θ(
sin2 θ +

F−1
1 (α)
α2

) 1
2

dθ.

At this point, it is more convenient to make the following variable change:

s
∆
=

√
F−1

1 (α)

α
, (A.40)

from which we get

α = φ1(s)
∆
=

∫ π
2

0

sin2 θ(
sin2 θ + s2

) 1
2

dθ. (A.41)

Notice that φ1 : R+ 7→ [0, 1] is a monotonically decreasing function, and it defines a one-to-one map between
α and s. From the above definitions, we have

F−1
1 (α) = s2α2 = s2φ2

1(s), (A.42)

where the first equality is from (A.40) and the second step from (A.41). Using the relationship in (A.42),
we can reformulate the inequality in (A.39) into the following equivalent form:

ψ2(φ1(s), s2φ2
1(s); δAMP) < s2φ2

1(s), ∀s > 0. (A.43)

Substituting (A.41) and (2.6b) into (A.43) and after some manipulations, we can finally write our objec-
tive as: ∫ π

2

0

sin2 θ

(sin2 θ + s2)
1
2

dθ ·
∫ π

2

0

(1− γs2) sin2 θ + s2

(sin2 θ + s2)
1
2

dθ > 1, ∀s > 0. (A.44)

where we defined

γ
∆
= 1− δAMP

4
= 2− 16

π2
. (A.45)

In the next two subsections, we prove (A.44) for s2 > 0.07 and s2 ≤ 0.07 using different techniques.

(i) Case I: We make another variable change:

t
∆
=

1

s2
.

Using the variable t, we can rewrite (A.44) into the following:

G(t)
∆
=
g1(t)

g2(t)
− 1

g2
2(t)

≥ γ, ∀t ∈ [0, 14.3). (A.46a)

where γ is defined in (A.45), and

g1(t)
∆
=

∫ π
2

0

(1 + t sin2 θ)
1
2 dθ, (A.46b)

g2(t)
∆
=

∫ π
2

0

sin2 θ

(1 + t sin2 θ)
1
2

dθ. (A.46c)
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Notice that if we could prove (A.46a) for t < 14.3, we would have proved (A.44) for s2 > 0.07, since
14.3 > 1/0.07 ≈ 14.28. For the ease of later discussions, we define

g3(t)
∆
=

∫ π
2

0

sin4 θ

(1 + t sin2 θ)
3
2

dθ,

g4(t)
∆
=

∫ π
2

0

sin6 θ

(1 + t sin2 θ)
5
2

dθ.

The following identities related to {g1(t), g2(t), g3(t), g4(t)} will be used in our proof:

g′1(t) =
1

2
g2(t),

g′2(t) = −1

2
g3(t),

g′3(t) = −3

2
g4(t).

(A.47)

We now prove (A.46a). First, it is straightforward to verify that equality holds for (A.46a) at t = 0,
i.e.,

G(0) = γ. (A.48)

Hence, to prove that G(t) ≥ γ for t ∈ [0, 14.3), it is sufficient to prove that G(t) is an increasing
function of t on t ∈ [0, 14.3). To this end, we calculate the derivative of G(t):

G′(t) =
g′1(t)g2(t)− g1(t)g′2(t)

g2
2(t)

−
(−2g′2(t)

g3
2(t)

)
(a)
=

1
2g

2
2(t) + 1

2g1(t)g3(t)

g2
2(t)

− g3(t)

g3
2(t)

= 1 +
1

2

g1(t)g3(t)

g2
2(t)

− g3(t)

g3
2(t)

=
1

2

g3(t)

g3
2(t)

(
g3

2(t)

g3(t)︸ ︷︷ ︸
G1(t)

+ g1(t)g2(t)︸ ︷︷ ︸
G2(t)

−2

)
,

where step (a) follows from the identities listed in (A.47). Since g3(t) > 0, we have

G′(t) > 0⇐⇒ G1(t) +G2(t)− 2 > 0.

It remains to prove that G1(t) + G2(t) − 2 > 0 for t < 14.3. Our numerical results suggest that
G1(t) + G2(t) is a monotonically decreasing function for t > 0, and G1(t) + G2(t) → 2 as t → ∞.
However, directly proving the monotonicity of G1(t) +G2(t) seems to be quite complicated. We use a
different strategy here. We will prove that (at the end of this section)

– G1(t) is monotonically increasing;

– G2(t) is monotonically decreasing.

As a consequence, the following hold true for any c2 > c1 > 0:

G1(t) +G2(t)− 2 ≥ G1(c1) +G2(c2)− 2, ∀t ∈ [c1, c2].

Hence, if we verify that G1(c1) +G2(c2)− 2 > 0, we will be proving the following:

G1(t) +G2(t)− 2 > 0, ∀t ∈ [c1, c2].

To this end, we verify that G1(c1) +G2(c2)− 2 > 0 hold for a sequence of c1 and c2: [c1, c2] = [0, 0.49],
[c1, c2] = [0.49, 1.08], [c1, c2] = [1.08, 1.78], [c1, c2] = [1.78, 2.56], [c1, c2] = [2.56, 3.47], [c1, c2] =
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[3.47, 4.47], [c1, c2] = [4.47, 5.56], [c1, c2] = [5.56, 6.77], [c1, c2] = [6.67, 8.08], [c1, c2] = [8.08, 9.5],
[c1, c2] = [9.5, 11], [c1, c2] = [11, 12.6], [c1, c2] = [12.6, 14.3]. Combining all the above results proves

G1(t) +G2(t)− 2 > 0, ∀t ∈ [0, 14.3].

From the above discussions, it only remains to prove the monotonicity of G1(t) and G2(t). Consider
G1(t) first:

G′1(t) =

(
g3

2(t)

g3(t)

)′
=

3g2
2(t)g′2(t)g3(t)− g3

2(t)g′3(t)

g2
3(t)

=
− 3

2g
2
2(t)g2

3(t) + 3
2g

3
2(t)g4(t)

g2
3(t)

= −3

2
g2

2(t) +
3

2

g3
2(t)g4(t)

g2
3(t)

=
3

2

g2
2(t)

g2
3(t)
· [−g2

3(t) + g2(t)g4(t)].

(A.49)

Applying the Cauchy-Schwarz inequality yields:

g2(t)g4(t) =

∫ π
2

0

sin2 θ

(1 + t sin2 θ)
1
2

dθ ·
∫ π

2

0

sin6 θ

(1 + t sin2 θ)
5
2

dθ

≥
(∫ π

2

0

sin4 θ

(1 + t sin2 θ)
3
2

dθ

)2

= g2
3(t).

(A.50)

Combining (A.49) and (A.50), we proved that G′1(t) ≥ 0, and therefore G1(t) is monotonically increas-
ing. For G2(t), we have

G′2(t) = g′1(t)g2(t) + g1(t)g′2(t)

=
1

2
g2

2(t) + g1(t)

(
−1

2
g3(t)

)
=

1

2
[g2

2(t)− g1(t)g3(t)].

Again, using Cauchy-Schwarz we have

g1(t)g3(t) =

∫ π
2

0

(1 + t sin2 θ)
1
2 dθ ·

∫ π
2

0

sin4 θ

(1 + t sin2 θ)
3
2

dθ

≥
(∫ π

2

0

sin2 θ

(1 + t sin2 θ)
1
2

dθ

)2

= g2
2(t).

Combining the previous two equations leads to G′2(t) ≥ 0, which completes our proof.

(ii) Case II: We next prove (A.44) for s2 ≤ 0.07, which is based on a different strategy. Some manipulations
of the RHS of (A.44) yields:∫ π

2

0

sin2 θ

(sin2 θ + s2)
1
2

dθ ·
∫ π

2

0

(
1− γs2

)
sin2 θ + s2

(sin2 θ + s2)
1
2

dθ =
E(x)T (x)

x
− γ(1− x)T 2(x)

x2
, (A.51a)
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where E(·), K(·) and T (·) are elliptic integrals defined in (A.1), γ is a constant defined in (A.45), and
x is a new variable:

x
∆
=

1

1 + s2
. (A.51b)

From our reformulation in (A.51), the inequality in (A.44) for s2 < 0.07 becomes

E(x)T (x)

x
− γ (1− x)T 2(x)

x2
> 1, x ∈ [0.93, 1). (A.52)

Note that 0.93 < 1/(1 + 0.07) and thus proving the above inequality for x ∈ [0.93, 1) is sufficient to

prove the original inequality for s2 ≤ 0.07 (note that x
∆
= 1/(1 + s2), see (A.51b)).

With some further calculations, (A.52) can be reformulated as

x

T 2(x)

E(x)T (x)− x
(1− x)

> γ, x ∈ [0.93, 1). (A.53)

The following inequality is due to Eqn. (1) in Anderson & Vamanamurthy (1985)

T (x) < x < 1, ∀x ∈ (0, 1).

Hence,
x

T 2(x)

E(x)T (x)− x
(1− x)

>
E(x)T (x)− x

1− x , ∀x ∈ (0, 1),

and to prove (A.53) it suffices to prove the following

E(x)T (x)− x
1− x > γ, ∀x ∈ [0.93, 1). (A.54)

To this end, we will prove that the LHS of (A.54) is a strictly increasing function of x ∈ [0.93, 1). If
this is true, we would have

E(x)T (x)− x
1− x >

E(x)T (x)− x
1− x |x=0.93 ≈ 0.385 > γ = 2− 16

π2
≈ 0.3789, ∀x ∈ [0.93, 1).

We next prove the monotonicity of E(x)T (x)−x
1−x . From the identities in Lemma 1, we derive the following

[E(x)T (x)− x]′ =
E2(x)− 2(1− x)E(x)K(x) + (1− x)K2(x)

2x
− 1.

Hence, to prove that E(x)T (x)−x
1−x is monotonically increasing, it is sufficient to prove the following

inequality:(
E2(x)− 2(1− x)E(x)K(x) + (1− x)K2(x)

2x
− 1

)
(1− x)− [E(x)T (x)− x](−1) > 0. (A.55)

Now, substituting T (x) = E(x) − (1 − x)K(x) into (A.55) and after some manipulations, we finally
reformulate the inequality to be proved into the following form:

T (x)2 > 2x− xE2(x).

It can be verified that equality holds at x = 1. We next prove that T (x)2+xE(x)2−2x is monotonically
decreasing on [0.93, 1). We differentiate once more:

(T (x)2 + xE(x)2 − 2x)′ = 2E(x)2 − (1− x)K(x)2 − 2.
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Our problem boils down to proving 2E(x)2− (1−x)K(x)2−2 < 0 for x ∈ [0.93, 1). We can verify that
2E(x)2 − (1− x)K(x)2 − 2 = 0 holds at x = 1. We finish by showing that 2E(x)2 − (1− x)K(x)2 − 2
is monotonically increasing in x ∈ [0.93, 1). To this end, we differentiate again:

[2E(x)2 − (1− x)K(x)2 − 2]′ =
K(x)2 − 3E(x)K(x) + 2E(x)2

x

=

[
K(x)− 3

2E(x)
]2 − 1

2E(x)2

x
.

(A.56)

We note that K(x)−
(

3
2 + 1√

2

)
E(x) is a monotonically increasing function in (0,1) since K(x) is mono-

tonically increasing and E(x) is monotonically decreasing. We verify that K(x)−
(

3
2 + 1√

2

)
E(x) > 0

when x ≥ 0.93. Hence,

K(x)−
(

3

2
+

1√
2

)
E(x) > 0, ∀x ∈ [0.93, 1),

and therefore (
K(x)− 3

2
E(x)

)2

>
1

2
E(x)2, ∀x ∈ [0.93, 1). (A.57)

Substituting (A.57) into (A.56), we prove that [2E(x)2− (1−x)K(x)2−2]′ > 0 for x ∈ [0.93, 1), which
completes the proof.

A.3.5 Proof of Lemma 6

First, we introduce a function that will be crucial for our proof.

Definition 4. Define

L(α; δ)
∆
=

4

δ

(
1− φ2

2(φ−1
1 (α))

4
[
1 + (φ−1

1 (α))2
]) , α ∈ (0, 1), (A.58)

where φ1 : R+ 7→ [0, 1] and φ2 : R+ 7→ R+ below:

φ1(s)
∆
=

∫ π
2

0

sin2 θ(
sin2 θ + s2

) 1
2

dθ, (A.59a)

φ2(s)
∆
=

∫ π
2

0

2 sin2 θ + s2(
sin2 θ + s2

) 1
2

dθ, (A.59b)

where φ−1
1 is the inverse functions of φ1. The existence of φ−1

1 follows from its monotonicity, which can be
seen from its definition.

In the following, we list some preliminary properties of L(α; δ). The main proof for Lemma 6 comes
afterwards.

• Preliminaries:

The following lemma helps us clarify the importance of L in the analysis of the dynamics of SE:

Lemma 11. For any α > 0, σ2 > 0 and δ > 0, the following holds:

L
[
ψ1(α, σ2); δ

]
≤ ψ2(α, σ2; δ), (A.60)

where ψ1 and ψ2 are the SE maps defined in (2.6), and L(α; δ) is defined in (A.58).

Proof. Define X ∆
= {(α, σ2)|α > 0, σ2 > 0}. Let Y be the image of X under the SE map in (2.6). We

will prove that the following holds for an arbitrary C ∈ [0, 1]:

L (C; δ) = min
(α̂,σ̂2)∈X

ψ2(α̂, σ̂2; δ), (A.61)
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where (α̂, σ̂2) satisfies the constraint
ψ1(α̂, σ̂2) = C.

If (A.61) holds, we would have proved (A.60). To see this, consider arbitrary (α, σ2) such that
ψ1(α, σ2) = C. Then, we have

L
[
ψ1(α, σ2); δ

] (a)
= min

(α̂,σ̂2)
ψ2(α̂, σ̂2; δ)

(b)

≤ ψ2(α, σ2; δ),

where step (a) follows from (A.61) and ψ1(α, σ2) = C, and step (b) holds since the choice α̂ = α and
σ̂2 = σ2 is feasible for the constraint ψ1(α̂, σ̂2) = ψ1(α, σ2). This is precisely (A.60).

We now prove (A.61). From (2.6a) we have

ψ1(α, σ2) =

∫ π/2

0

α sin2 θ

(α2 sin2 θ + σ2)1/2
dθ.

Furthermore, from the definition of φ1 in (A.59a) we have

ψ1(α̂, σ̂2) = φ1

(
σ̂

α̂

)
= C =⇒ s

∆
=
σ̂

α̂
= φ−1

1 (C). (A.62)

Similarly, from (2.6b), i.e. the definition of ψ2, and the definition of φ2 in (A.59b), we can express
ψ2(α̂, σ̂2; δ) as

ψ2(α̂, σ̂2; δ) =
4

δ

[
α̂2 + σ̂2 + 1− α̂ · φ2

(
σ̂

α̂

)]
=

4

δ

[
(1 + s2)α̂2 + 1− α̂ · φ2(s)

]
.

From (A.62), we see that fixing ψ1(α̂, σ̂2) = C is equivalent to fixing s = φ−1
1 (C). Further, for a fixed

s, ψ2(α̂, σ̂2) is a quadratic function of α̂, and the minimum happens at

α̂min =
φ2(s)

2(1 + s2)
=

φ2(φ−1
1 (C))

2
[
1 +

(
φ−1

1 (C)
)2] ,

and ψ2(α̂min, σ̂
2; δ) is

ψ2(α̂min, σ̂
2; δ) =

4

δ

(
1− φ2

2(s)

4(1 + s2)

)
=

4

δ

1− φ2
2(φ−1

1 (C))

4
(

1 +
[
φ−1

1 (C)
]2)
 = L (C; δ) ,

where the last step is from the definition of L is (A.58). This completes the proof.

To understand the implication of this lemma, let us consider the tth iteration of the SE:

αt+1 = ψ1(αt, σ
2
t ),

σ2
t+1 = ψ2(αt, σ

2
t ; δ),

Note that according to Lemma 11, no matter where (αt, σ
2
t ) is, (αt+1, σ

2
t+1) will fall above the σ2 =

L(α; δ) curve. This function is a key component in the dynamics of AMP.A. Before we proceed further
we discuss two main properties of the function L(α; δ).

Lemma 12. L(α; δ) is a strictly decreasing function of α ∈ (0, 1).
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Proof. Recall from (A.58) that L(α; δ) is defined as

L(α; δ)
∆
=

4

δ

(
1− φ2

2(φ−1
1 (α))

4(1 + (φ−1
1 (α))2)

)
=

4

δ

(
1− I2[φ−1

1 (α)]
)
,

where I2 : R+ 7→ R+ is defined as

I2(s)
∆
=

φ2
2(s)

4(1 + s2)
. (A.63)

From (A.59a), it is easy to see that φ1(s) is a decreasing function. Hence, to prove that L(α; δ) is a
decreasing function of α, it suffices to prove that I2(s) is strictly decreasing.

Substituting (A.59b) into (A.63) yields:

I2(s) =
φ2

2(s)

4(1 + s2)

=
1

4(1 + s2)

∫ π
2

0

2 sin2 θ + s2(
sin2 θ + s2

) 1
2

2

(a)
=

1

4

[
2E

(
1

1 + s2

)
− s2

1 + s2
K

(
1

1 + s2

)]2

=
1

4
[2E(x)− (1− x)K(x)]

2
,

where step (a) is obtained through similar calculations as those in (A.6), and in the last step we
defined x = 1

1+s2 . Hence, to prove that I2(s) is a decreasing function of s, it suffices to prove that

[2E(x)− (1−x)K(x)]2 is an increasing function of x. Further, 2E(x)− (1−x)K(x) = T (x)+E(x) > 0
(form the definition of T (x) in (A.1)), our problem reduces to proving that 2E(x) − (1 − x)K(x) is
increasing. To this end, differentiation yields

[2E(x)− (1− x)K(x)]
′ (a)

=
E(x)− (1− x)K(x)

2x

(b)
=

1

2
T (x)

(c)
> 0,

where (a) is from the differentiation identities in Lemma 1, (b) is from (A.1), and T (x) > 0 follows
from Lemma 1 (ii) together with the fact that T (0) = 0.

The next lemma compares the function L(α; δ) with F−1
1 (α).

Lemma 13. If δ > δAMP, then

F−1
1 (α) > L(α; δ), ∀α ∈ (0, 1).

Proof. We prove by contradiction. Suppose that L(α̂; δ) ≥ F−1
1 (α̂) at some α̂ ∈ (0, 1). If this is the

case, then there exists a σ̂2 such that

F−1
1 (α̂) ≤ σ̂2 ≤ L(α̂; δ). (A.64)

Since F1 is a decreasing function (see Lemma 10), the first inequality implies that α̂≥F1(σ̂2). Then,
based on the global attractiveness property in Lemma 8 (iii), we have

ψ1(α̂, σ̂2) ≤ α̂. (A.65)

Further, Lemma 4 shows that F−1
1 (α̂) > F2(α̂; δ) for δ > δAMP, and using (A.64) we also have

σ̂2 ≥ F−1
1 (α̂) > F2(α̂; δ). Also, from (A.64),

σ̂2 ≤ L(α̂; δ)
(a)
< L(0; δ) =

4

δ

(
1− π2

16

)
<

4

δ
≤ σ2

max,
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where (a) is due to the monotonicity of L(α; δ) (see Lemma 12). From the above discussions, F2(α̂; δ) <
σ̂2 < σ2

max. We then have (for δ > δAMP):

ψ2(α̂, σ̂2; δ)
(a)
< σ̂2

(b)

≤ L(α̂; δ)
(c)

≤ L
[
ψ1(α̂, σ̂2); δ

]
, (A.66)

where step (a) follows from the global attractiveness property in Lemma 9 (iv), step (b) is due to the
hypothesis in (A.64), step (c) is from (A.65) together with the monotonicity of L(α; δ) (see Lemma 12).
Note that (A.66) shows that ψ2(α̂, σ̂2; δ) < L

[
ψ1(α̂, σ̂2); δ

]
, which contradicts Lemma 11, where we

proved that ψ2(α, σ2; δ) ≥ L
[
ψ1(α, σ2); δ

]
for any α > 0, σ2 > 0 and δ > 0. Hence, we must have that

L(α; δ) < F−1
1 (α) for any α ∈ (0, 1).

Lemma 14. The following holds for any α ∈ (0, 1) and δ > 0,

L(α; δ) >
4

δ

(
1− π2

16
− 1

2
α2

)
, (A.67)

where L(α, δ) is defined in (A.58).

Proof. From (A.58), proving (A.67) is equivalent to proving:

1− φ2
2(φ−1

1 (α))

4
[
1 + (φ−1

1 (α))2
] > 1− π2

16
− 1

2
α2, ∀α ∈ (0, 1), (A.68)

where φ1 : [0,∞) 7→ [0, 1] and φ2 : [0,∞) 7→ [0,∞) are defined as (see (A.59a) and (A.59b)):

φ1(s) =

∫ π
2

0

sin2 θ(
sin2 θ + s2

) 1
2

dθ, (A.69a)

φ2(s) =

∫ π
2

0

2 sin2 θ + s2(
sin2 θ + s2

) 1
2

dθ. (A.69b)

We make a variable change:
α = φ1(s).

Simple calculations show that (A.68) can be reformulated as the following

1

1 + s2
φ2

2(s) <
π2

4
+ 2φ2

1(s), s ∈ (0,∞). (A.70)

Let us further define

φ3(s) ≡
∫ π

2

0

(sin2 θ + s2)
1
2 dθ. (A.71)

From (A.69) and (A.71), we have
φ2(s) = φ1(s) + φ3(s),

and (A.70) can be reformulated as

[φ1(s) + φ3(s)]
2 − (1 + s2)

[
π2

4
+ 2φ2

1(s)

]
< 0. (A.72)

To this end, we can write the LHS of (A.72) into a quadratic form of φ1(s):

[φ1(s) + φ3(s)]
2 − (1 + s2)

[
π2

4
+ 2φ2

1(s)

]
= φ2

1(s) + φ2
3(s) + 2φ1(s)φ3(s)− (1 + s2)

[
π2

4
+ 2φ2

1(s)

]
= −(1 + 2s2)φ2

1(s) + 2φ1(s)φ3(s)− π2

4
(1 + s2) + φ2

3(s).
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Hence, to prove that this quadratic form is negative everywhere, it suffices to prove that the discriminant
is negative, i.e.,

4φ2
3(s) + 4(1 + 2s2)

[
−π

2

4
(1 + s2) + φ2

3(s)

]
< 0,

or

φ2
3(s) <

π2

8
(1 + 2s2).

Finally, by Cauchy-Schwarz we have

φ2
3(s) =

[∫ π
2

0

(sin2 θ + s2)
1
2 dθ

]2

≤
∫ π

2

0

1dθ ·
∫ π

2

0

(√
sin2 θ + s2

)2

dθ

=
π

2

(π
4

+
π

2
s2
)

=
π2

8
(1 + 2s2),

which completes our proof.

Lemma 15. For any α ∈ [0, 1], ψ2(α, σ2; δAMP) is an increasing function of σ2 on σ2 ∈ [L(α; δAMP),∞),
where the function L(α; δ) is defined in (4).

Proof. From Lemma 9 (v), the case α > α∗ ≈ 0.53 is trivial since then ψ2(σ2, α; δAMP) is strictly
increasing in σ2 ∈ R+. In the rest of this proof, we assume that α < α∗. We have derived in (A.18)
that

∂ψ2(α, σ2; δ)

∂σ2
> 0⇐⇒ α >

1

2
√

1 + s2
E

(
1

1 + s2

)
= f(s), (A.73)

where
s

∆
=
σ

α
.

Hence, the result of Lemma 15 can be reformulated as proving the following:

α > f(s), ∀s ≥
√
L(α; δAMP)

α
, α ∈ [0, α∗).

We proceed in three steps:

(i) In Lemma 14, we proved that the following holds for any α ∈ [0, 1]:

L(α; δAMP) ≥ L̂(α, δAMP)
∆
=

4

δAMP

(
1− π2

16
− 1

2
α2

)
. (A.74)

For convenience, define

ŝ(α)
∆
=

√
L̂(α; δAMP)

α
. (A.75)

(ii) We prove that f(s) is monotonically decreasing on s ∈ [ŝ(α),∞) for α < α∗.

(iii) We prove that the following holds for α < α∗:

α > f(ŝ(α)).

39



Clearly, (A.73) follows from the above claims. Here, we introduce the function L̂ since L̂ has a simple
closed-form formula and is easier to manipulate than L(α). We next prove step (ii). From (A.27), it
suffices to prove that

ŝ(α) > s∗, ∀α < α∗,

where s∗ and α∗ are defined in (A.32) and (A.31) respectively. To this end, we note that the following
holds for α < α∗:

ŝ(α) =

√
L̂(α; δAMP)

α
>

√
L̂(α∗; δAMP)

α∗
≈ 1.18,

where the inequality follows from the fact that L̂ in (A.74) is strictly decreasing in α, and the last
step is calculated from (A.74) and α∗ ≈ 0.527 . Finally, numerical evaluation of (A.32) shows that
s∗ ≈ 0.458. Hence, ŝ(α) > s∗, which completes the proof.

We next prove step (iii). First, simple manipulations yields

ŝ2(α)
(a)
=

L̂(α)

α2

(b)
=

4

δAMP

[(
1− π2

16

)
· 1

α2
− 1

2

]
, (A.76)

where (a) is from the definition of ŝ(α) in (A.75) and (b) is due to (A.74). Using (A.76), we further
obtain

α =

√
16− π2

4δAMPŝ2(α) + 8
. (A.77)

Now, from (A.77) and (A.25b), we have

α− f(ŝ(α)) > 0⇐⇒
√

16− π2

4δAMPŝ2(α) + 8
− 1

2
√

1 + ŝ2(α)
E

(
1

1 + ŝ2(α)

)
> 0. (A.78)

We prove (A.78) by showing that the following stronger result holds:√
16− π2

4δAMPt2 + 8
− 1

2
√

1 + t2
E

(
1

1 + t2

)
> 0, ∀t ∈ R+. (A.79)

For convenience, we make a variable change:

x
∆
=

1

1 + t2
.

With some straightforward calculations, we can rewrite (A.79) as

E(x) <

√
16− π2

δAMP(1− x) + 2x

The following upper bound on E(x) is due to Eqn. (1.2) in Wang & Chu (2013):

E(x) <
π

2

√
1− x

2
, ∀x ∈ (0, 1].

Hence, it is sufficient to prove that

π

2

√
1− x

2
<

√
16− π2

δAMP(1− x) + 2x
,

which can be reformulated as(
1− x

2

)
(δAMP − (δAMP − 2)x) <

4

π2
(16− π2) = δAMP

where the second equality follows from the definition δAMP = 64
π2 − 4. The above inequality holds since

0 < 1− x
2 < 1 and 0 < δAMP − (δAMP − 2)x < δAMP. This completes the proof.
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Lemma 16. For any α ∈ [0, 1], ψ2 (α,L(α; δ); δ) is a strictly decreasing function of δ > 0, where
L(α; δ) is defined in (A.58).

Proof. From the definition of L(α; δ) in (A.58), we can write

ψ2 (α,L(α; δ); δ) = ψ2

(
α,

1

δ
σ̄2; δ

)
,

where (note that σ̄ is not the conjugate of σ)

σ̄2 ∆
= 4

(
1− φ2

2(φ−1
1 (α))

4
[
1 + (φ−1

1 (α))2
]) .

A key observation here is that σ̄2 does not depend on δ. Clearly, Lemma 16 is implied by the following
stronger result:

∂ψ2

(
α, 1

δ σ̄
2; δ
)

∂δ
< 0, ∀σ̄2 > 0, α > 0, δ > 0,

which we will prove in the sequel. For convenience, we define

s̄
∆
=
σ̄

α
, γ

∆
=

1

δ
and s =

√
γs̄. (A.80)

Using these new variables, we have

ψ2

(
α,

1

δ
σ̄2; δ

)
= ψ2

(
α, γσ̄2; γ−1

)
= 4γ

(1 + γs̄2)α2 + 1− α
∫ π

2

0

2 sin2 θ + γs̄2(
sin2 θ + γs̄2

) 1
2

dθ

 ,

where the last equality is from the definition of ψ2 in (2.6b). It remains to prove that ψ2

(
α, γσ̄2; γ−1

)
is an increasing function of γ. The partial derivative of ψ2(α, σ2; δ) w.r.t. γ is given by

∂ψ2

(
α, γσ̄2; γ−1

)
∂γ

= 4(1 + 2γs̄2)α2 − 4α

(∫ π
2

0

2 sin2 θ + γs̄2

(sin2 θ + γs̄2)
1
2

dθ +
1

2

∫ π
2

0

γ2s̄4

(sin2 θ + γs̄2)
3
2

dθ

)
+ 4

(a)
= (1 + 2s2)α2 − 4α

∫ π
2

0

2 sin2 θ + s2(
sin2 θ + s2

) 1
2

dθ +
1

2

∫ π
2

0

s4

(sin2 θ + s2)
3
2

dθ

+ 4

(b)
= 4(1 + 2s2)α2 − 4α

 (5s2 + 4)E
(

1
1+s2

)
− 2s2K

(
1

1+s2

)
2
√

1 + s2

+ 4,

(A.81)

where in step (a) we used the relationship s2 = γs̄2 (see (A.80)), and step (b) is from the identities

in (A.6). From (A.81), we see that
∂ψ2(α,γσ̄2;γ−1)

∂γ is a quadratic function of α. Therefore, to prove

∂ψ2(α,γσ̄2;γ−1)
∂γ > 0, it suffices to show that the discriminant is negative: (5s2 + 4)E

(
1

1+s2

)
− 2s2K

(
1

1+s2

)
2
√

1 + s2

2

− 4(1 + 2s2) < 0. (A.82)

Further, to prove (A.82), it is sufficient to prove that the following two inequalities hold:

(5s2 + 4)E

(
1

1 + s2

)
− 2s2K

(
1

1 + s2

)
> 0, (A.83a)
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and

(5s2 + 4)E

(
1

1 + s2

)
− 2s2K

(
1

1 + s2

)
< 4
√

1 + s2
√

1 + 2s2. (A.83b)

We first prove (A.83a). It is sufficient to prove the following

(4s2 + 4)E

(
1

1 + s2

)
− 2s2K

(
1

1 + s2

)
> 0. (A.84)

Applying a variable change x = 1
1+s2 , we can rewrite (A.84) as

4E(x)− 2(1− x)K(x)

x
> 0.

The above inequality holds since

4E(x)− 2(1− x)K(x) > 2E(x)− 2(1− x)K(x) = 2T (x) > 0,

where the last equality is from the definition of T (x) in (A.1).

We next prove (A.83b). Again, applying the variable change x = 1
1+s2 and after some straightforward

manipulations, we can rewrite (A.83b) as

h(x)/x < 0, x ∈ (0, 1),

where
h(x)

∆
= (5− x)E(x)− 2(1− x)K(x)− 4

√
2− x < 0.

Hence, we only need to prove h(x) < 0 for 0 < x < 1. First, we note that limx→1− h(x) = 0, from the
fact that E(1) = 1 and limx→1−(1 − x)K(x) = 0 (see Lemma 1 (i)). We finish the proof by showing
that h(x) is strictly increasing in x ∈ (0, 1). Using the identities in (A.3), we can obtain

h′(x) =
3

2

(1− x)(E(x)−K(x))

x
+

2√
2− x.

To prove h′(x) > 0, it is equivalent to prove

4x

3(1− x)
√

2− x > K(x)− E(x)

=

∫ π
2

0

1

(1− x sin2 θ)
1
2

dθ −
∫ π

2

0

(1− x sin2 θ)
1
2 dθ

=

∫ π
2

0

x sin2 θ

(1− x sin2 θ)
1
2

dθ.

(A.85)

Noting 0 < x < 1, we can get the following∫ π
2

0

x sin2 θ

(1− x sin2 θ)
1
2

dθ <

∫ π
2

0

x sin2 θ

1− x sin2 θ
dθ =

π

2

(
1√

1− x − 1

)
.

Hence, to prove (A.85), it suffices to prove

4x

3(1− x)
√

2− x >
π

2

(
1√

1− x − 1

)
,

which can be reformulated as
8

3π

1√
2− x >

√
1− x

1 +
√

1− x.
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The inequality holds since

8

3π

1√
2− x >

8

3π

1√
2
>

1

2
, ∀x ∈ (0, 1),

and √
1− x

1 +
√

1− x <
1

2
, ∀x ∈ (0, 1).

,
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Figure 12: Illustration of the convergence behavior. R1 and R2 are defined in Definition 3. For both point
A and point B, B1(α, σ2) and B2(α, σ2) are given by the two dashed lines. After one iteration, R2b will not
be achievable and we can focus on R2a.

• Main proof

We now return to the main proof for Lemma 6. Notice that by Lemma 11, (αt0 , σ
2
t0) cannot fall below

the curve L(α; δ) for t0 ≥ 1. Hence, for R2, we can focus on the region above L(α; δ) (including
L(α; δ)), which we denote as R2a. See Fig. 12 for illustration.

We will first prove that if (α, σ2) ∈ R1 ∪ R2a, then the next iterates ψ1(α, σ2) and ψ2(α, σ2) satisfy
the following:

ψ1(α, σ2) ≥ B1(α, σ2), (A.87a)

and
ψ2(α, σ2) ≤ B2(α, σ2), (A.87b)

where B1(α, σ2) and B2(α, σ2) are defined as

B1(α, σ2)
∆
= min

{
α, F1(σ2)

}
,

B2(α, σ2)
∆
= max

{
σ2, F−1

1 (α)
}
.

(A.88)

Note that when (α, σ2) is on F−1
1 (i.e., σ2 = F−1

1 (α)), equalities in (A.87a) and (A.87b) can be
achieved. Further, this is the only case when either of the equality is achieved. Also, it is easy to see
that if (α, σ2) is on F−1

1 , then (ψ1(α, σ2), ψ2(α, σ2)) cannot be on F−1
1 .

43



Since F−1
1 separates R1 and R2a, (A.88) can also be written as

[
B1(α, σ2), B2(α, σ2)

]
=

{
[F1(σ2), σ2] if (α, σ2) ∈ R1,

[α, F−1
1 (α)] if (α, σ2) ∈ R2a.

(A.89)

As a concrete example, consider the situation shown in Fig. 12. In this case, for both point A and point
B, B1(α, σ2) and B2(α, σ2) are given by the two dashed lines. This directly follows from (A.89) by
noting that point A is in region R1 and point B is in region R2a. Let R2a\F−1

1 (α) be a shorhand for
{(α, σ2)|(α, σ2) ∈ R2a, α 6= F1(σ2)}. To prove the strict inequality in (A.87), we deal with (α, σ2) ∈ R1

and (α, σ2) ∈ R2a\F−1
1 (α) separately.

1. Assume that (α, σ2) ∈ R1. Using (A.89), the inequality in (A.87) can be rewritten as

ψ1(α, σ2) > F1(σ2) and ψ2(α, σ2) < σ2. (A.90)

Since (α, σ2) ∈ R1, we have σ2 > F−1
1 (α). Then, applying (A.12) proves ψ1(α, σ2) > F1(σ2).

Further, using Lemma 4, we have σ2 > F−1
1 (α) > F2(α). Also, Lemma 5 guarantees that

σ2 < σ2
max. Hence, F−1

1 (α) < σ2 < σ2
max and applying Lemma 9 (iv) yields ψ2(α, σ2) < σ2.

2. We now consider the case where (α, σ2) ∈ R2a\F−1
1 (α). Similar to (A.90), we need to prove

ψ1(α, σ2) > α and ψ2(α, σ2) < F−1
1 (α). (A.91)

The inequality ψ1(α, σ2) > α can be proved by the global attractiveness in Lemma 8 (iii) and
the fact that σ2 < F−1

1 (α) when (α, σ2) ∈ R2a\F−1
1 (α). The proof for ψ2(α, σ2) < F−1

1 (α) is
considerably more complicated and is detailed in Lemma 17 below.

Lemma 17. For any (α, σ2) ∈ R2a (see Definition 3) and δ ≥ δAMP, the following holds:

ψ2(α, σ2; δ) < F−1
1 (α), (A.92)

where ψ2 is the SE map in (2.6b) and F−1
1 is the inverse of F1 defined in Lemma 8.

Proof. The following holds when (α, σ2) ∈ R2a:

ψ2(α, σ2; δ) ≤ max
σ̂2∈Dα

ψ2(α, σ̂2; δ),

where
Dα ∆

=
{
σ̂2
∣∣L(α; δ) ≤ σ2 ≤ F−1

1 (α)
}
. (A.93)

Hence, to prove (A.92), it suffices to prove that the following holds for any δ ≥ δAMP and α ∈ [0, 1]:

max
σ̂2∈Dα

ψ2(α, σ̂2; δ) < F−1
1 (α). (A.94)

We next prove (A.94). We consider the three different cases:

(i) α ∈ [α∗, 1] and all δ ∈ [δAMP,∞), where α∗ is defined in (A.17).

(ii) α ∈ [0, α∗) and δ ∈ [δAMP, 17].

(iii) α ∈ [0, α∗) and δ ∈ (17,∞).

Case (i): Lemma 9 (v) shows that ψ2 is an increasing function of σ2 in R+. Hence, by noting
(A.93), we have

max
σ̂2∈Dα

ψ2(α, σ̂2; δ) = ψ2(α, F−1
1 (α); δ).

Therefore, proving (A.98) reduces to proving

ψ2(α, F−1
1 (α); δ) ≤ F−1

1 (α). (A.95)

Finally, (A.95) follows from the global attractiveness property in Lemma 9 (iv) and the inequality
F−1

1 (α) > F2(α; δ) in Lemma 4.
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Case (ii): We will prove that the following holds for α ∈ [0, α∗) and δ ∈ [δAMP, 17] (at the end of
this proof)

max
σ̂2∈Dα

ψ2(α, σ2; δ) = max
{
ψ2(α,L(α; δ); δ), ψ2(α, F−1

1 (α); δ)
}
. (A.96)

Namely, the maximum of ψ2 over σ2 is achieved at either σ2 = L(α; δ) or σ2 = F−1
1 (α). Hence,

we only need to prove that the following holds for any α ∈ [0, α∗) and δ ≥ δAMP:

max
{
ψ2(α,L(α; δ); δ), ψ2(α, F−1

1 (α); δ)
}
≤ F−1

1 (α). (A.97)

In the sequel, we first use (A.96) to prove (A.94), and the proof for (A.96) will come at the end
of this proof.

Firstly, it is easy to see that ψ2(α, F−1
1 (α); δ) is a decreasing function of δ, since ψ2(α, σ2; δ) is

a decreasing function of δ and F−1
1 (α) does not depend on δ. Further, Lemma 16 shows that

ψ2(α,L(α; δ); δ) is also a decreasing function of δ. (Notice that unlike F−1
1 (α), L(α; δ) depends

on δ, and thus Lemma 16 is nontrivial.) Hence, to prove (A.97) for δ ≥ δAMP, it suffices to prove
(A.97) for δ = δAMP, namely,

max
{
ψ2(α,L(α; δ); δAMP), ψ2(α, F−1

1 (α); δAMP)
}
≤ F−1

1 (α). (A.98)

When δ = δAMP, we prove in Lemma 15 that ψ2 is an increasing function of σ2 in σ2 ∈
[L(α; δAMP),∞). (Such monotonicity generally does not hold if δ is too large.) Further, Lemma 13
shows that F−1

1 (α) > L(α; δAMP). Hence,

ψ2(α,L(α; δ); δAMP) ≤ ψ2(α, F−1
1 (α); δAMP),

and thus proving (A.98) reduces to proving

ψ2(α, F−1
1 (α); δAMP) ≤ F−1

1 (α),

which follows from the same argument as that for (A.95).

Case (iii): Lemma 9 (iii) shows that ψ2(α;σ2; δ) ≤ 4
δ for any σ2 ∈ [0, σ2

max]. It is easy to see that
Dα ⊂ [0, σ2

max], and thus

max
σ2∈Dα

ψ2(α, σ2; δ) ≤ 4

δ
≤ 4

17
≈ 0.235. (A.99)

Further, Lemma 10 shows that F−1
1 : [0, 1] 7→ [0, π2/16] is monotonically decreasing. Hence,

F−1
1 (α) > F−1

1 (α∗) ≈ 0.415, (A.100)

where the numerical constant is calculated from the closed form formula F−1
1 (α) = α2 ·

[
φ−1

1 (α)
]2

(see (A.42)) and α∗ ≈ 0.5274 (from (A.17)). Comparing (A.99) and (A.100) shows that (A.94)
holds in this case.

It only remains to prove (A.96). We have shown in (A.25) that

∂ψ2(α, σ2; δ)

∂σ2
=

4

δα

(
α− 1

2
√

1 + s2
E

(
1

1 + s2

)
︸ ︷︷ ︸

f(s)

)
, (A.101)

where s
∆
= σ/α. Further, we have proved in (A.27) that f(s) is strictly increasing on [0, s∗) and

strictly decreasing on (s∗,∞), where s∗ is defined in (A.32). Hence, when f(0) = 0.5 < α <
f(s∗) = α∗, there exist two solutions to

α = f(s),

denoted as s1(α) and s2(α), respectively. Also, from (A.101) and noting the definition s = σ/α,
we have

∂ψ2(α, σ2; δ)

∂σ2
> 0⇐⇒ σ2 ∈

[
0, σ2

1(α)
)
∪
(
σ2

2(α),∞
)
,

∂ψ2(α, σ2; δ)

∂σ2
≤ 0⇐⇒ σ2 ∈

[
σ2

1(α), σ2
2(α)

]
,
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where σ2
1(α)

∆
= α2s2

1(α) and σ2
2(α)

∆
= α2s2

2(α). Hence, for fixed α where α ∈ (f(0), f(s∗)), σ2
1(α)

is a local maximum of ψ2 and σ2
2(α) is a local minimum. Clearly, if

L(α; δ) ≥ σ2
1(α), (A.102)

then the maximum of ψ2 over σ2 ∈ [L(α; δ), F−1
1 (α)] can only happen at either L(α; δ) or F−1

1 (α),
which will prove (A.96). Further, for the degenerate case α ∈ (0, f(0)), ψ2 only has a local
minimum, and it is easy to see that (A.96) also holds. Thus, we only need to prove that (A.102)
holds when δ < 17. This can be proved as follows:

σ2
1(α)

(a)

≤ s2
∗ · α2

(b)

≤ s2
∗ · α2

∗,
(A.103)

where (a) is from the fact that s1(α) ≤ s∗ and (b) is from our assumption α ≤ α∗. On the other
hand, since L(α) is a decreasing function of α (see Lemma 12), and thus for α ≤ α∗ we have

L(α; δ) ≥ L(α∗; δ)

=
4

δ

(
1− φ2

2(φ−1
1 (α∗))

4
[
1 + (φ−1

1 (α∗))2
]) , (A.104)

where the last step is from Definition A.58. Based on (A.103) and (A.104), we see that L(α; δ) >
σ2

1(α) for α ≤ α∗ if

δ ≤ 4

s2∗ · α2∗

(
1− φ2

2(φ−1
1 (α∗))

4
[
1 + (φ−1

1 (α∗))2
]) ≈ 17.04,

where the numerical constant is calculated based on the definition of α∗ in (A.31), the definition
of s∗ in (A.32), and that of φ1 and φ2 in Definition A.58. Hence, the condition δ < 17 is enough
for our purpose. This concludes our proof.

Now we turn our attention to the proof of part (i) of Lemma 6. Suppose that (α, σ2) ∈ R1 ∪
R2a. Then, using (A.87) and based on the fact that F1(α) is a strictly decreasing function, we
know that (ψ1(α, σ2), ψ2(α, σ2)) ∈ R1 ∪ R2. (See Definition 3.) Further, Lemma 7 shows that
(ψ1(α, σ2), ψ2(α, σ2)) /∈ R2b. Hence, (ψ1(α, σ2), ψ2(α, σ2)) ∈ R1 ∪ R2a. Applying this argument
recursively shows that if (αt0 , σ

2
t0) ∈ R1 ∪R2a, then (αt, σ

2
t ) ∈ R1 ∪R2a for all t > t0. An illustration

of the situation is shown in Fig. 12.

Now we can discuss the proof of part (ii) of Lemma 6. To proceed, we introduce two auxiliary sequences
{α̃t+1}t≥t0 and {σ̃2

t+1}t≥t0 , defined as:

α̃t+1 = B1(αt, σ
2
t ) and σ̃2

t+1 = B2(αt, σ
2
t ), (A.105)

where B1 and B2 are defined in (A.88). Note that the definitions of B1(α, σ2) and B2(α, σ2) require
(α, σ2) ∈ R1 ∪ R2a, and such requirement is satisfied here due to part (i) of this lemma. Noting the
SE update αt+1 = ψ1(αt, σ

2
t ) and σ2

t+1 = ψ2(αt, σ
2
t ), and recall the inequalities in (A.87), we obtain

the following:
αt+1 ≥ α̃t+1 and σ2

t+1 ≤ σ̃2
t+1, ∀t ≥ t0. (A.106)

Namely, {α̃t+1}t≥t0 and {σ̃2
t+1}t≥t0 are “worse” than {αt+1}t≥t0 and {σ2

t+1}t≥t0 , respectively, at each
iteration. We next prove that

lim
t→∞

α̃t+1 = 1 and lim
t→∞

σ̃2
t+1 = 0, (A.107)

which together with (A.106), and the fact that αt+1 ≤ 1 and σt+1 > 0 (since (αt, σ
2
t ) ∈ R2a), leads to

the results we want to prove:

lim
t→∞

αt+1 = 1 and lim
t→∞

σ2
t+1 = 0.
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It remains to prove (A.107). First, notice that α̃t+1 ≤ 1 and σ̃2
t+1 ≥ 0 (∀t ≥ t0), from the definition in

(A.88). We then show that the sequence {α̃t+1}t≥t0 is monotonically non-decreasing and {σ̃2
t+1}t≥t0 is

monotonically non-increasing, namely,

α̃t+2 ≥ α̃t+1 and σ̃2
t+2 ≤ σ̃2

t+1, ∀t ≥ t0, (A.108)

and equalities of (A.108) hold only when the equalities in (A.87) hold. Then we can finish the proof
by the fact that α̃ and σ̃2 will improve strictly in at most two consecutive iterations and the ratios
α̃t+2

α̃t
,
σ̃2
t+2

σ̃2
t

are continuous functions of (αt, σ
2
t ) on [α̃t0 , 1]× [0, σ2

max]. (This is essentially due to the fact

that equalities in (A.87) can be achieved when σ2 = F−1
1 (α), but this cannot happen in two consecutive

iterations. See the discussions below (A.88).)

To prove (A.108), we only need to prove the following (based on the definition in (A.105))

B1 [ψ1, ψ2] ≥ B1(α, σ2) and B2 [ψ1, ψ2] ≤ B2(α, σ2), ∀(α, σ2) ∈ R1 ∪R2a,

where ψ1 and ψ2 are shorthands for ψ1(α, σ2) and ψ2(α, σ2; δ). From (A.88), the above inequalities
are equivalent to

min {ψ1, F1(ψ2)} ≥ B1(α, σ2), (A.109)

and
max

{
ψ2, F

−1
1 (ψ1)

}
≤ B2(α, σ2). (A.110)

Note that (A.87) already proves the following

ψ1 ≥ B1(α, σ2) and ψ2 ≤ B2(α, σ2).

Hence, to prove (A.109) and (A.110), we only need to prove

F1(ψ2) ≥ B1(α, σ2) and F−1
1 (ψ1) ≤ B2(α, σ2).

To prove F1(ψ2) ≥ B1(α, σ2), we note that

ψ2

(a)

≤ B2(α, σ2)

(b)
= max

{
σ2, F−1

1 (α)
}

(c)
= F−1

1

(
min

{
F1(σ2), α

})
(d)
= F−1

1

(
B1(α, σ2)

)
,

where (a) is from (A.87b), (b) is from (A.88), and (c) is due to the fact that F−1
1 is strictly decreasing,

and (d) from (A.87). Hence, since F1 is strictly decreasing, we have

F1(ψ2) ≥ F1

[
F−1

1

(
B1(α, σ2)

)]
= B1(α, σ2).

Further, it is straightforward to see that if both inequalities are strict in (A.87) then

min {ψ1, F1(ψ2)} > B1(α, σ2).

This shows that equalities of (A.108) hold only when the equalities in (A.87) hold.

The proof for F−1
1 (ψ1) ≤ B2(α, σ2) is similar and omitted.

A.3.6 Proof of Lemma 7

Suppose that (α, σ2) ∈ R0. From Definition 3, we have

π2

16
< σ2 ≤ σ2

max. (A.111)
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Further, F−1
1 is monotonically decreasing and hence (for δ > δAMP)

π2

16
= F−1

1 (0) > F−1
1 (α) ≥ F2(α; δ), (A.112)

where the last inequality is due to Lemma 4. Combining (A.111) and (A.112) yields

F2(α; δ) < σ2 ≤ σ2
max. (A.113)

By the global attractiveness property in Lemma 9 (iv), (A.113) implies

ψ2(α;σ2; δ) < σ2.

From the above analysis, we see that as long as π2

16 < σ2
t ≤ σ2

max (and also 0 < αt < 1), σ2
t+1 will be

strictly smaller than σ2
t :

σ2
t+1 = ψ2(αt;σ

2
t ; δ) < σ2

t .

Hence, there exists a finite number T ≥ 1 such that

σ2
T−1 >

π2

16
and σ2

T ≤
π2

16
.

Otherwise, σ2
t will converge to a σ̄2 in R0. This implies that σ̄2 is a fixed point of ψ2 for certain value of

0 < α ≤ 1. However, we know from part (i) of Lemma 10 and Lemma 4 that this cannot happen.
Based on a similar argument, we also have ψ1(α;σ2) < α and so αt+1 < αt for t ≤ T − 1. Further, we

can show that αt > 0 (i.e., αt 6= 0) for all 0 ≤ t ≤ T . First, α0 > 0 follows from our assumption. Further,
from (2.6a) we see that αt+1 > 0 if αt > 0. Then, using a simple induction argument we prove that αt > 0
for all 0 ≤ t ≤ T . Putting things together, we showed that there exists a finite number T ≥ 1 such that

0 < αT ≤ 1 and σ2
T ≤

π2

16
.

(Recall that we have proved in Lemma 5 that αT ≤ 1.) From Definition 3, (αT , σ
2
T ) ∈ R1 ∪R2.

A.4 Proof of Theorem 3

We consider the two different cases separately: (1) δ > δglobal and (2) δ < δglobal.

A.4.1 Case δ > δglobal

In this section, we will prove that when δ > δglobal the state evolution converges to the fixed point (α, σ2) =
(1, 0) if initialized close enough to the fixed point. We first prove the following lemma, which shows that
F−1

1 is larger than F2(α; δ) for α close to one.

Lemma 18. Suppose that δ > δglobal = 2. Then, there exists an ε > 0 such that the following holds:

F−1
1 (α) > F2(α; δ), ∀α ∈ (1− ε, 1). (A.114)

Proof. In Lemma 4, we proved that F−1
1 (α) > F2(α; δ) holds for all α ∈ (0, 1) when δ > δAMP ≈ 2.5.

Here, we will prove that F−1
1 (α) > F2(α; δ) holds for α close to 1 when δ > δglobal = 2. Similar to the

manipulations given in Section A.3.4, the inequality (A.114) can be re-parameterized into the following:∫ π
2

0

sin2 θ

(sin2 θ + s2)
1
2

dθ ·
∫ π

2

0

(1− γs2) sin2 θ + s2

(sin2 θ + s2)
1
2

dθ > 1, ∀s ∈ (0, ξ), (A.115)

where γ
∆
= 1 − δ/4 and ξ = φ−1

1 (ε) (see (A.41) for the definition of φ1). Again, it is more convenient to
express (A.115) using elliptic integrals (cf. (A.52))

E(x)T (x)

x
− γ(1− x)T 2(x)

x2
> 1, ∀x ∈

(
1

1 + ξ
, 1

)
, (A.116)
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where we made a variable change x
∆
= 1/(1 + s2). To this end, we can verify that

lim
x→1

E(x)T (x)

x
− γ(1− x)T 2(x)

x2
= 1.

To complete the proof, we only need to show that the derivative of the LHS of (A.116) in a small neighborhood
of x = 1 is strictly negative when δ > δglobal = 2. Using the formulas listed in Section A.1, we can derive
the following:

d

dx

(
E(x)T (x)

x
− γ(1− x)T 2(x)

x2

) ∣∣∣
x→1

=
2γ(x− 4)E(x) · (1− x)K(x) + [4γ(1− x) + x] · (1− x)K2(x) + [2γ(2− x)− x]E2(x)

2x3

∣∣∣
x→1

= γ − 1

2
,

where the last step is due to the facts that E(x) = 1 and limx→1(1− x)K(x) = 0. See Section A.1 for more
details. Hence, the above derivative is negative if γ < 1

2 or δ > 2 by noting the definition γ = 1− δ/4.

,

<
2

1! 0 1

A
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B

F!1
1 (,)

F2(,; /) R0
2a

R0
1

R0
2b

Figure 13: Illustration of the local convergence behavior when δ > δglobal. For all the three points shown in
the figure, B1 and B2 are given by the dashed lines.

We now turn to the proof of Lemma 3. The idea of the proof is similar to that of Theorem 2. There are
some differences though, since now δ can be smaller than δAMP and some results in the proof of Theorem 2
do not hold for the case considered here. On the other hand, as we focus on the range α ∈ (1− ε, 1) > α∗,
and under this condition we know that F2(σ2; δ) is strongly globally attracting (see Lemma 9-(v)), which
means that ψ2(α, σ2) moves towards the fixed point F2(α; δ), but cannot move to the other side of F2(α; δ).

We continue to prove the local convergence of the state evolution. We divide the region Rε ∆
= {(α, σ2)|1−

ε ≤ α ≤ 1, 0 ≤ σ2 ≤ F−1
1 (1− ε)} into the following sub-regions:

Rε1
∆
=
{

(α, σ2)
∣∣1− ε ≤ α ≤ 1, F−1

1 (α) < σ2 ≤ F−1
1 (1− ε)

}
,

Rε2a
∆
=
{

(α, σ2)
∣∣1− ε ≤ α ≤ 1, F2(α; δ) < σ2 ≤ F−1

1 (α)
}

Rε2b
∆
=
{

(α, σ2)
∣∣1− ε ≤ α ≤ 1, 0 ≤ σ2 ≤ F2(α; δ)

}
.

(A.117)

Similar to the proof of Lemma 6 discussed in Section A.3.5, we will show that if (α, σ2) ∈ Rε then the new
states (ψ1, ψ2) can be bounded as follows:

ψ1(α, σ2) ≥ B1(α, σ2) and ψ2(α, σ2) ≤ B2(α, σ2), ∀(α, σ2) ∈ Rε, (A.118)
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where
B1(α, σ2) = min

{
α, F1(σ2)

}
and B2(α, σ2) = max

{
σ2, F−1

1 (α)
}
.

Based on the strong global attractiveness of ψ1 (Lemma 8-iii) and ψ2 (Lemma 9-v) and the additional result
(A.15), it is straightforward to show the following:

ψ1(α, σ2) ≥ F1(σ2) and ψ2(α, σ2) ≤ σ2, ∀(α, σ2) ∈ Rε1,
ψ1(α, σ2) ≥ α and ψ2(α, σ2) ≤ σ2, ∀(α, σ2) ∈ Rε2a,
ψ1(α, σ2) ≥ α and ψ2(α, σ2) ≤ F2(α; δ), ∀(α, σ2) ∈ Rε2b,

which, together with the definitions given in (A.117) and the fact that F2(α; δ) < F−1
1 (α) (cf. Lemma 18),

proves (A.118). The rest of the proof follows that in Section A.3.5. Namely, we construct two auxiliary
sequences {α̃t+1} and {σ̃2

t+1} where

α̃t+1 = B1(αt, σ
2
t ) and σ̃2

t+1 = B2(αt, σ
2
t ),

and show that {α̃t+1} and {σ̃2
t+1} monotonically converge to 1 and 0 respectively. The detailed arguments

can be found in Section A.3.5 and will not be repeated here.

A.4.2 Case δ < δglobal

We proved in (A.25) that

∂ψ2(α, σ2; δ)

∂σ2
=

4

δα

(
α− 1

2
√

1 + s2
E

(
1

1 + s2

)
︸ ︷︷ ︸

f(s)

)
,

where s = σ
α . Hence, we have (note that E(1) = 1)

∂2ψ2(α, 0)
∆
=
∂ψ2(α, σ2)

∂σ2

∣∣∣
σ2=0

=
4

δ

(
1− 1

2α

)
, ∀α > 0. (A.119)

Therefore,

∂2ψ2(α, 0) > 1, ∀α > 2

4− δ .

When δ < δglobal = 2, we have 2
4−δ < 1 and therefore there exists a constant α∗ that satisfies the following:

2

4− δ < α∗ < 1,

which together with (A.119) yields
∂2ψ2(α∗, 0) > 1.

Further, as discussed in the proof of Lemma 9-(i), ∂2ψ2(α∗, σ2) is a continuous function of σ2. Hence, there
exists ξ∗ > 0 such that

∂2ψ2(α∗, σ2) > 1, ∀σ2 ∈ [0, ξ∗]. (A.120)

Further, we have shown in (A.18) that

∂ψ2(α, σ2; δ)

∂σ2
=

4

δ

(
1− 1

2

∫ π
2

0

σ2

(α2 sin2 θ + σ2)
3
2

dθ

)
,

and it is easy to see that ∂2ψ2(α, σ2; δ) is an increasing function of α ∈ (0,∞). Hence, together with (A.120)
we get the following

∂2ψ2(α, σ2; δ) > 1, ∀(α, σ2) ∈ [α∗, 1]× [0, ξ∗],

which means that ψ2(α, σ2)− σ2 is a strictly increasing function of σ2 for (α, σ2) ∈ [α∗, 1]× [0, ξ∗]. Hence,

ψ2(α, σ2)− σ2 > ψ2(α, 0) =
4

δ
(1− α)2 ≥ 0, ∀(α, σ2) ∈ [α∗, 1]× [0, ξ∗].

This implies that σ2 moves away from 0 in a neighborhood of the fixed point (1, 0).
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B Derivations of AMP.A

For the convenience of the readers (especially those who are not familiar with AMP), we provide a sketch of
the derivations of the AMP.A algorithm in this appendix. Our derivations follow the approach proposed in
(Rangan, 2011). However, there are some differences specially in the last steps of our derivation.

For simplicity, we focus on the real-valued case. Consider the following optimization problem:

min
x

m∑
a=1

(ya − |(Ax)a|)2
+
µ

2
‖x‖22, (B.1)

where µ is a penalization parameter. We now sketch the derivations of the AMP.A algorithm intended for
solving (B.1). First, we construct the following joint pdf for (B.1):

`(x) =
1

Z

m∏
a=1

exp
[
−β (ya − |(Ax)a|)2

]
·
n∏
i=1

exp
(
−β · µ

2
x2
i

)
, (B.2)

where Z is a normalizing constant, (Ax)a and ya denote the a-th entries of Ax and y, and β > 0 is parameter
(the inverse temperature). Define

f(y, z) = exp
(
−β (y − |z|)2

)
. (B.3)

Following Chapter 5 in Maleki (2010), we proceed in three steps:

• Derive the sum-product belief propagation (BP) algorithm for (B.2).

• Approximate the BP update rules.

• Find the message update rules in the limit of β →∞.

The above procedure is slightly different from the original derivations in (Rangan, 2011) (which is derived
directly from the max-sum belief propagation algorithm) but equivalent. The sum-product BP algorithm
reads

m̂t
a→i(xi) '

∫
x\i

f(ya, (Ax)a)
∏
j 6=i

dmt
j→a(xj), (B.4a)

mt+1
i→a (xi) '

∏
b6=a

m̂t
b→i (xi) · exp

(
−β · µ

2
x2
i

)
. (B.4b)

We next simplify the above BP update rules.

B.1 Messages from factor nodes to variable nodes

Let xtj→a and vtj→a/β be the mean and variance of the incoming message mt
j→a (here vtj→a is O(1) and the

variance of mt
j→a is O(1/β) as β →∞ (Maleki, 2010)). Note that the calculation of the message m̂t

a→i(xi)
in (B.4a) can be interpreted as the expectation of f(ya, (Ax)a) with respect to random vector x\i that has
product measure

∏
j 6=i dmt

j→a(xj). Since in this interpretation the elements of x\i are independent, based

on a heuristic central limit theorem argument, we assume that Za
∆
= (Ax)a is Gaussian distributed, with

mean and variance respectively given by Chapter 5.2 in Maleki (2010)

sta
∆
=
∑
j 6=i

Aajx
t
j→a +Aaixi,

= Aai(xi − xti→a) +

n∑
j=1

Aajx
t
j→a︸ ︷︷ ︸

pta

,

τ ta
β

∆
=

1

β

∑
j 6=i

A2
ajv

t
j→a ≈

1

β

∑
j=1

A2
ajv

t
j→a.

(B.5)
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Based on this approximation, the message m̂t
a→i(xi) in (B.4a) can be expressed as follows

m̂t
a→i(xi) = E

{
exp

[
−β(ya − |Za|)2

]}
=

∫
exp

[
−β(ya − |z|)2

]
· N

(
z;Aai(xi − xti→a) + pta, τ

t
a/β

)
dz,

(B.6)

where the expectation in step (a) is over Za = (Ax)a (with respect to the product distribution
∏
j 6=i dmt

j→a(xj)).
Following (Rangan, 2011), we define

H (p, y, v/β)
∆
= log

[∫
exp

(
− β(y − |z|)2

)
· N (z; p, v/β) dz

]
. (B.7)

Using this definition, we can write log [m̂t
a→i (xi)] in (B.6) as

log
[
m̂t
a→i (xi)

]
= H

(
Aai

(
xi − xti→a

)
+ pta, τ

t
a/β

)
.

Noting Aai = Op

(
1√
n

)
, following (Rangan, 2011) we apply a second order Taylor expansion to log [m̂t

a→i(xi)]

(amounts to a Gaussian approximation of m̂t
a→i(xi)) :

H
(
Aai

(
xi − xti→a

)
+ pta, ya, τ

t
a/β

)
≈ Ha(t) +Aai

(
xi − xti→a

)
H ′a(t) +

1

2
A2
ai

(
xi − xti→a

)2
H ′′a (t) (B.8a)

=
1

2
A2
aiH

′′
a (t)x2

i +
[
AaiH

′
a(t)−A2

aix
t
i→aH

′′
a (t)

]
xi + const, (B.8b)

where we have omitted constant terms (relative to xi), and Ha(t), H ′a(t) and H ′′a (t) are short-hands for

Ha(t) = H(pta, ya, τ
t
a/β),

H ′a(t) =
∂H(p, y, τ/β)

∂p

∣∣
p=pta,y=ya,τ=τta

H ′′a (t) =
∂2H(p, y, τ/β)

∂p2

∣∣
p=pta,y=ya,τ=τta

.

B.2 Messages from variable nodes to factor nodes

The message from xi to Fa is

mt+1
i→a (xi) '

∏
b6=a

m̂t
b→i (xi) · exp

(
−β · µ

2
x2
i

)
. (B.9)

From the Gaussian approximation in (B.8), mt+1
i→a (xi) is also Gaussian. Consider the following term:

log
[
mt+1
i→a
]
'
∑
b 6=a

log
[
m̂t
b→i(xi)

]
− µβ

2
x2
i

≈ 1

2

∑
b 6=a

A2
biH

′′
b (t)− βµ

x2
i +

∑
b6=a

AbiH
′
b(t)−

∑
b 6=a

A2
biH

′′
b (t)xti→b

xi,

(B.10)

where the second approximation comes from (B.8). Comparing (B.10) with the exponent of a Gaussian pdf,
we find that its variance (which we denote by vt+1

i→a/β) and mean are respectively given by

vt+1
i→a
β

=
1

− ∑
b 6=a

A2
biH

′′
b (t) + βµ

=
1

−
m∑
b=1

A2
bi ·H ′′b (t) + βµ︸ ︷︷ ︸
vt+1
i /β

+Op

(
1

n

)
, (B.11)
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and

xt+1
i→a =

vt+1
i

β
·

∑
b6=a

Abi ·H ′b(t)−
∑
b 6=a

A2
bi ·H ′′b (t) · xti→b

 . (B.12)

The approximation in (B.11) is due to our assumption E[A2
bi] = 1/m. In (B.12), we have approximated vt+1

i→a
by vt+1

i and omit the Op(1/n) error term.

B.3 From BP to AMP

We assume that the message xt+1
i→a has the following structure Chapter 5.2.4 in Maleki (2010):

xt+1
i→a = xt+1

i + δxt+1
i→a +Op

(
1

n

)
,

where xt+1
i = Op(1) and δxt+1

i→a ∼ Op (1/
√
n). From (B.12), we can identify xt+1

i and δxt+1
i→a (which is the

term that depends on the index a) to be the following

xt+1
i→a =

vt+1
i

β
·
(

m∑
b=1

Abi ·H ′b(t)−
m∑
b=1

A2
bi ·H ′′b (t) · xti→b

)
︸ ︷︷ ︸

xt+1
i

(B.13a)

−v
t+1
i

β
·Aai ·H ′a(t)︸ ︷︷ ︸
δxt+1
i→a

+
vt+1
i

β
·A2

ai ·H ′′a (t) · xti→a︸ ︷︷ ︸
Op(1/n)

. (B.13b)

We further simplify xt+1
i (i.e., the first term in the above equation) as follows

xt+1
i =

vt+1
i

β
·
[
m∑
b=1

Abi ·H ′b(t)−
m∑
b=1

A2
bi ·H ′′b (t) · xti→b

]
(B.14a)

=
vt+1
i

β
·
[
m∑
b=1

Abi ·H ′b(t)−
m∑
b=1

A2
bi ·H ′′b (t) · xti

]
+Op

(
1

n

)
. (B.14b)

The approximation error in the above is Op(1/n) since

m∑
b=1

A2
bi ·H ′′b (t) · δxti→b = −v

t
i

β

m∑
b=1

A3
bi ·H ′′b (t) ·H ′b(t) = Op

(
1

n

)
,

where we used δxti→b = −vt+1
i /β ·AbiH ′b(t) in the previous equation. Ignoring the Op(1/n) term, the update

in (B.14) becomes

xt+1
i =

vt+1
i

β
·
m∑
b=1

AbiH
′
b(t) +

vt+1
i

β

(
−

m∑
b=1

A2
biH

′′
b (t)

)
· xti

=
vt+1
i

β
·
(
−

m∑
b=1

A2
biH

′′
b (t)

)
·
( ∑m

b=1AbiH
′
b(t)

−∑m
b=1A

2
biH

′′
b (t)

+ xti

)
.

(B.15)
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We now return to the update of pt+1
a defined in (B.5):

pt+1
a

∆
=

n∑
j=1

Aajx
t+1
j→a

(a)≈
n∑
j=1

Aaj

(
xt+1
j −

vt+1
j

β
·Aaj ·H ′a(t)

)

=
( n∑
j=1

Aajx
t+1
j

)
−

(∑
j=1A

2
ajv

t+1
j

)
β

·H ′a(t)

(b)
=
( n∑
j=1

Aajx
t+1
j

)
− τ t+1

a

β
·H ′a(t)

(B.16)

where step (a) is due to (B.13) and step (b) is from the definition in (B.5).

B.4 Large β Limit

Putting (B.5), (B.16), (B.11), (B.15), we obtain the following simplified BP update rules (∀a = 1, . . . ,m and
∀i = 1, . . . , n):

τ ta =

n∑
j=1

A2
ajv

t
j , (B.17a)

pta =

n∑
j=1

Aajx
t
j −

τ ta
β
·H ′a(t− 1), (B.17b)

vt+1
i =

β

−
m∑
b=1

A2
bi ·H ′′b (t) + βµ

, (B.17c)

xt+1
i =

vt+1
i

β
·
(
−

m∑
b=1

A2
biH

′′
b (t)

)
·
(
xti +

∑m
b=1AbiH

′
b(t)

−∑m
b=1A

2
biH

′′
b (t)

)
, (B.17d)

where H ′b(t) and H ′′b (t) are shorthands for H ′(ptb, yb, τ
t
b/β) and H ′′(ptb, yb, τ

t
b/β) respectively. The algorithm

summarized above is a special form the generalized AMP (GAMP) algorithm derived in (Rangan, 2011) (see
Algorithm 1).

We further approximate the variance updates in (B.17a) and (B.17c) by averaging over A (based on some
heuristic concentration arguments). After this approximation, τ ta becomes invariant to the index a (denoted
as τ t below). We can then write (B.17) into the following vector form:

τ t =
1

δ

1

−divp(ĝt−1)
· λt−1,

pt = Axt − 1

δ

ĝ
(
pt−1,y, τ t−1/β

)
−divp(ĝt−1)

· λt−1,

xt+1 = λt ·
(
xt +

ATĝ (pt,y, τ t/β)

−divp(ĝt)

)
,

(B.18)

where we defined:

ĝ(p, y, τ/β)
∆
=
H ′(p, y, τ/β)

β
,

divp(ĝt)
∆
=

1

m

m∑
a=1

∂pĝ(pta, ya, τ
t/β),

λt
∆
=

−divp(ĝt)

−divp(ĝt) + µ
.
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We next consider the zero-temperature limit, i.e., β → ∞. From the definition of H in (B.7), it can be
verified that (Rangan, 2011):

ĝ(p, y, τ/β) =
E[z, p, y, τ/β]− p

τ
,

where E[z, p, y, τ/β] denotes the posterior mean estimator of z w.r.t. the distribution p(z|p, y, τ/β) ∝
exp

[
−β(y − |z|)2 − β 1

2τ (z − p)2
]
. As β → ∞, the posterior mean concentrates around the minimum of

the posterior probability, i.e., E[z, p, y, τ/β]→ prox(p, y, τ) where

prox(p, y, τ)
∆
= argmin

z
(y − |z|)2 +

(z − p)2

2τ
, (B.19)

which has the following closed-form expression (for τ > 0):

prox(p, y, τ) =
2τy + |p|
1 + 2τ

· sign(p).

Here, sign(0) can be arbitrarily defined to be +1 or −1. The function ĝ becomes:

ĝ(p, y, τ) =
prox(p, y, τ)− p

τ
=

2

1 + 2τ
· (y · sign(p)− p)︸ ︷︷ ︸

g(p,y)

. (B.20)

B.5 Summary of AMP.A

After some algebra, we can finally express (B.18) using g (instead of ĝ, see (B.20)) as the following:

τ t =
1

δ

τ t−1 + 1
2

−divp(gt−1)
· λt−1,

pt = Axt − 1

δ

g
(
pt−1,y

)
−divp(gt−1)

· λt−1,

xt+1 = λt ·
(
xt +

ATg (pt,y)

−divp(gt)

)
,

(B.21)

where

λt =
−divp(gt−1)

−divp(gt−1) + µ
(
τt + 1

2

)
There are a couple of points we want to emphasize:

• When µ = 0, the update of pt and xt+1 are independent of the parameter τ . This is why we prefer to
use g(p, y) instead of ĝ(p, y, τ), see (B.20).

• Calculating the divergence term divp(g) is tricky due to the discontinuity of g(p, y) at p = 0. Unlike
the complex-valued case, a simple empirical average does not work well. We postpone our discussions
on this issue to a future paper.

B.6 Heuristic derivations of the state evolution

According to (2.4), the complex-valued version of AMP.A proceeds as follows

xt+1
i = −2divp(gt) · xti + 2

m∑
a=1

Āaig(pta, ya)︸ ︷︷ ︸
T

,
(B.22a)

where

divp(gt)
∆
=

1

m

m∑
a=1

1

2

(
∂g(pta, ya)

∂pRa
− i

∂g(pta, ya)

∂pIa

)
. (B.22b)
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Suppose that at each iteration the elements of xt are distributed as

xti
d
= αtx∗,i + σthi, ∀i = 1, . . . , n, (B.23)

where x∗,i represents the ith entry of the true signal vector x∗ and hi ∼ CN (0, 1) is independent of xti.
Rigorous proof of the state evolution framework is based on the conditioning technique developed in (Bayati
& Montanari, 2011; Rangan, 2011; Javanmard & Montanari, 2013). Here, our goal is show the reader how to
heuristically derive the state evolution (SE) recursion, namely, given αt and σt, how to derive αt+1 and σt+1.
Following (Donoho et al., 2009; Bayati & Montanari, 2011), we make the following heuristic assumptions to
derive the SE:

(i) We ignore the Onsager correction term, i.e., we assume that pt is generated as (cf. (2.4)):

pta =

n∑
j

Aajx
t
j , ∀a = 1, . . . ,m.

(ii) We assume that xt is independent of A.

We derive αt+1 and σt+1 separately in the following two subsections.

B.6.1 Derivations of αt+1

To derive αt+1, we will calculate the expectation of the term T in (B.22a) by treating x∗ and xt as con-
stants. In other words, the expectations in this section are conditioned on x∗ and xt. We now consider the
expectation of a single entry in T :

E
[
Āaig

(
pta, ya

) ]
= E

Āai · g( n∑
j=1

Aajx
t
j ,
∣∣∣ n∑
j=1

Aajx∗,j
∣∣∣+ wa

)
= E

Āai n∑
j=1

Aajx
t
j

 · E [∂pg(pta, ya)
]

+ E

Āai n∑
j=1

Aajx∗,j

 · E [∂zg(pta, ya)
]

=
1

m
xti · E

[
∂pg(pta, ya)

]
+

1

m
x∗,i · E

[
∂zg(pta, ya)

]
,

(B.24)

where the last step is from Stein’s lemma (for complex Gaussian random variables) Lemma 2.3 in Campese
(2015), and ∂pg(pta, ya) and ∂zg(pta, |za|+ wa) are defined as

∂pg(p, y)
∆
=

1

2

(
∂

∂pR
g(p, y)− i

∂

∂pI
g(p, y)

)
,

∂zg(p, |z|+ w)
∆
=

1

2

(
∂

∂zR
g(p, |z|+ w)− i

∂

∂zI
g(p, |z|+ w)

)
,

where pR and pI are the real and imaginary parts of p (i.e., p = pR + ipI) and zR and zI are the real and
imaginary parts of z. Similar expressions also appeared in the complex AMP algorithm (CAMP) developed
for solving the LASSO problem (Maleki et al., 2013). In AMP.A, g(p, y) = y · p/|p| − p and based on the
above definitions we can derive that

∂pg(p, y) =
y

2|p| − 1,

∂zg(p, |z|+ w) =
z̄p

2|z| |p| =
1

2
ei(θp−θz),

where θp and θz are the phases of p and z respectively. Note that in rigorous calculations we should be
careful about the discontinuity of g. In this heuristic calculations we have ignored this issue. We will discuss
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this issue in our future paper. Substituting (B.24) into (B.22a) yields

E[T ] =
1

m

m∑
a=1

E
[
∂pg(pta, ya)

]
· xti +

1

m

m∑
a=1

E
[
∂zg(pta, ya|)

]
· x∗,i

≈ divp(gt) · xti + divz(gt) · x∗,i,
(B.25)

where in the last step we assumed that the empirical averages of the partial derivatives divp(gt) = 1
m

∑m
a=1 ∂pg(pta, ya)

and divz(gt) = 1
m

∑m
a=1 ∂zg(pta, |za| + wa) converge to their expectations. Substituting (B.25) into (B.22a)

yields

E[xt+1
i ] = −2divp(gt) · xti + 2E[T ]

= 2divz(gt) · x∗,i.

From our assumption in (B.23), we have E[xt+1
i ] = αt+1 · x∗,i. This result combined with (B.25) leads to

αt+1 = 2divz(gt). (B.26)

Finally, when x and xt are independent of A, and by central limit theorem we can assume that both
pta =

∑n
i=1Aaix

t
i and za =

∑n
i=1Aaix∗,i are Gaussian, and their joint distribution is specified by the

relationship pta
d
= αtza + σtba where za ∼ CN (0, 1/δ) and bi ∼ CN (0, 1/δ) are independent.

B.6.2 Derivations of σ2
t+1

From (B.23), σ2
t+1 can be derived as

σ2
t+1 = var[xt+1

i ] = var[−2divp(gt) · xti + 2T ] = 4 · var[T ]. (B.27)

Further,

E[|T |2] = E

[∣∣∣∣ m∑
a=1

Aaig(pta, |za|)
∣∣∣∣2
]

=

m∑
a=1

E
[
|Aai|2 · |ga|2

]
+
∑
a

∑
b 6=a

E
[
ĀiaḡaAibgb

]
(a)≈ 1

m

m∑
a=1

E
[
|ga|2

]
+
∑
a

∑
b 6=a

E
[
Āiaḡa

]
· E[Aibgb]

≈ 1

m

m∑
a=1

E
[
|ga|2

]
+
m(m− 1)

m2
· |E[T ]|2

≈ 1

m

m∑
a=1

E
[
|ga|2

]
+ |E[T ]|2 ,

(B.28)

where ga and gb are shorthands for g(pta, ya) and g(ptb, yb) respectively, and step (a) follows from the heuristic
assumption that the correlation between |Aai|2 and |ga|2, and the correlation between Aiaga and Aibgb can
be ignored. Hence, combining (B.27) and (B.28) we obtain

σ2
t+1 = 4

(
E
[
|T |2

]
− |E [T ]|2

)
≈ 4

m

m∑
a=1

E
[
|ga(pta, ya)2

]
,

where as argued below (B.26) the joint distribution of pta and za are specified by pta
d
= αtza + σtba where

za ∼ CN (0, 1/δ) and ba ∼ CN (0, 1/δ) are independent.
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C Simplifications of SE maps

C.1 Auxiliary Results

Here we collect some auxiliary results that will be used in the simplification of the state evolution equation.

Lemma 19. The following identities hold for any a ∈ R and b ∈ R+:∫ 2π

0

∫ ∞
0

r cos θ exp

(
−r

2 − 2ar cos θ

b

)
drdθ = 2a

√
b
√
π

∫ π
2

0

cos2 θ exp

(
a2 cos2 θ

b

)
dθ, (C.1a)∫ 2π

0

∫ ∞
0

r sin θ exp

(
−r

2 − 2ar cos θ

b

)
drdθ = 0. (C.1b)

Proof. We first consider (C.1a):∫ 2π

0

∫ ∞
0

r cos θ exp

(
−r

2 − 2a · r cos θ

b

)
dθdr

=

∫ 2π

0

cos θ exp

(
a2 cos2 θ

b

)
dθ

∫ ∞
0

r exp

(
− (r − a cos θ)2

b

)
dr

(a)
=

∫ 2π

0

cos θ exp

(
a2 cos2 θ

b

)[
1

2
b exp

(−a2 cos2 θ

b

)
+ a cos θ

√
bπΦ

(√
2a cos θ√

b

)]
dθ

=

∫ 2π

0

1

2
b cos θdθ +

∫ 2π

0

a cos2 θ
√
bπ exp

(
a2 cos2 θ

b

)
Φ

(√
2a cos θ√

b

)
dθ

(b)
=

∫ π

0

a cos2 θ
√
bπ exp

(
a2 cos2 θ

b

)
Φ

(√
2a cos θ√

b

)
dθ +

∫ π

0

a cos2 θ̂
√
bπ exp

(
a2 cos2 θ̂

b

)
Φ

(
−
√

2a cos θ̂√
b

)
dθ̂

=

∫ π

0

a cos2 θ
√
bπ exp

(
a2 cos2 θ

b

)[
Φ

(√
2a cos θ√

b

)
+ Φ

(
−
√

2a cos θ√
b

)]
dθ

(c)
= a
√
bπ

∫ π

0

cos2 θ exp

(
a2 cos2 θ

b

)
dθ

(d)
= 2a

√
bπ

∫ π
2

0

cos2 θ exp

(
a2 cos2 θ

b

)
dθ,

(C.2)

where step (a) is from the integral (Φ(x) denotes the CDF of the standard Gaussian distribution):∫ ∞
0

r exp

(
− (r −m)2

v

)
dr =

1

2
b exp

(−m2

v

)
+m
√
vπΦ

(√
2m√
v

)
, ∀m ∈ R, v ∈ R+,

step (b) is from the variable change θ̂ = θ− π, step (c) is from the fact that Φ(x) + Φ(−x) = 1, and step (d)
is from ∫ π

0

cos2 θ exp

(
a2 cos2 θ

b

)
dθ

=

∫ π
2

0

cos2 θ exp

(
a2 cos2 θ

b

)
dθ +

∫ π

π
2

cos2 θ exp

(
a2 cos2 θ

b

)
dθ

=

∫ π
2

0

cos2 θ exp

(
a2 cos2 θ

b

)
dθ +

∫ 0

π
2

cos2 θ̂ exp

(
a2 ˆcos2θ

b

)
(−dθ̂) (θ̂ = π − θ)

= 2

∫ π
2

0

cos2 θ exp

(
a2 cos2 θ

b

)
dθ.
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The identity in (C.1b) can be derived based on similar calculations:∫ 2π

0

∫ ∞
0

r sin θ exp

(
−r

2 − 2b · r cos θ

b

)
dθdr = a

√
bπ

∫ π

0

1

2
sin 2θ exp

(
a2 cos2 θ

b

)
dθ

= 0.

Lemma 20. Let Z̃ ∼ N (0, 1) be a standard Gaussian random variable. Then, for any x ∈ R, the following
identities hold:

E
[
|Z̃| · φ

(
x|Z̃|

)]
=

1

π

1

1 + x2
,

E
[
Φ
(
x|Z̃|

)]
=

1

π
arctan(x) +

1

2
,

E
[
Z̃2 · Φ

(
x|Z̃|

)]
=

1

π
arctan(x) +

1

2
+

1

π

x

1 + x2
,

(C.3)

where φ(·) and Φ(·) are, respectively, PDF and CDF functions of the standard Gaussian distribution.

Proof. Consider the first identity:

E
[
|Z̃| · φ

(
x|Z̃|

)]
=

∫ ∞
−∞
|z|φ(x |z|)φ(z)dz

(a)
= 2

∫ ∞
0

zφ(x z)φ(z)dz

(b)
=

1

π

∫ ∞
0

z exp

[
−(1 + x2)

z2

2

]
dz

=
1

π

1

1 + x2
,

(C.4)

where (a) is from the symmetry of φ and (b) from the definition φ(x) = 1/
√

2πe−x
2/2. Further,

d

dx
E
[
Φ
(
x|Z̃|

)]
=

d

dx

∫ ∞
−∞

Φ(x |z|)φ(z)dz =
d

dx

∫ ∞
0

2Φ(x z)φ(z)dz

=

∫ ∞
0

2
d

dx
Φ(x z)φ(z)dz =

∫ ∞
0

2zφ(x z)φ(z)dz

=
1

π

1

1 + x2
,

(C.5)

where the last equality is from (C.4). Hence,

E
[
Φ
(
x|Z̃|

)]
=

∫ x

−∞

1

π

1

1 + t2
dt =

1

π
arctan(x) +

1

2
. (C.6)
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Finally, the third identity in (C.3) can be derived as follows:

E
[
Z̃2 · Φ

(
x|Z̃|

)]
=

∫ ∞
−∞

z2Φ(x |z|)φ(z)dz

=

∫ ∞
0

z2Φ(xz)φ(z)dz

(a)
= −2

∫ ∞
0

zΦ(xz)dφ(z)

= −2

{
zΦ(xz)φ(z)

∣∣∞
0
−
∫ ∞

0

φ(z) [Φ(xz) + xzφ(xz)dz]

}
= 2

∫ ∞
0

φ(z)Φ(xz)dz + x · 2
∫ ∞

0

zφ(xz)φ(z)dz

(b)
=

1

π
arctan(x) +

1

2
+

1

π

x

1 + x2
,

(C.7)

where (a) is from the identity φ′(z) = zφ(z) and (b) from our previously derived identities in (C.4) and
(C.6).

C.2 Complex-valued AMP.A

From Definition 1, the SE equations are given by

ψ1(α, σ2) = 2 · E [∂zg(p, Y )]

= E
[
Z̄P

|Z| |P |

]
,

ψ2(α, σ2; δ, σ2
w) = 4 · E

[
|g(P, Y )|2

]
= 4 · E

[
(|Z| − |P |+W )

2
]

= 4 · E
[
(|Z| − |P |)2

]
︸ ︷︷ ︸

ψ2(α,σ2;δ)

+4σ2
w.

(C.8)

In the above, Z ∼ CN (0, 1/δ), P = αZ + σB where B ∼ CN (0, 1/δ) is independent of Z, and Y = |Z|+W
where W ∼ CN (0, σ2

w) independent of both Z and B. We first consider a special case σ2 = 0 (α 6= 0). When
σ = 0, we have P = αZ + σB = αZ, and therefore

ψ1(α, 0) = E
[
αZ̄Z

α|Z| |Z|

]
= 1,

ψ2(α, 0; δ, σ2
w) = 4 · E

[
(|Z| − |αZ|)2

]
+ 4σ2

w =
4

δ
(1− |α|)2

+ 4σ2
w.

We next turn to the general case where σ2 6= 0. Later, we will see that our formulas derived for positive σ2

covers the special case σ2 = 0 as well. Lemma 21 can simplify our derivations.

Lemma 21. ψ1 and ψ2 in (C.8) have the following properties (for any α ∈ C\0 and σ2 ≥ 0):

(i) ψ1(α, σ2) = ψ1(|α|, σ2) · eiθα , with eiθα being the phase of α;

(ii) ψ2(α, σ2; δ) = ψ2(|α|, σ2; δ).

Proof. Note that for ψ1 and ψ2 defined in (C.8), we have P |Z ∼ CN (αZ, σ2/δ). Consider the random

variable P̃
∆
= P · e−iθα . Based on the rotational invariance of circularly-symmetric Gaussian, we have

P̃ |Z ∼ CN (|α|Z;σ2/δ). Hence,

ψ1(α, σ2) = E
[
Z̄P

|Z| |P |

]
= eiθα · E

[
Z̄P̃

|Z| |P̃ |

]
= eiθα · ψ1(|α|, σ2).
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The proof of ψ2(α, σ2; δ) = ψ2(|α|, σ2; δ) follows from a similar argument: the joint distribution of |Z| and

|P | does not depend on θα, and thus ψ2(α, σ2) = 4E
[
(|Z| − |P |)2

]
does not depend on θα.

Note that Lemma 21 also holds for α = 0 if we define ∠0 = 0.

Remark 1. In the following, we will derive ψ1 and ψ2 for the case where α is real and nonnegative. The
results for complex-valued α can be easily derived from those for nonnegative α, based on Lemma 21.

We can also write ψ1 as

ψ1(α, σ2) = E
[
Z̄P

|Z| |P |

]
= E[ei(θp−θz)].

Note that θp − θz is the phase of an auxiliary variable P̂
∆
= e−iθzP = α|Z| + σe−iθzB. Further, from the

rotational invariance, conditioned on |Z|, P̂ is distributed as P̂ ∼ CN (α|Z|, σ2/δ). Hence, the expectation
of its phase can be calculated as

E
[
ei(θp−θz)

∣∣ |Z|] =

∫ 2π

0

∫ ∞
0

eiθ · 1

πσ2/δ
exp

(
−
∣∣reiθ − α|Z|

∣∣2
σ2/δ

)
· rdrdθ

=
1

πσ2/δ
exp

(
−α

2|Z|2
σ2/δ

)
·
∫ 2π

0

∫ ∞
0

reiθ · 1

πσ2/δ
exp

(
− r2 − 2α|Z| cos θr

σ2/δ

)
drdθ

=
1

πσ2/δ
exp

(
−α

2|Z|2
σ2/δ

)
·
∫ 2π

0

∫ ∞
0

r cos θ · 1

πσ2/δ
exp

(
− r2 − 2α|Z| cos θr

σ2/δ

)
drdθ

+ i
1

πσ2/δ
exp

(
−α

2|Z|2
σ2/δ

)
·
∫ 2π

0

∫ ∞
0

r sin θ · 1

πσ2/δ
exp

(
− r2 − 2α|Z| cos θr

σ2/δ

)
drdθ

=2

∫ π
2

0

α|Z|
√
π
√
σ2/δ

cos2 θ exp

(
−α

2|Z|2 sin2 θ

σ2/δ

)
dθ,

(C.9)

where the last step follow the following two identities together with some straightforward manipulations:∫ 2π

0

∫ ∞
0

r cos θ exp

(
−r

2 − 2α|Z| cos θr

σ2/δ

)
drdθ =

2ασ
√
π√

δ

∫ π
2

0

cos2 θ exp

(
α2|Z|2 cos2 θ

σ2/δ

)
dθ, (C.10a)∫ 2π

0

∫ ∞
0

r sin θ exp

(
−r

2 − 2α|Z| cos θr

σ2/δ

)
drdθ = 0. (C.10b)

The above identities are proved in Lemma 19 in Appendix C.1. Using (C.9) and noting that Z ∼ CN (0, 1/δ),
we further average our result over |Z|:

E
[
ei(θp−θz)

]
= E

{
2

∫ π
2

0

α|Z|
√
π
√
σ2/δ

cos2 θ exp

(
−α

2|Z|2 sin2 θ

σ2/δ

)
dθ

}
(a)
=

∫ ∞
0

2δr exp
(
−δr2

)
·
(

2

∫ π
2

0

αr
√
π
√
σ2/δ

cos2 θ exp

(
−α

2r2 sin2 θ

σ2/δ

)
dθ

)
dr

=
4αδ3/2

√
πσ

∫ π
2

0

cos2 θdθ

∫ ∞
0

r2 exp

(
−δ
(

1 +
α2 sin2 θ

σ2

)
r2

)
dr

(b)
=
α

σ

∫ π
2

0

cos2 θ

(
1 +

α2 sin2 θ

σ2

)− 3
2

dθ

(c)
=
α

σ

∫ π
2

0

sin2 θ(
1 + α2

σ2 sin2 θ
) 1

2

dθ

=

∫ π
2

0

α sin2 θ

(α2 sin2 θ + σ2)
1
2

dθ,

(C.11)
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where step (a) follows since the density of |Z| is f|Z|(r) =
∫ 2π

0
δ/π exp(−δr2)rdθ = 2δr exp(−δr2), and step

(b) follows from the identity
∫∞

0
r2 exp(−ar2)dr =

√
π/4 · a−3/2, and (c) is derived in (A.5).

We next derive ψ2(α, σ2; δ). From (C.8), we have

ψ2(α, σ2; δ) = 4E
[
(|Z| − |P |)2

]
= 4

(
1 + α2 + σ2

δ
− 2 · E {|ZP |}

)
,

where the last step is from Z ∼ CN (0, 1/δ) and P ∼ CN (0, (α2 +σ2)/δ). We next calculate E[|ZP |]. Again,
conditioned on |Z|, P is distributed as P ∼ CN (α|Z|, σ2/δ). We first calculate E[|P |

∣∣ |Z|]:
E
[
|P |
∣∣ |Z|] =

∫
C
|P | 1

πσ2/δ
exp

(
−
∣∣P − α|Z|∣∣2

σ2/δ

)
dP

=

∫ 2π

0

∫ ∞
0

r
1

πσ2/δ
exp

(
−|re

iθ − α|Z||2
σ2/δ

)
· rdrdθ

=
1

πσ2/δ

∫ 2π

0

exp

(
−α

2|Z|2 sin2 θ

σ2/δ

)
dθ

∫ ∞
0

r2 exp

(
− (r − α|Z| cos θ)2

σ2/δ

)
dr

=
2√
πσ2/δ

∫ π
2

0

(
α2|Z|2 cos2 θ +

σ2

2δ

)
exp

(
−α

2|Z|2 sin2 θ

σ2/δ

)
dθ,

(C.12)

where in the last step we used the following indentity∫ ∞
0

r2 exp

(
− (r −m)2

v

)
dr =

mv

2
exp

(
−m

2

v

)
+
√
vπ
(
m2 +

v

2

)
Φ

(√
2

v
·m
)
, ∀m ∈ R, v ∈ R+

and some manipulations similar to those in (C.2). Following the same procedure as that in (C.11), we further
calculate E[|ZP |] as:

E[|ZP |] =

∫ ∞
0

r · 2rδ exp
(
−δr2

)
·
(

2√
πσ2/δ

∫ π
2

0

(
α2r2 cos2 θ +

σ2

2δ

)
exp

(
−α

2r2 sin2 θ

σ2/δ

)
dθ

)
dr

=

∫ π
2

0

∫ ∞
0

4δ3/2

√
πσ

(
α2 cos2 θ · r4 +

σ2

2δ
· r2

)
exp

(
−δ
(

1 +
α2 sin2 θ

σ2

)
r2

)
drdθ

=
3α2

2σδ

∫ π
2

0

cos2 θ

(
1 +

α2

σ2
sin2 θ

)− 5
2

dθ +
σ

2δ

∫ π
2

0

(
1 +

α2

σ2
sin2 θ

)− 3
2

dθ,

(C.13)

where in the last step we used the following identities:
∫∞

0
r4 exp(−ar2)dr = 3

√
π/8·a−5/2 and

∫∞
0
r2 exp(−ar2)dr =√

π/4 · a−3/2. Finally, using (C.13) we have

ψ2(α, σ2; δ) = 4

(
1 + α2 + σ2

δ
− 2 · E {|Z||P |}

)
(a)
= 4

{
1 + α2 + σ2

δ
− 2

[
3α2

2σδ

∫ π
2

0

cos2 θ

(
1 +

α2

σ2
sin2 θ

)− 5
2

dθ +
σ

2δ

∫ π
2

0

(
1 +

α2

σ2
sin2 θ

)− 3
2

dθ

]}

=
4

δ

{
1 + α2 + σ2 − σ

2

[
3α2

σ2

∫ π
2

0

cos2 θ

(
1 +

α2

σ2
sin2 θ

)− 5
2

dθ +

∫ π
2

0

(
1 +

α2

σ2
sin2 θ

)− 3
2

dθ

]}
(b)
=

4

δ

(
1 + α2 + σ2 − σ

∫ π
2

0

1 + 2α
2

σ2 sin2 θ(
1 + α2

σ2 sin2 θ
) 1

2

dθ

)

=
4

δ

(
1 + α2 + σ2 −

∫ π
2

0

2α2 sin2 θ + σ2(
α2 sin2 θ + σ2

) 1
2

dθ

)
,
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where (a) is from (C.13), and the derivations of step (b) is more involved and are given in Lemma 2.

D Continuity of the partial derivative ∂ψ2(α,σ2)
∂σ2 at (α, σ2) = (1, 0)

Note that in the proof of Lemma 9-(i) we showed that the lim(α,σ2)→(1,0)
∂ψ2(α,σ2)

∂σ2 = 2
δ . Our goal here is to

show that the derivative exists at (α, σ2) = (1, 0) and it is equal to 2
δ .

D.1 Proof of the main claim

Our goal in this section is to show that ∂ψ2(α,σ2)
∂σ2

∣∣∣
(1,0)

= 2
δ . From the definition of the partial derivative, we

have

∂ψ2(α, σ2)

∂σ2

∣∣∣∣
(1,0)

= lim
σ2→0

1

σ2
(ψ2(1, σ2)− ψ2(1, 0))

= lim
σ2→0

4

δσ2
(1 + σ2 + 1−

∫ π/2

0

2 sin2 θ + σ2

(sin2 θ + σ2)
1
2

dθ − 2 +

∫ π/2

0

2 sin θdθ)

= lim
σ2→0

4

δσ2
(σ2 −

∫ π/2

0

2 sin2 θ + σ2

(sin2 θ + σ2)
1
2

dθ + 2) (D.1)

Define m , 1/σ2. Then,

∂ψ2(α, σ2)

∂σ2

∣∣∣∣
(1,0)

= lim
m→∞

4m

δ
(

1

m
−
∫ π/2

0

2
√
m sin2 θ + 1/

√
m

(m sin2 θ + 1)
1
2

dθ + 2)

(a)
= lim

m→∞
4m

δ

(
1

m
− 2

(m+ 1)E( m
m+1 )−K( m

m+1 )√
m(m+ 1)

− 1√
m(m+ 1)

K

(
m

m+ 1

)
+ 2

)

= lim
m→∞

4m

δ

(
1

m
− 2

(m+ 1)E( m
m+1 )√

m(m+ 1)
+

1√
m(m+ 1)

K

(
m

m+ 1

)
+ 2

)
. (D.2)

To obtain Equality (a) we have used (A.6). By employing Lemma 1 (i) we have

lim
m→∞

4m

δ

(
1

m
− 2

(m+ 1)E( m
m+1 )√

m(m+ 1)
+

1√
m(m+ 1)

K

(
m

m+ 1

)
+ 2

)

= lim
m→∞

4m

δ

(
1

m
− 2

(m+ 1)√
m(m+ 1)

(
1 +

1

2

log 4
√
m+ 1

m+ 1
− 1

4(m+ 1)

)
+

1√
m(m+ 1)

log 4
√
m+ 1 + 2

)

= lim
m→∞

4m

δ

(
1

m
− 2

(m+ 1)√
m(m+ 1)

(
1− 1

4(m+ 1)

)
+ 2

)

= lim
m→∞

4m

δ

(
1

m
− 2

(m+ 1)√
m(m+ 1)

+ 2 +
1

2
√
m(m+ 1)

)

= lim
m→∞

4m

δ

(
1

m
− 2

(m+ 1)√
m(m+ 1)

+ 2

)
+ lim
m→∞

4m

δ

(
1

2
√
m(m+ 1)

)
= 0 +

2

δ
. (D.3)

Again we emphasize that we have also shown in the proof of Lemma 9 that lim(α,σ2)→(1,0)
∂ψ2(α,σ2)

∂σ2 = 2
δ .

Hence, ∂ψ2(α,σ2)
∂σ2 is continuous at (α, σ2) = (1, 0).

E Proofs of Theorems 4

In light of Lemma 3, we assume that α0 ≥ 0 throughout this Appendix.
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E.1 Discussion

The goal of this section is to prove Theorems 4. The strategy is similar to the proof of Theorem 2. We
first construct the functions F−1

1 and F2. Then, we show that these two functions will intersect at exactly
one point when δ > δAMP. Finally, we discuss the dynamics of the state evolution and show that (αt, σ

2
t )

converge to the intersection of F−1
1 and F2. However, there are a few differences that make the proof of the

noisy case more challenging:

1. Recall that in the noiseless case, the curve F−1
1 is entirely above F2 (except for the fixed point (1, 0))

if δ > δAMP. See the plot in Fig. 9. On the other hand, when there is some noise, the curve F2 will
move up a little bit (while F−1

1 is unchanged) and will cross F1 at a certain α? ∈ (0, 1). As shown in
Fig. 14, F−1

1 is above F2 for α < α? and is below F2 when α > α?.

2. In the noisy setting the dynamic of SE becomes more challenging. In fact (αt, σ
2
t ) can move in any

direction around the fixed point. That makes the proof of convergence of (αt, σ
2
t ) more complicated.

3. In the noiseless setting the location of the fixed point of SE was (α, σ2) = (1, 0). This is not the case
for the noisy settings where the location of the fixed point depends on the noise variance.

In the sections below we go over the entire proof, but will skip the parts that are similar to the proof of
the noiseless setting which was discussed in Section A.3.

E.2 Preliminaries

In the noisy setting, ψ1(α;σ2) remains unchanged, and ψ2(α, σ2; δ) is replaced by ψ2(α, σ2; δ, σ2
w) below:

ψ2(α, σ2; δ, σ2
w) = ψ2(α, σ2; δ) + 4σ2

w (E.1a)

=
4

δ

{
α2 + σ2 + 1− α

[
φ1

(σ
α

)
+ φ3

(σ
α

)]}
+ 4σ2

w, (E.1b)

where

φ1(s)
∆
=

∫ π
2

0

sin2 θ(
sin2 θ + s2

) 1
2

dθ,

φ3(s)
∆
=

∫ π
2

0

(
sin2 θ + s2

) 1
2 dθ.

(E.2)

Before we proceed to the analysis of ψ1, ψ2, F1, and F2, we list a few identities for φ1 and φ3 which will be
used in our proofs later.

Lemma 22. φ1 and φ3 satisfy the following properties:

φ1(s) =
(1 + s2)E

(
1

1+s2

)
− s2K

(
1

1+s2

)
√

1 + s2
,

φ3(s) =
√

1 + s2E

(
1

1 + s2

)
,

φ1(0) = 1,

dφ1(s)

ds2
s2

∣∣∣∣
s=0

=
s2(E −K)

2
√

1 + s2

∣∣∣∣
s=0

= 0,

dφ1(s)φ3(s)

ds2

∣∣∣∣
s=0

=
1

2

(
(1 + s2)E2 − s2K2

1 + s2

)2
∣∣∣∣∣
s=0

=
1

2
,

(E.3)

where E and K are shorthands for E
(

1
1+s2

)
and K

(
1

1+s2

)
respectively in the last two identities.
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The proof of this lemma is a simple application of the identities we derived in Section A.1, and is hence
skipped.

Our next lemma summarizes the main properties of ψ1, ψ2, F1 and F2 in the noisy phase retrieval problem.

Lemma 23. Let σ̃2
max

∆
= σ2

max + 4σ2
w, where σ2

max = max{1, 4/δ}. For any δ > δAMP, there exists ε > 0 such
that when 0 < σ2

w < ε the following statements hold simultaneously:

(a) For 0 ≤ α ≤ 1, we have ψ2(α, σ2; δ, σ2
w) ≤ σ̃2

max, ∀σ2 ∈ [0, σ̃2
max].

(b) For 0 ≤ α ≤ 1, σ2 = ψ2(α, σ2; δ) + 4σ2
w admits a unique globally attracting fixed point, denoted as

F2(α; δ, σ2
w), in σ2 ∈ [0, σ̃2

max]. Further, if α ≥ α∗ (note that α∗ ≈ 0.53 is defined in (A.17)), then
F2(α; δ, σ2

w) is strongly globally attractive. Finally, F2(α; δ, σ2
w) is a continuous function of σ2

w.

(c) The equation F−1
1 (α) = F2(α; δ, σ2

w) has a unique nonzero solution in α ∈ [0, 1]. Let α?(δ, σ
2
w) be that

unique solution. Then, F−1
1 (α) > F2(α; δ, σ2

w) for 0 ≤ α < α?(δ, σ
2
w) and F−1

1 (α) < F2(α; δ, σ2
w) for

α?(δ, σ
2
w) < α ≤ 1.

(d) There exists α̂(δ, σ2
w), such that F2(α; δ, σ2

w) is strictly decreasing on α ∈ (0, α̂(δ, σ2
w)) and strictly

increasing on (α̂(δ, σ2
w), 1). Further, α?(δ, σ

2
w) < α̂(δ, σ2

w) < 1.

(e) Define L(α; δ, σ2
w)

∆
= L(α; δ) + 4σ2

w, where L(α; δ) is defined in (A.58). Then, L(α; δ, σ2
w) < F−1

1 (α)
for all α ∈ (0, α∗], where α∗ ≈ 0.53 is defined in (A.17).

(f) For any α ∈ (0, α∗] and σ2 ∈ [L(α; δ, σ2
w), F−1

1 (α)], we have ψ2(α, σ2; δ, σ2
w)

∆
= ψ2(α, σ2; δ) + 4σ2

w <
F−1

1 (α).

(g) F2(1; δ, σ2
w) < F−1

1 (α∗).

Proof. In the following, we will prove that each part of the lemma holds when σ2
w is smaller than a constant.

Hence, the statements hold simultaneously when σ2
w is smaller than the minimum of those constants.

Part (a): In Lemma 9-(iii) we proved that, for the noiseless setting, ψ2(α;σ2; δ) ≤ σ2
max for σ2 ∈ [0, σ2

max].
If fact, it is easy to verify that our proof can be strengthened to ψ2(α;σ2; δ) ≤ σ2

max for σ2 ∈ [0, 2], see (A.29).
Note that σ2

max = max{1, 4/δ} ≤ 4/δAMP ≈ 1.6. Hence, ψ2(α;σ2; δ) ≤ σ2
max for σ2 ∈ [0, σ̃2

max] = σ2
max + 4σ2

w

when σ2
w is small. Further, ψ2(α;σ2; δ, σ2

w) = ψ2(α;σ2; δ) + 4σ2
w, and hence ψ2(α;σ2; δ, σ2

w) ≤ σ̃2
max for

σ2 ∈ [0, σ̃2
max].

Part (b): The claim is a consequence of three facts: (i) ψ2(α, σ2; δ, σ2
w) ≤ σ2 at σ2 = σ̃2

max; (ii)
∂ψ2(α,σ2;δ,σ2

w)
∂σ2 < 1 when σ2 ∈ [0, σ̃2

max], and (iii) if α ≥ α∗, then
∂ψ2(α,σ2;δ,σ2

w)
∂σ2 > 0 for any σ2 ≥ 0. Fact (i)

has been proved in part (a) of this lemma. For Fact (ii), recall that in (A.30) we have proved ∂ψ2(α,σ2;δ)
∂σ2 < 1

when σ2 ∈ [0, σ2
max]. Again, similar to part (a) of this lemma, we can argue that the result actually

holds for σ2 ∈ [0, σ̃2
max]. We prove Fact (ii) by further noting ψ2(α, σ2; δ, σ2

w) = ψ2(α, σ2; δ) + 4σ2
w and hence

∂ψ2(α,σ2;δ,σ2
w)

∂σ2 = ∂ψ2(α,σ2;δ)
∂σ2 . Fact (iii) follows from Lemma 9-(v) and the fact that

∂ψ2(α,σ2;δ,σ2
w)

∂σ2 = ∂ψ2(α,σ2;δ)
∂σ2 .

We now show that F2(α; δ, σ2
w) is a continuous function of σ2

w. Let x be an arbitrary constant in (0, ε).
Suppose that limσ2

w→x− F2(α; δ, σ2
w) = y1 and limσ2

w→x+ F2(α; δ, σ2
w) = y2, where y1, y2 ∈ [0, σ̃2

max] and
y1 6= y2. Since F2 is the fixed point of ψ2, we then have y1 = ψ2(α, y1; δ) + 4x and y2 = ψ2(α, y2; δ) + 4x,

which leads to y1−ψ2(α, y1; δ) = y2−ψ2(α, y2; δ). However, we have shown in Lemma 9 that Ψ̃2(α, σ2; δ)
∆
=

σ2−ψ2(α, σ2; δ)−C is a strictly increasing function of σ2 in [0, σ̃2
max], and hence for any C ∈ R there cannot

be two solutions to Ψ̃2(α, σ2; δ) = 0. This leads to contradiction.

Part (c): It is more convenient to introduce a variable change:

s
∆
= φ−1

1 (α) and s?(δ, σ
2
w) = φ−1

1

(
α?(δ, σ

2
w)
)
.

As have been argued in Section A.3.4, F−1
1 (α) ≤ F−1

1 (0) = π2/16 < σ̃2
max. Then, by the global attractiveness

of F2(α; δ, σ2
w) (part (b) of this lemma) and noting that φ1 : [0,∞] 7→ [0, 1] is a decreasing function, our

claim can be equivalently refomulated as

ψ2

(
φ1(s), s2φ2

1(s); δ
)

+ 4σ2
w > s2φ2

1, ∀s ∈ [0, s?(δ, σ
2
w)), (E.4)
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and
ψ2

(
φ1(s), s2φ2

1(s); δ
)

+ 4σ2
w < s2φ2

1, ∀s > s?(δ, σ
2
w).

From the definition of ψ2 in (E.1) and after straightforward manipulations, we can write (E.4) into

T (s2, δ, σ2
w) < 0, ∀s ∈ [0, s?(δ, σ

2
w)) and T (s2, δ, σ2

w) > 0, ∀s > s?(δ, σ
2
w), (E.5)

where

T (s2, δ, σ2
w) ,

(
1− 4

δ

)
φ2

1(s)s2 +
4

δ
φ1(s)φ3(s)−

(
4

δ
+ 4σ2

w

)
. (E.6)

From (E.5), we have

∂T (s2, σ2
w)

∂s2
=

(
1− 4

δ

)(
φ2

1(s) + 2φ1(s)
dφ1(s)

ds2
s2

)
+

4

δ

dφ1(s)φ3(s)

ds2
. (E.7)

Applying the identities listed in (E.3), we obtain

∂T (s2, σ2
w)

∂s2

∣∣∣∣
s=0

= 1− 2

δ
> 0.

Further,
∂T (s2,σ2

w)
∂s2 is a continuous function at s2 = 0, and thus there exists ε > 0 such that

∂T (s2, σ2
w)

∂s2
> 0, ∀s2 ∈ [0, ε].

The above result shows that T (s2, σ2
w) is monotonically increasing in s2 ∈ [0, ε]. Further, from (E.6) we have

T (s2, δ, σ2
w) = T (s2, δ, 0)− 4σ2

w.

It is straightforward to show that T (0, δ, σ2
w) = −σ2

w < 0. Hence, T (s2, δ, σ2
w) = 0 has a unique solution if

the following holds:
inf
s2≥ε

T (s2, δ, σ2
w) > 0,

or equivalently
4σ2

w < inf
s2≥ε

T (s2, δ, 0). (E.8)

Lemma 4 proves that F−1
1 (α) > F2(α; δ) for α ∈ (0, 1) for any δ > δAMP, which, after re-parameterization

implies that T (s2, δ, 0) > 0 for s > 0 if δ > δAMP. Hence, infs2≥ε T (s2, δ, 0) is strictly positive, and there
exists sufficiently small σ2

w such that (E.8) holds.

Part (d): From the fixed point equation F2 = ψ2(α, F2; δ, σ2
w) where (F2 denotes F2(α; δ, σ2

w)), we can
derive the following (cf. (A.33))(

1− ∂2ψ2(α, F2; δ, σ2
w)
)
· dF2(α; δ, σ2

w)

dα
= ∂1ψ2(α, F2; δ, σ2

w).

Similar to the proof of part (b), 1 − ∂2ψ2(α, F2; δ, σ2
w) > 0 when σ2

w is sufficiently small. Hence, proving
∂1ψ2(α, F2; δ, σ2

w) < 0 is simplified to proving that there exists α̂(δ, σ2
w) such that

∂1ψ2(α, F2; δ, σ2
w) < 0, ∀α ∈

(
0, α̂(δ, σ2

w)
)
, (E.9a)

and
∂1ψ2(α, F2; δ, σ2

w) > 0, ∀α ∈
(
α̂(δ, σ2

w), 1
)
. (E.9b)

From (2.6) and after some calculations, we obtain the following

∂ψ2(α, σ2; δ, σ2
w)

∂α
=

4

δ

(
2α−

∫ π
2

0

2α3 sin4 θ + 3ασ2 sin2 θ

(α2 sin2 θ + σ2)
3
2

dθ

)

=
4

δ

(
2α− 2

∫ π
2

0

sin4 θ + 3
2s

2 sin2 θ

(sin2 θ + s2)
3
2

dθ︸ ︷︷ ︸
h(s)

)
,

(E.10)
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where s
∆
= σ/α. Then, we can reformulate (E.9) as

α < h

(√
F2(α; δ, σ2

w)

α

)
, ∀α ∈

(
0, α̂(δ, σ2

w)
)
,

and

α > h

(√
F2(α; δ, σ2

w)

α

)
, ∀α ∈

(
α̂(δ, σ2

w), 1
)
.

,
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2
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Figure 14: Depiction of F−1
1 (α), F2(α; δ, σ2

w) and G(α). α?(δ, σ
2
w): solution to F−1

1 (α) = F2(α; δ, σ2
w).

α̂(δ, σ2
w): solution to G−1(α) = F2(α; δ, σ2

w).

From the definition given in (E.10), it is easy to show that h : R+ 7→ [0, 1] is a decreasing function. Then,
the above inequality can be further simplified to

F2(α; δ, σ2
w) <

[
α · h−1(α)

]2 ∆
= G(α), ∀α ∈

(
0, α̂(δ, σ2

w)
)
, (E.11a)

and
F2(α; δ, σ2

w) >
[
α · h−1(α)

]2
= G(α), ∀α ∈

(
α̂(δ, σ2

w), 1
)
. (E.11b)

Similar to (E.4) and (E.5), (E.11) can be re-parameterized as

ψ2

(
h(s), s2φ2

1(s); δ
)

+ 4σ2
w > s2h2, ∀s < ŝ(δ, σ2

w), (E.12)

and
ψ2

(
φ1(s), s2φ2

1(s); δ
)

+ 4σ2
w < s2h2, ∀s > ŝ(δ, σ2

w), (E.13)

where ŝ(δ, σ2
w)

∆
= h−1

(
α̂(δ, σ2

w)
)
. We skip the proof for (E.12) since it is very similar to the proof of part (c)

of this lemma. (Note that to apply the above re-parameterization (which is based on the global attractiveness
of F2, i.e., part (b) of this lemma), we need to ensure G(α) < σ̃2

max. This can be seen from the fact that
G(α) ≤ G(0) = (3π/8)2 ≈ 1.38 while σ̃2

max + 4σ2
w and σ2

max = max{1, 4/δ} > max{1, 4/δAMP} ≈ 1.6.)
Finally, to show α̂(δ, σ2

w) > α?(δ, σ
2
w), we will prove that G(α) > F−1

1 (α) for α ∈ [0, 1). See the plot in
Fig. 14. Since G(α) = [α · h−1(α)]2 and F−1

1 (α) = [α · φ−1
1 (α)]2, we only need to prove h−1(α) > φ−1

1 (α).
Noting that both φ1 and h are monotonically decreasing functions, it suffices to prove h(s) > φ1(s) for s > 0,
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which directly follows from their definitions (cf. (E.10) and (A.59a)):

h(s)− φ1(s) =

∫ π
2

0

sin4 θ + 3
2s

2 sin2 θ

(sin2 θ + s2)
3
2

dθ −
∫ π

2

0

sin2 θ(
sin2 θ + s2

) 1
2

dθ

=

∫ π
2

0

1
2s

2 sin2 θ

(sin2 θ + s2)
3
2

> 0, ∀s > 0.

Part (e): First note that L(α; δ, σ2
w) = L(α; δ) + 4σ2

w. Hence, the proof for the claim is straightforward
if the inequality L(α; δ) < F−1

1 (α) is strict for α ≤ α∗. This is the case since Lemma 13 shows that
L(α; δ) ≤ F−1

1 (α) for α ≤ 1, but equality only happends at α = 1.

Part (f): In Lemma 17, we have proved the following result in the case of σ2
w = 0:

ψ2(α, σ2; δ) < F−1
1 (α), ∀0 ≤ α ≤ α∗, L(α; δ) < σ2 < F−1

1 (α).

(In fact, the above inequality holds for α up to one.) In the noisy case, ψ2 increases a little bit: ψ2(α, σ2; δ, σ2
w) =

ψ2(α, σ2; δ) + 4σ2
w. Hence, when σ2

w is sufficiently small, we still have

ψ2(α, σ2; δ, σ2
w) < F−1

1 (α), ∀0 ≤ α ≤ α∗, L(α; δ) < σ2 < F−1
1 (α). (E.14)

Clearly, the inequality in (E.14) also holds for L(α; δ, σ2
w) < σ2 < F−1

1 (α), since L(α; δ, σ2
w) = L(α; δ)+4σ2

w >
L(α; δ).

Part (g): Note that F−1
1 (α∗) ≈ F−1

1 (0.53) > 0 does not depend on σ2
w. Further, F2(1; δ, 0) = 0 and

F2(1; δ, σ2
w) is a continuous function of σ2

w. Hence, F2(1; δ, σ2
w) < F−1

1 (α∗) for small enough σ2
w.

E.3 Convergence of the SE

Our next lemma proves that the state evolution still converges to the desired fixed point for 0 < α0 ≤ 1 and
σ2

0 ≤ 1 if δ > δAMP.

Lemma 24. Let {αt}t≥1 and {σ2
t }t≥1 be two state sequences generated according to (2.5) from α0 and σ2

0.
Let ε be the constant required in Lemma 23. Then, the following holds for any δ > δAMP, 0 < σ2

w < ε, and
0 < α0 ≤ 1 and σ2

0 ≤ 1:
lim
t→∞

αt = α?(δ, σ
2
w) and lim

t→∞
σ2
t = σ2

?(δ, σ2
w),

where α?(δ, σ
2
w) is the unique positive solution to F−1

1 (α) = F2(α; δ, σ2
w) and σ2

?(δ, σ2
w) = F−1

1 (α?(δ, σ
2
w)).

Proof. From Lemma 23-(a), when σ2
w is small enough, (αt, σ

2
t ) ∈ R for all t ≥ 1, where R ∆

= {(α, σ2)|0 <
α ≤ 1, 0 ≤ σ2 ≤ σ̃2

max}, where σ̃2
max = max{1, 4/δ}+ 4σ2

w. We divide R into several regions and discuss the
dynamical behaviors of the state evolution for different regions separately. Specifically, we define

R0
∆
=
{

(α, σ2)|0 < α ≤ 1, π2/16 < σ2 ≤ σ̃2
max

}
,

R1
∆
=
{

(α, σ2)|F−1
1 (α∗) ≤ σ2 ≤ π2/16, F1(σ2) ≤ α ≤ 1

}
,

R2
∆
=
{

(α, σ2)|0 < α ≤ α∗, 0 ≤ σ2 < F−1
1 (α)

}
,

R3
∆
=
{

(α, σ2)|α∗ ≤ α ≤ 1, 0 ≤ σ2 < F−1
1 (α∗)

}
,

(E.15)

where α∗ ≈ 0.53 was defined in (A.17). Notice that α?(δ, 0) = 1, and therefore it is guaranteed that
α?(δ, σ

2
w) > α∗ for small enough σ2

w. See Fig. 15 for illustration. To prove the lemma, we will prove the
following arguments:

(i) If (αt0 , σ
2
t0) ∈ R0, then there exists a finite T1 ≥ 1 such that (αt0+T1 , σ

2
t0+T1

) ∈ R\R0.

(ii) If (αt0 , σ
2
t0) ∈ R1 ∪ R2 for t0 ≥ 1 (i.e., after one iteration), then there exists a finite T2 ≥ 1 such that

(αt0+T2
, σ2
t0+T2

) ∈ R3.
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Figure 15: Dynamical behavior the state evolution in the low noise regime. left: points in R1 and R2 will
eventually move to R3. Here, α∗ ≈ 0.53. Right: Illustration of R3. Points in R3b and R3c will eventually
move to R3a. For points in R3a (marked A, B, C, D, E, F), we can form a small rectangular region that
bounds the remaining trajectory. Note that the lower and right bounds for A and B (and also the upper
and left bounds for D and E) are given by σ2

? and α? respectively.

(iii) We show that if (αt0 , σ
2
t0) ∈ R3 for t0 ≥ 0, then (αt, σ

2
t ) ∈ R3 for all t > t0, and (αt, σ

2
t ) converges to

(α?, σ
2
?).

The proof of (i) is similar to that of Lemma 7 and therefore omitted here.

Proof of (ii): Following the proof of Lemma 6, we argue that if (αt, σ
2
t ) ∈ R1 ∪ R2 then the following

holds
αt+1 ≥ B1(αt, σ

2
t ) and σ2

t+1 ≥ B2(αt, σ
2
t ), (E.16)

where B1(αt, σ
2
t ) = min

{
αt, F1(σ2

t )
}

and B2(αt, σ
2
t ) = max

{
σ2
t , F

−1
1 (αt)

}
. Then, it is easy to show that

(αt+1, σ
2
t+1) ∈ R1 ∪R2 ∪R3. Applying this recursively, we see that (α, σ2) either moves to R3 at a certain

time or stays in R1∪R2. We next prove that the latter case cannot happen. Suppose that (αt, σ
2
t ) ∈ R1∪R2

for t ≥ t0. If this is the case, then it can be shown that

B1(αt, σ
2
t ) ≤ B1(αt+1, σ

2
t+1) and B2(αt, σ

2
t ) ≥ B2(αt+1, σ

2
t+1), ∀t > t0. (E.17)

On the other hand, since we assume (αt, σ
2
t ) ∈ R1 ∪ R2 for t ≥ t0, B1 is upper bounded by α∗ and B2

lower bounded by F−1
1 (α∗). Hence, this means the sequences B1 and B2 converges to α∗ and F−1

1 (α∗),
respectively. This cannot happen since there is no fixed point in R1 ∪R2.

The proof for (E.16) and (E.17) are basically the same as those for the noiseless counterparts and hence
skipped here. Please refer to the proof of Lemma 6. We only need to show that some of the key inequalities
used in the proof of Lemma 6 still hold in the noisy case, which have been listed in Lemma 23 (e) and (f).

Proof of (iii): Lemma 23-(c), (d) and (g) imply that F2 < F−1
1 (α∗) for all α ∈ [α∗, 1]. Then, based on

the strong global attractiveness of F1 and F2, it is easy to show that if (αt0 , σ
2
t0) ∈ R3 then (αt, σ

2
t ) ∈ R3

for all t ≥ t0. We have proved in Lemma 23-(d) that F2 is a decreasing function of α on [0, α̂] and increasing
on [α̂, 1], where α? < α̂ < 1. Then, the maximum of F2 on [α?, 1] can only happen at either α? or 1. We
assume that the latter case happens; it will be clear that our proof for the former case is a special case of
the proof for the latter one. See the right panel of Fig. 15.

As discussed above, we assume that F2(1; δ, σ2
w) > F2(α?; δ, σ

2
w). Hence, by Lemma 23-(d), there exists

a unique number α� ∈ (α?, 1) such that F2(α�; δ, σ2
w) = F2(α?; δ, σ

2
w). See the plot in the right panel of
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Fig. 15. We further divide R3 into four regions:

R3a
∆
=
{

(α, σ2)|α∗ ≤ α ≤ α�, F−1
1 (α�) < σ2 ≤ F−1

1 (α∗)
}
,

R3b
∆
=
{

(α, σ2)|α∗ ≤ α ≤ 1, 0 ≤ σ2 < F−1
1 (α�)

}
,

R3c
∆
=
{

(α, σ2)|α� < α ≤ 1, F−1
1 (α�) ≤ σ2 < F−1

1 (α∗)
}
.

Based on the strong global attractiveness of F1 and F2 (and similar to the proof of part (i) of this lemma),
we can show the following:

• if (αt0 , σ
2
t0) ∈ R3a, then (αt0+1, σ

2
t0+1) can only be in R3a;

• if (αt0 , σ
2
t0) ∈ R3b, then (αt0+1, σ

2
t0+1) can be in R3a, R3b or R3c;

• if (αt0 , σ
2
t0) ∈ R3c, then (αt0+1, σ

2
t0+1) can be in R3c or R3a.

Putting things together, and similar to the treatment of R0, it can be shown that there exists a finite T3

such that (αt, σ
2
t ) ∈ R3a for all t ≥ t0 + T3.

It only remains to prove that if (αt′ , σ
2
t′) ∈ R3a at a certain t′ ≥ 0, then {(αt, σ2

t )}t≥t′ converges to
(α?, σ

2
?). To this end, define

Blow
1 (α, σ2)

∆
= min

{
α?, α, F1(σ2)

}
,

Bup
1 (α, σ2)

∆
= max

{
α?, α, F1(σ2)

}
,

Blow
2 (α, σ2)

∆
= min

{
σ2
?, σ

2, F−1
1 (α)

}
= F−1

1

(
Bup

1 (α, σ2)
)
,

Bup
2 (α, σ2)

∆
= max

{
σ2
?, σ

2, F−1
1 (α)

}
= F−1

1

(
Blow

1 (α, σ2)
)
.

See examples depicted in Fig. 15. Using the strong global attractiveness of F1 and F2 and noting that
F−1

1 (α) > F2(α) > σ2
? for α ∈ [α∗, α?) and F−1

1 (α) < F2(α) < σ2
? for α ∈ (α?, α�), it can be proved that

Blow
1 (αt, σ

2
t ) ≤ αt+1 ≤ Bup

1 (αt, σ
2
t ),

Blow
2 (αt, σ

2
t ) ≤ σ2

t+1 ≤ Bup
2 (αt, σ

2
t ).

Further, the sequences {Blow
1 (αt, σ

2
t )}t≥t′ and {Blow

2 (αt, σ
2
t )}t≥t′ are monotonically non-decreasing and

{Bup
1 (αt, σ

2
t )}t≥t′ and {Bup

2 (αt, σ
2
t )}t≥t′ are monotonically non-increasing. Also, Blow

1 and Blow
2 are up-

per bounded by α? and σ2
?, and Bup

1 and Bup
2 are lowered bounded by α? and σ2

?. Together with some
arguments about the strict monotonicity of {Blow

1 (αt, σ
2
t )}t≥t′ and {Blow

2 (αt, σ
2
t )}t≥t′ (see discussions below

(A.108)), we have

lim
t→∞

Blow
1 (αt, σ

2
t ) = lim

t→∞
Bup

1 (αt, σ
2
t ) = α?,

lim
t→∞

Blow
2 (αt, σ

2
t ) = lim

t→∞
Bup

2 (αt, σ
2
t ) = σ2

?,

which implies that limt→∞ αt+1 = α? and limt→∞ σ2
t+1 = σ2

?. We skip the proofs for the above statements
since similar arguments have been repeatedly used in this paper.

E.4 Proof of Theorem 4

According to Lemma 24, we know that (αt, σ
2
t ) converges to the unique fixed point of the state evolution

equation. We now analyze the location of this fixed point and further derive the noise sensitivity. Applying

a variable change s
∆
= σ/α, we obtain the following equations for this unique fixed point:

α = φ1(s), (E.18a)

σ2 =
4

δ

{
α2 + σ2 + 1− α [φ1 (s) + φ3 (s)]

}
+ 4σ2

w, (E.18b)
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where φ1 and φ3 are defined in (E.2). Using (E.18a) and σ2 = α2s2 = φ2
1(s)s2, and after some algebra, we

can write (E.18b) as

T (s2, σ2
w) ,

(
1− 4

δ

)
φ2

1(s)s2 +
4

δ
φ1(s)φ3(s)−

(
4

δ
+ 4σ2

w

)
= 0. (E.19)

Differentiating with respect to s2 yields

∂T (s2, σ2
w)

∂s2
=

(
1− 4

δ

)(
φ2

1(s) + 2φ1(s)
dφ1(s)

ds2
s2

)
+

4

δ

dφ1(s)φ3(s)

ds2
. (E.20)

Using the identities listed in (E.3), we have

∂T (s2, σ2
w)

∂s2

∣∣∣∣
s=0

= 1− 2

δ
.

Also, it is straightforward to see that
∂T (s2,σ2

w)
∂σ2

w
= −4. Note that we have an implicit relation between s2

and σ2
w, and by the implicit function theorem we have

lim
σ2
w→0

ds2

dσ2
w

= − lim
s2→0

(
∂T (s2, σ2

w)

∂s2

)−1
∂T (s2, σ2

w)

∂σ2
w

=
4

1− 2
δ

.

Further, s is a continuously differentiable function of σ2
w. Hence, by the mean value theorem we know that

s2

σ2
w

=
ds2

dσ2
w

∣∣∣∣
σ̃2
w

,

where 0 ≤ σ̃w ≤ σw. By taking limσ2
w→0 from both sides of the above equality we have

lim
σ2
w→0

s2

σ2
w

= lim
σ̃w→0

ds2

dσ2
w

∣∣∣∣
σ̃2
w

= − lim
s2→0

(
∂T (s2, σ2

w)

∂s2

)−1
∂T (s2, σ2

w)

∂σ2
w

=
4

1− 2
δ

.

To derive the noise sensitivity, we notice that

AMSE(σ2
w, δ) = (α− 1)2 + σ2

= [φ1(s)− 1]
2

+ s2φ2
1(s).

As shown in (E.3), φ1(s) can be expressed using elliptic integrals as:

φ1(s) =
√

1 + s2E

(
1

1 + s2

)
− s2

√
1 + s2

K

(
1

1 + s2

)
.

From Lemma 1-(i), E(1− ε) = 1 +O(ε log ε−1), hence
√

1 + s2E
(

1
1+s2

)
= 1 +O(s2 log s−1). Further, since

K(1 − ε) = O(log ε−1), we have s2√
1+s2

K
(

1
1+s2

)
= O(s2 log s−1). Therefore, φ1(s) − 1 = O(s2 log s−1).

Hence, lims2→0
[φ1(s)−1]2

s2 = 0 and so

lim
s2→0

AMSE(σ2
w, δ)

s2
= lim
s2→0

[φ1(s)− 1]
2

s2
+ φ2

1(s) = 1.

Finally,

lim
σ2
w→0

AMSE(σ2
w, δ)

σ2
w

= lim
s2→0

AMSE(σ2
w, δ)

s2
· lim
σ2
w→0

s2

σ2
w

=
4

1− 2
δ

.
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