
Orthogonal Machine Learning: Power and Limitations

A. Proof of Theorem 1
We first prove the result for the sample-splitting estimator θ̂SS in (2) and then discuss how to generalize for the K-fold cross
fitting estimator θ̂CF in (3) with

√
2n scaling.

For each coordinate moment function mi, the mean value theorem and the definition of θ̂SS imply that

1

n

n∑
t=1

〈∇θmi(Zt, θ̃
(i), ĥ(Xt)), θ0 − θ̂SS〉 =

1

n

n∑
t=1

(mi(Zt, θ0, ĥ(Xt))−mi(Zt, θ̂
SS , ĥ(Xt))) =

1

n

n∑
t=1

mi(Zt, θ0, ĥ(Xt))

(10)
for some convex combination, θ̃(i), of θ̂SS and θ0. Hence,

√
n(θ0 − θ̂SS)I[det Ĵ(ĥ) 6= 0] = Ĵ(ĥ)−1I[det Ĵ(ĥ) 6= 0]

1√
n

n∑
t=1

m(Zt, θ0, ĥ(Xt))︸ ︷︷ ︸
B

for Ĵ(h) ,
1

n

n∑
t=1

∇θm1(Zt, θ̃
(1), h(Xt))
· · ·

∇θmd(Zt, θ̃
(d), h(Xt))

 ∈ Rd×d.

We will first show in Section A.1 that Ĵ(ĥ) converges in probability to the invertible matrix J = E [∇θm(Z, θ0, h0(X))].
Hence, we will have I[det Ĵ(ĥ) 6= 0]

p→ I[det J 6= 0] = 1 and Ĵ(ĥ)−1I[det Ĵ(ĥ) 6= 0]
p→ J−1 by the continuous mapping

theorem (van der Vaart, 1998, Thm. 2.3). We will next show in Section A.2 that B converges in distribution to a mean-zero
multivariate Gaussian distribution with constant covariance matrix V = Cov(m(Z, θ0, h0(X))). Slutsky’s theorem (van der
Vaart, 1998, Thm. 2.8) will therefore imply that

√
n(θ0− θ̂SS)I[det Ĵ(ĥ) 6= 0] converges in distribution toN(0, J−1V J−1).

Finally, the following lemma, proved in Section J.1, will imply that
√
n(θ0 − θ̂SS) also converges in distribution to

N(0, J−1V J−1), as desired.

Lemma 11. Consider a sequence of binary random variables Yn ∈ {0, 1} satisfying Yn
p→ 1. If XnYn

p→ X , then

Xn
p→ X . Similarly, if XnYn

d→ X , then Xn
d→ X .

A.1. Convergence of Ĵ(ĥ)− J .

For each coordinate j and moment mi and r > 0 defined in Assumption 1.7, the mean value theorem and Cauchy-Schwarz
imply that

E
[∣∣∣Ĵij(ĥ)− Ĵij(h0)

∣∣∣ I[θ̃(i) ∈ Bθ0,r] | ĥ] I[ĥ ∈ Bh0,r]

≤ E
[∣∣∣∇θjmi(Zt, θ̃

(i), ĥ(Xt))−∇θjmi(Zt, θ̃
(i), h0(Xt))

∣∣∣ I[θ̃(i) ∈ Bθ0,r] | ĥ] I[ĥ ∈ Bh0,r]

= E
[∣∣∣〈ĥ(Xt)− h0(Xt),∇γ∇θjmi(Zt, θ̃

(i), h̃(j)(Xt))〉
∣∣∣ I[θ̃(i) ∈ Bθ0,r] | ĥ] I[ĥ ∈ Bh0,r]

≤

√√√√E
[
‖ĥ(Xt)− h0(Xt)‖22 | ĥ

]
sup

h∈Bh0,r
E

[
sup

θ∈Bθ0,r
‖∇γ∇θjmi(Zt, θ, h(Xt))‖22

]

for h̃(j)(Xt) a convex combination of h0(Xt) and ĥ(Xt). The consistency of ĥ (Assumption 1.6) and the regularity
condition Assumption 1.7b therefore imply that E[|Ĵij(ĥ)− Ĵij(h0)|I[θ̃(i) ∈ Bθ0,r] | ĥ]I[ĥ ∈ Bh0,r]

p→ 0 and hence that
|Ĵij(ĥ)− Ĵij(h0)|I[ĥ ∈ Bh0,r, θ̃

(i) ∈ Bθ0,r]
p→ 0 by the following lemma, proved in Section J.2.

Lemma 12. Consider a sequence of two random variables Xn, Zn, where Xn is a finite d-dimensional random vector.
Suppose that E

[
‖Xn‖pp|Zn

] p→ 0 for some p ≥ 1. Then Xn
p→ 0.

Now Assumptions 1.6 and 1.5 and the continuous mapping theorem imply that I[ĥ ∈ Bh0,r]
p→ 1. Therefore, by Lemma 11,

we further have |Ĵij(ĥ)− Ĵij(h0)|I[θ̃(i) ∈ Bθ0,r]
p→ 0.
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The regularity Assumptions 1.4 and 1.7a additionally imply the uniform law of large numbers,

sup
θ∈Bθ0,r

‖ 1n
∑n
t=1∇θmi(Zt, θ, h0(Xt))− EZ [∇θmi(Z, θ, h0(X))]‖2

p→ 0

for each moment mi (see, e.g., Newey & McFadden, 1994, Lem. 2.4). Taken together, these conclusions yield[
Ĵi(ĥ)− EZ [∇θmi(Z, θ̃

(i), h0(X))]
]
I[θ̃(i) ∈ Bθ0,r]

p→ 0,

for each mi, where Ĵi(ĥ) denotes the i-th row of Ĵ(ĥ).

Since θ̃(i) is a convex combination of θ̂SS and θ0, the consistency of θ̂SS implies that θ̃(i)
p→ θ0 and there-

fore that I[θ̃(i) ∈ Bθ0,r]
p→ 1 and EZ [∇θmi(Z, θ̃

(i), h0(X))]
p→ EZ [∇θmi(Z, θ0, h0(X))] by the continuous map-

ping theorem. Lemma 11 therefore implies that Ĵi(ĥ) − EZ [∇θmi(Z, θ̃
(i), h0(X))]

p→ 0 and hence that Ĵi(ĥ)
p→

EZ [∇θmi(Z, θ0, h0(X))], as desired.

A.2. Asymptotic Normality of B.

For a vector γ ∈ R` and a vector α ∈ N`, we define the shorthand γα ,
∏`
i=1 γ

α`
` .

To establish the asymptotic normality of B, we let k = maxα∈S ‖α‖1 and apply Taylor’s theorem with k + 1-order
remainder around h0(Xt) for each Xt:

B =
1√
n

n∑
t=1

m(Zt, θ0, h0(Xt))︸ ︷︷ ︸
C

+
1√
n

n∑
t=1

∑
α:α∈S

1

‖α‖1!
Dαm(Zt, θ0, h0(Xt))

(
ĥ(Xt)− h0(Xt)

)α
︸ ︷︷ ︸

G

+
1√
n

n∑
t=1

∑
α:‖α‖1≤k,α 6∈S

1

‖α‖1!
Dαm(Zt, θ0, h0(Xt))

(
ĥ(Xt)− h0(Xt)

)α
︸ ︷︷ ︸

E

+
1√
n

n∑
t=1

∑
α:‖α‖1=k+1

1

(k + 1)!

Dαm1(Zt, θ0, h̃
(1)(Xt))

· · ·
Dαmd(Zt, θ0, h̃

(d)(Xt))

(ĥ(Xt)− h0(Xt)
)α

︸ ︷︷ ︸
F

,

(11)
where h̃(i)(Xt), i = 1, 2, . . . , d are vectors which are (potentially distinct) convex combinations of ĥ(Xt) and h0(Xt). Note
that C is the sum of n i.i.d. mean-zero random vectors divided by

√
n and that the covariance V = Cov(m(Z, θ0, h0(X)))

of each vector is finite by Assumption 1.7d. Hence, the central limit theorem implies that C →d N(0, V ). It remains to
show that G,E, F

p→ 0.

First we argue that the rates of first stage consistency (Assumption 1.6) imply that E,F
p→ 0. To achieve this we will show

that E[|Ei| | ĥ],E[|Fi| | ĥ]
p→ 0, where Ei and Fi represent the i-th entries of E and F respectively. Since the number of

entries d is a constant, Lemma 12 will then imply that E,F
p→ 0. First we have

E[|Ei| | ĥ] ≤
∑

α:‖α‖1≤k,α 6∈S

√
n

‖α‖1!
EZt [|Dαmi(Zt, θ0, h0(Xt))(ĥ(Xt)− h0(Xt))

α|] (triangle inequality)

≤
∑

α:‖α‖1≤k,α 6∈S

√
n

‖α‖1!

√
E[|Dαmi(Zt, θ0, h0(Xt))|2]

√
EXt [|ĥ(Xt)− h0(Xt)|2α] (Cauchy-Schwarz)

≤
∑

α:‖α‖1≤k,α 6∈S

√
n

‖α‖1!
λ∗(θ0, h0)1/4

√
EXt [|ĥ(Xt)− h0(Xt)|2α] (Assumption 1.7c)

≤ max
α:‖α‖1≤qk,α6∈S

λ∗(θ0, h0)1/4
√
n

√
EXt [|ĥ(Xt)− h0(Xt)|2α]

p→ 0. (Assumption 1.6)
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Since h̃(i) is a convex combination of ĥ and h0, parallel reasoning yields

E[|Fi| | ĥ]I[ĥ ∈ Bh0,r] ≤ max
α:‖α‖1=k+1

I[ĥ ∈ Bh0,r]

√
EZt [|Dαmi(Zt, θ0, h̃(i)(Xt))|2]

√
n

√
EXt [|ĥ(Xt)− h0(Xt)|2α]

≤ max
α:‖α‖1=k+1

λ∗(θ0, h0)1/4
√
n

√
EXt [|ĥ(Xt)− h0(Xt)|2α]

p→ 0. (Assumptions 1.7c and 1.6)

As in Section A.1, the consistency of ĥ (Assumption 1.6) further implies that E[|Fi| | ĥ]
p→ 0.

Finally, we argue that orthogonality and the rates of the first stage imply that G
p→ 0. By S-orthogonality of the moments,

for α ∈ S, E [Dαm(Zt, θ0, h0(Xt))|Xt] = 0 and in particular

E
[
Dαm(Zt, θ0, h0(Xt))

(
ĥ(Xt)− h0(Xt)

)α
|ĥ
]

= E
[
E [Dαm(Zt, θ0, h0(Xt))|Xt]

(
ĥ(Xt)− h0(Xt)

)α
|ĥ
]

= 0.

(12)
We now show that E

[
G2
i |ĥ
]
p→ 0. We have

E
[
G2
i |ĥ
]

=
1

n

∑
t,t′=1,2,...,n,t6=t′

E

 ∑
α:‖α‖1≤k,α∈S

1

‖α‖1!
Dαmi(Zt, θ0, h0(Xt))

(
ĥ(Xt)− h0(Xt)

)α
|ĥ

2

+
1

n

n∑
t=t′=1

E


 ∑
α:‖α‖1≤k,α∈S

1

‖α‖1!
Dαmi(Zt, θ0, h0(Xt))

(
ĥ(Xt)− h0(Xt)

)α2

|ĥ


All the cross terms are zero because of (12). Therefore:

E
[
G2
i |ĥ
]

= E

( ∑
α:α∈S

1

‖α‖1!
Dαmi(Zt, θ0, h0(Xt))

(
ĥ(Xt)− h0(Xt)

)α)2

|ĥ


≤ E

[ ∑
α:α∈S

1

‖α‖1!

(
Dαmi(Zt, θ0, h0(Xt))

(
ĥ(Xt)− h0(Xt)

)α)2
|ĥ

]
(Jensen’s inequality)

≤ max
α:α∈S

E
[(
Dαmi(Zt, θ0, h0(Xt))

(
ĥ(Xt)− h0(Xt)

)α)2
|ĥ
]

≤ max
α:α∈S

√
E
[
(Dαmi(Zt, θ0, h0(Xt)))

4
]√

E
[(
ĥ(Xt)− h0(Xt)

)4α
|ĥ
]

(Cauchy-Schwarz)

= max
α:α∈S

√
λ∗(θ0, h0)

√
E
[(
ĥ(Xt)− h0(Xt)

)4α
|ĥ
]

(Assumption 1.7c)

Given Assumption 1.5 we get that the latter converges to zero in probability. Given that the number of moments d is also a
constant, we have shown that E[‖G‖22|ĥ]

p→ 0. By Lemma 12 the latter implies that G
p→ 0.

The proof for the K-fold cross fitting estimator θ̂CF follows precisely the same steps as the θ̂SS proof (with
√

2n scaling
instead of

√
n scaling) except for the final argument concerning G

p→ 0. In this case G =
∑K
k=1Gk, where, for

k = 1, . . . ,K.

Gk =
1√
2n

∑
t∈Ik

∑
α:α∈S

1

‖α‖1!
Dαm(Zt, θ0, hk(Xt))

(
ĥk(Xt)− hk(Xt)

)α
.

K is treated as constant with respect to the other problem parameters, and therefore it suffices to show Gk
p→ 0, for all

k = 1, 2, . . . ,K. Fix k ∈ [K]. By Lemma 12 it suffices to show E
[
G2
k|ĥk

]
p→ 0. The proof of this follows exactly the

same steps as proving E
[
G2|ĥ

]
p→ 0 in the θ̂SS case. The diagonal terms can be bounded in an identical way and the

cross terms are zero again because ĥk is trained in the first stage on data (Xt)t∈Ick and therefore the data (Xt)t∈Ik remain
independent given ĥk. Our proof is complete.
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B. Proof of Theorem 2
We prove the result for the sample-splitting estimator θ̂SS in (2). The proof for the K-fold cross fitting estimator θ̂CF in (3)
is analogous and follows as in (Chernozhukov et al., 2017).

Fix any compact A ⊆ Θ. Our initial goal is to establish the uniform convergence

sup
θ∈A
| 1n
∑n
t=1mi(Zt, θ, ĥ(Xt))− E[mi(Z, θ, h0(X))]| p→ 0 (13)

for each moment mi. To this end, we first note that the continuity (Assumption 1.4) and domination (Assumption 1.7d) of
mi imply the uniform law of large numbers

sup
θ∈A,h∈Bh0,r

| 1n
∑n
t=1mi(Zt, θ, h(Xt))− EZ [mi(Z, θ, h(X))]| p→ 0

for each moment mi (see, e.g., Newey & McFadden, 1994, Lem. 2.4). Moreover, the mean value theorem and two
applications of Cauchy-Schwarz yield

|E[mi(Z, θ, ĥ(X)) | ĥ]− E[mi(Z, θ, h0(X))]| ≤ |E[〈∇γmi(Z, θ, h̃
(i)(X)), ĥ(X)− h0(X)〉 | ĥ]|

≤ |E[‖∇γmi(Z, θ, h̃
(i)(X))‖2‖ĥ(X)− h0(X)‖2 | ĥ]

≤
√

E[‖∇γmi(Z, θ, h̃(i)(X))‖22 | ĥ]E[‖ĥ(X)− h0(X)‖22 | ĥ]

for h̃(i) a convex combination of h0 and ĥ. Hence, the uniform bound on the moments of∇γmi (Assumption 1.7e) and the
consistency of ĥ (Assumption 1.5) imply supθ∈A |E[mi(Z, θ, ĥ(X)) | ĥ]− E[mi(Z, θ, h0(X))]| p→ 0, and therefore

I[ĥ ∈ Bh0,r] sup
θ∈A
| 1n
∑n
t=1mi(Zt, θ, ĥ(Xt))− E[mi(Z, θ, h0(X))]| p→ 0

by the triangle inequality. Since I[ĥ ∈ Bh0,r]
p→ 1 by the assumed consistency of ĥ, the uniform convergence (13) follows

from Lemma 11. Given the uniform convergence (13), standard arguments now imply consistency given identifiability
(Assumption 1.2) and either the compactness conditions of Assumption 2.1 (see, e.g., Newey & McFadden, 1994, Thm. 2.6)
or the convexity conditions of Assumption 2.2 (see, e.g., Newey & McFadden, 1994, Thm. 2.7).

C. Proof of Lemma 3
We will use the inequality that for any vector of random variables (W1, . . . ,WK),

E
[∏K

i=1 |Wi|
]
≤
∏K
i=1 E

[
|Wi|K

] 1
K ,

which follows from repeated application of Hölder’s inequality. In particular, we have

EX
[∏`

i=1

∣∣∣ĥi(X)− h0,i(X)
∣∣∣2αi] ≤∏`

i=1 EX
[∣∣∣ĥi(X)− h0,i(X)

∣∣∣2‖α‖1]αi/‖α‖1 =
∏`
i=1 ‖ĥi − h0,i‖

2αi
2‖α‖1

Thus the first part follows by taking the root of the latter inequality and multiplying by
√
n. For the second part of the

lemma, observe that under the condition for each nuisance function we have:

√
n
∏̀
i=1

‖ĥi − h0,i‖αi2‖α‖1 = n
1
2−

∑`
i=1

αi
κi‖α‖1

∏̀
i=1

(
n

1
κi‖α‖1 ‖ĥi − h0,i‖2‖α‖1

)αi
If 1

2 −
∑`
i=1

αi
κi‖α‖1 ≤ 0, then all parts in the above product converge to 0 in probability.

For the second part for all α ∈ S we similarly have

EX
[∏`

i=1

∣∣∣ĥi(X)− h0,i(X)
∣∣∣4αi] ≤∏`

i=1 EX
[∣∣∣ĥi(X)− h0,i(X)

∣∣∣4‖α‖1]αi/4‖α‖1 =
∏`
i=1 ‖ĥi − h0,i‖

4αi
4‖α‖1
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Hence to satisfy Assumption 1.5 it suffices to satisfy ∀α ∈ S,∀i, ‖ĥi − h0,i‖4‖α‖1
p→ 0. But by Holder inequality and our

hypothesis we have
‖ĥi − h0,i‖4‖α‖1 ≤ ‖ĥi − h0,i‖4[maxα∈S ‖α‖1]

p→ 0,

as we wanted.

D. Proof of Theorem 5
Suppose that the PLR model holds with the conditional distribution of η given X Gaussian. Consider a generic moment
m(T, Y, θ0, f0(X), g0(X), h0(X)), where h0(X) represents any additional nuisance independent of f0(X), g0(X). We will
prove the result by contradiction. Assume that m is 2-orthogonal with respect to (f0(X), g0(X)) and satisfies Assumption 1.
By 0-orthogonality, we have

E [m(T, Y, θ0, f0(X), g0(X), h0(X))|X] =0 (14)

for any choice of true model parameters (θ0, f0, g0, h0), so

∇f0(X)E [m(T, Y, θ0, f0(X), g0(X), h0(X))|X] = ∇g0(X)E [m(T, Y, θ0, f0(X), g0(X), h0(X))|X] = 0.

Since m is continuously differentiable (Assumption 1.4), we may differentiate under the integral sign (Flanders, 1973) to
find that

0 = ∇f0(X)E [m(T, Y, θ0, f0(X), g0(X), h0(X))|X]

= ∇f0(X)E [m(T, θ0T + f0(X) + ε, θ0, f0(X), g0(X), h0(X))|X]

= E [∇2m(T, Y, θ0, f0(X), g0(X), h0(X)) +∇4m(T, Y, θ0, f0(X), g0(X), h0(X))|X] and
0 = ∇g0(X)E [m(T, Y, θ0, f0(X), g0(X), h0(X))|X]

= ∇g0(X)E [m(g0(X) + η, θ0(g0(X) + η) + f0(X) + η, θ0, f0(X), g0(X), h0(X))|X]

= E [∇1m(T, Y, θ0, f0(X), g0(X), h0(X)) +∇2m(T, Y, θ0, f0(X), g0(X), h0(X))θ0|X]

+ E [∇5m(T, Y, θ0, f0(X), g0(X), h0(X))|X] .

Moreover, by 1-orthogonality, we have E [∇im(T, Y, θ0, f0(X), g0(X), h0(X))|X] = 0 for i ∈ {4, 5}, so

E [∇im(T, Y, θ0, f0(X), g0(X), h0(X))|X] = 0, ∀i ∈ {1, 2, 4, 5} and ∀ (θ0, f, g, h). (15)

Hence,

∇g0(X)E [∇4m(T, Y, θ0, f0(X), g0(X), h0(X))|X] = ∇f0(X)E [∇1m(T, Y, θ0, f0(X), g0(X), h0(X))|X] = 0,

and we again exchange derivative and integral using the continuity of∇2m (Assumption 1.4) (Flanders, 1973) to find

E [∇1,4m(T, Y, θ0, f0(X), g0(X), h0(X)) +∇5,4m(T, Y, θ0, f0(X), g0(X), h0(X))]

+ E [θ0∇2,4m(T, Y, θ0, f0(X), g0(X), h0(X))|X]

= E [∇4,1m(T, Y, θ0, f0(X), g0(X), h0(X)) +∇2,1m(T, Y, θ0, f0(X), g0(X), h0(X))|X] .

Since the partial derivatives of m are differentiable by Assumption 1.4, we have∇1,4m = ∇4,1m and therefore

E [∇5,4m(T, Y, θ0, f0(X), g0(X), h0(X))|X] + θ0E [∇2,4m(T, Y, θ0, f0(X), g0(X), h0(X))|X]

= E [∇2,1m(T, Y, θ0, f0(X), g0(X), h0(X))|X]

By 2-orthogonality, E [∇5,4m(T, Y, θ0, f0(X), g0(X), h0(X))|X] = 0, and hence

θ0E [∇2,4m(T, Y, θ0, f0(X), g0(X), h0(X))|X] = E [∇2,1m(T, Y, θ0, f0(X), g0(X), h0(X))|X] . (16)

Note that equality (15) also implies

0 = ∇f0(X)E [∇2m(T, Y, θ0, f0(X), g0(X), h0(X))|X] = ∇f0(X)E [∇4m(T, Y, θ0, f0(X), g0(X), h0(X))|X] .
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We again exchange derivative and integral using the continuity of∇2m (Assumption 1.4) (Flanders, 1973) to find

0 = E [∇2,2m(T, Y, θ0, f0(X), g0(X), h0(X)) +∇2,4m(T, Y, θ0, f0(X), g0(X), h0(X))|X] (17)
= E [∇4,2m(T, Y, θ0, f0(X), g0(X), h0(X)) +∇4,4m(T, Y, θ0, f0(X), g0(X), h0(X))|X] .

Since the partial derivatives of m are continuous by Assumption 1.4, we have∇2,4m = ∇4,2m and therefore

E [∇2,2m(T, Y, θ0, f0(X), g0(X), h0(X))|X] = E [∇4,4m(T, Y, θ0, f0(X), g0(X), h0(X))|X]

By 2-orthogonality, E [∇4,4m(T, Y, θ0, f0(X), g0(X), h0(X))|X] = 0, and hence

E [∇2,2m(T, Y, θ0, f0(X), g0(X), h0(X))|X] = 0 (18)

Combining the equalities (16), (17), and (18) we find that

E [∇2,1m(T, Y, θ0, f0(X), g0(X), h0(X))|X] = 0. (19)

Now, the 0-orthogonality condition (14), the continuity of∇m (Assumption 1.4), and differentiation under the integral sign
(Flanders, 1973) imply that

0 = ∇θ0E [m(T, Y, θ0, f0(X), g0(X), h0(X))|X] = ∇θ0E [m(T, θ0T + f0(X) + ε, θ0, f0(X), g0(X), h0(X))|X]

= E [∇2m(T, Y, θ0, f0(X), g0(X), h0(X)) · T +∇3m(T, Y, θ0, f0(X), g0(X), h0(X))|X] .

Since T = g0(X) + η and E [∇2m(T, Y, θ0, f0(X), g0(X), h0(X))|X] = 0 by equality 14,

E [∇2m(T, Y, θ0, f0(X), g0(X), h0(X)) · η +∇3m(T, Y, θ0, f0(X), g0(X), h0(X))|X] = 0 (20)

Since η is conditionally Gaussian given X , Stein’s lemma (Stein, 1981), the symmetry of the partial derivatives of m, and
the equality 19 imply that

E [∇2m(T, Y, θ0, f0(X), g0(X), h0(X)) · η|X] = E [∇2m(g0(X) + η, Y, θ0, f0(X), g0(X), h0(X)) · η|X]

= E [∇η,2m(g0(X) + η, Y, θ0, f0(X), g0(X), h0(X))|X]

= E [∇1,2m(T, Y, θ0, f0(X), g0(X), h0(X))|X] = E [∇2,1m(T, Y, θ0, f0(X), g0(X), h0(X))|X] = 0.

Hence the equality (20) gives E [∇3m(T, Y, θ0, f0(X), g0(X), h0(X))|X] = 0 which contradicts Assumption 1.3.

E. Proof of Proposition 6
Fix any moment of the form m(T, Y, θ, f(X), g(X), h(X)), where h represents any nuisance in addition to (f, g). Let F
be the space of all valid nuisance functions (f, g, h) and F (X) = {(f(X), g(X), h(X)) : (f, g, h) ∈ F}.

We prove the lemma by contradiction. Suppose m satisfies the three hypothesis of our lemma. We start by estab-
lishing that Var (m(T, Y, θ0, f0(X), g0(X), h0(X))) = 0 for all (θ0, f0, g0, h0). Fix any (θ0, f0, g0, h0), and suppose
Var (m(T, Y, θ0, f0(X), g0(X), h0(X))) > 0. As in the beginning of the proof of Theorem 1 the mean value theorem
implies

Ĵ(f̂ , ĝ, ĥ)
√
n(θ0 − θ̂SS) =

1√
n

n∑
t=1

m
(
Tt, Yt, θ0, f̂(Xt), ĝ(Xt), ĥ(Xt)

)
︸ ︷︷ ︸

B

(21)

where Ĵ(f, g, h) , 1
n

∑n
t=1∇θm(Tt, Yt, θ̃, f(Xt), g(Xt), h(Xt)), for some θ̃ which is a convex combination of θ̂SS , θ0.

In the proof of Theorem 1 we only use Assumption 1.3 to invert J = E [∇θm(T, Y, θ0, f0(X), g0(X), h0(X)] which is
the in-probability limit of Ĵ(f̂ , ĝ, ĥ). In particular, both of the following results established in the proof of the Theorem 1
remain true in our setting:

• B tends to a normal distribution with mean zero and variance Var (m(T, Y, θ0, f0(X), g0(X), h0(X))) > 0.

• Ĵ(f̂ , ĝ, ĥ) converges in probability to J .
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Since in this case J = 0, as Assumption 1.3 is violated, and
√
n(θ0 − θ̂SS) is bounded in probability, we get that

Ĵ(f̂ , ĝ, ĥ)
√
n(θ0− θ̂SS) converges to zero in probability. By (21), this contradicts the fact that B converges to a distribution

with non-zero variance. Hence, Var (m(T, Y, θ0, f0(X), g0(X), h0(X))) = 0 as desired.

Now recalling that, for all (θ0, f0, g0, h0), E[m(T, Y, θ0, f0(X), g0(X), h0(X))] = 0, we conclude that for all
(θ0, f0, g0, h0), m(T, Y, θ0, f0(X), g0(X), h0(X)) = 0, almost surely with respect to the random variables X, ε, η. Now
fix (θ0, f0, g0, h0). Now suppose that for some (a, b) ∈ R2, m(a, b, θ0, f0(X), g0(X), h0(X)) 6= 0. Then, since m is
continuous, there exists a neighborhoodN such that m(a′, b′, θ0, f0(X), g0(X), h0(X)) 6= 0 for all (a′, b′) ∈ N . Since the
conditional distribution of ε, η has full support (a.s. X) and, given X , (T, Y ) is an invertible linear function of (ε, η), the con-
ditional distribution of (T, Y ) givenX also has full support on R2 (a.s. X). Hence, Pr(m(T, Y, θ0, f0(X), g0(X), h0(X)) 6=
0) ≥ Pr((T, Y ) ∈ N ) > 0. This is a contradiction as m(T, Y, θ0, f0(X), g0(X), h0(X)) is a.s. zero. Therefore, for
almost every X and all a, b ∈ R and (θ0, f0, g0, h0), m(a, b, θ0, f0(X), g0(X), h0(X)) = 0. Since the distribution of X is
independent of θ0 and |Θ| ≥ 2, we therefore have

E[m(Y, T, θ, f0(X), g0(X), h0(X))] = 0

for some θ 6= θ0, which contradicts identifiability.

F. Proof of Lemma 7
Since the characteristic function of a Gaussian distribution is well-defined and finite on the whole real line, Levy’s Inversion
Formula implies that the Gaussian distribution is uniquely characterized by its moments (Durrett, 2010, Sec. 3.3.1).

G. Proof of Theorem 8
Smoothness follows from the fact that m is a polynomial in (θ, q(X), g(X), µr−1(X)). Non-degeneracy follows from the
PLR equations (Definition 5), the property E[η | X] = 0, and our choice of r as

E[∇θm(Z, θ0, q0(X), g0(X),E[ηr−1|X])] = −E[(T − g0(X))(ηr − E[ηr|X]− rηE[ηr−1|X])]

= −E[η(ηr − E[ηr|X]− rηE[ηr−1|X]]

= −E[E[ηr+1|X]− rE[η2|X]E[ηr−1|X]] 6= 0.

We next establish 0-orthogonality using the property E[ε | X,T ] = 0 of Definition 5:

E
[
m(Z, θ0, q0(X), g0(X),E[ηr−1|X]) | X

]
= E[ε

(
ηr − E[ηr|X]− rηE[ηr−1|X] | X

)
] = 0.

Our choice of r further implies identifiability as, for θ 6= θ0,

E
[
m(Z, θ, q0(X), g0(X),E[ηr−1|X])

]
= (θ0 − θ)E[E[ηr+1|X]− E[η|X]E[ηr|X]− rE[η2|X]E[ηr−1|X]]

= (θ0 − θ)E[E[ηr+1|X]− rE[η2|X]E[ηr−1|X]] 6= 0.

We invoke the properties E[η | X] = 0 and E[ε | X,T ] = 0 of Definition 5 to derive 1-orthogonality via

E
[
∇q(X)m(Z, θ0, q0(X), g0(X),E[ηr−1|X])|X

]
= −E

[
ηr − E[ηr|X]− rηE[ηr−1|X] | X

]
= 0,

E
[
∇g(X)m(Z, θ0, q0(X), g0(X),E[ηr−1|X])|X

]
= θ0E

[
ηr − E[ηr|X]− rηE[ηr−1|X] | X

]
− E

[
ε(rηr−1 − rE[ηr−1|X]) | X

]
= 0, and

E
[
∇µr−1(X)m(Z, θ0, q0(X), g0(X),E[ηr−1|X])

]
= −E[ε r η|X] = 0.

The same properties also yield 2-orthogonality for the second partial derivatives of q(X) via

E
[
∇2
q(X),q(X)m(Z, θ0, q0(X), g0(X),E[ηr−1|X])|X

]
= 0,

E
[
∇2
q(X),g(X)m(Z, θ0, q0(X), g0(X),E[ηr−1|X])|X

]
= E

[
rηr−1 − rE[ηr−1|X]|X

]
= 0, and

E
[
∇2
q(X),µr−1(X)m(Z, θ0, q0(X), g0(X),E[ηr−1|X])|X

]
= E [r η|X] = 0,
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for the second partial derivatives of g(X) via

E
[
∇2
g(X),g(X)m(Z, θ0, q0(X), g0(X),E[ηr−1|X])|X

]
= E

[
−(rηr−1 − rE[ηr−1|X]) + ε r(r − 1)ηr−2|X

]
= r(r − 2)E

[
E [ε|X,T ] ηr−2|X

]
= 0 and

E
[
∇2
g(X),µr−1(X)m(Z, θ0, q0(X), g0(X),E[ηr−1|X])|X

]
= −θ0E[rη|X] + E[ε r|X] = 0,

and for the second partial derivatives of µr−1(X) via

E
[
∇2
µr−1(X),µr−1(X)m(Z, θ0, q0(X), g0(X),E[ηr−1|X]) | X

]
= 0.

This establishes 2-orthogonality.

H. Proof of Theorem 9
The majority of the proof is identical to that of Theorem 8; it only remains to show that the advertised partial derivatives
with respect to µr(X) are also mean zero given X . These equalities follow from the property E[η | X] = 0 of Definition 5:

E
[
∇µr(X)m(Z, θ0, q0(X), g0(X),E[ηr−1|X],E[ηr|X]))|X

]
= −E [ε|X] = 0,

E
[
∇2
µr(X),µr(X)m(Z, θ0, q0(X), g0(X),E[ηr−1|X],E[ηr|X])) | X

]
= 0, and

E
[
∇2
µr(X),µr−1(X)m(Z, θ0, q0(X), g0(X),E[ηr−1|X],E[ηr|X])) | X

]
= 0.

I. Proof of Theorem 10
We prove the result explicitly for the excess kurtosis setting with E[η4] 6= 3E[η2]2. A parallel argument yields the result for
non-zero skewness (E[η3] 6= 0).

To establish
√
n-consistency and asymptotic normality, it suffices to check each of the preconditions of Theorems 1

and 2. Since η is independent of X and E[η4] 6= 3E[η2]2, the conditions of Theorem 9 are satisfied with r = 3.
Hence, the moments m of Theorem 9 satisfy S-orthogonality (Assumption 1.1) for S = {α ∈ N4 : ‖α‖1 ≤ 2} \
{(1, 0, 0, 1), (0, 1, 0, 1)} with respect to the nuisance (〈q0, X〉, 〈γ0, X〉,E[η2],E[η3]), identifiability (Assumption 1.2), non-
degeneracy of E [∇θm(Z, θ0, h0(X))] (Assumption 1.3), and continuity of ∇m2 (Assumption 1.4). The form of m, the
standard Gaussian i.i.d. components of X , and the almost sure boundedness of η and ε further imply that the regularity
conditions of Assumption 1.7 are all satisfied for any choice of r > 0. Hence, it only remains to establish the first stage
consistency and rate assumptions (Assumptions 1.5 and 1.6) and the convexity conditions (Assumption 2.2).

I.1. Checking Rate of First Stage (Assumption 1.6)

We begin with Assumption 1.6. Since {α ∈ N4 : ‖α‖1 ≤ 3} \ S = {α ∈ N4 : ‖α‖1 = 3} ∪ {(1, 0, 0, 1), (0, 1, 0, 1)} by
Lemma 3, it suffices to establish the sufficient condition (6) for α = (0, 1, 0, 1) and α = (1, 0, 0, 1) and the condition (7) for
the α with ‖α‖1 = 3. Hence, it suffices to satisfy

(1) n
1
2EX [|〈X, q̂ − q0〉|4]

1
4 · |µ̂3 − E[η3]| p→ 0, which corresponds to α = (1, 0, 0, 1) and condition (6),

(2) n
1
2EX [|〈X, γ̂ − γ0〉|4]

1
4 · |µ̂3 − E[η3]| p→ 0, which corresponds to α = (0, 1, 0, 1) and condition (6),

(3) n
1
2EX [|〈X, q̂ − q0〉|6]

1
2

p→ 0,

(4) n
1
2EX [|〈X, γ̂ − γ0〉|6]

1
2

p→ 0,

(5) n
1
2 |µ̂2 − E[η2]|3 p→ 0, and

(6) n
1
2 |µ̂3 − E[η3]|3 p→ 0,
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where X a vector of i.i.d. mean-zero standard Gaussian entries, independent from the first stage, and the convergence to
zero is considered in probability with respect to the first stage random variables.

We will estimate q, γ0 using half of our first-stage sample and use our estimate γ̂ to produce an estimate of the second and
third moments of η based on the other half of the sample and the following lemma.

Lemma 13. Suppose that an estimator γ̂ ∈ Rp based on n sample points satisfies EX [|〈X, γ̂ − γ0〉|6]
1
2 = OP

(
1√
n

)
for

X independent of γ̂. If

µ̂2 := 1
n

∑n
t=1(T ′t − 〈X ′t, γ̂〉)2 and µ̂3 := 1

n

∑n
t=1(T ′t − 〈X ′t, γ̂〉)3 − 3 1

n

∑n
t=1(T ′t − 〈X ′t, γ̂〉)µ̂2

for (T ′t , X
′
t)
n
t=1 i.i.d. replicates of (T,X) independent of γ̂, then

|µ̂2 − E[η2]| = OP

(
1

n
1
3

)
and |µ̂3 − E[η3]| = OP

(
1√
n

)
. (22)

As a result,
n

1
2 |µ̂2 − E[η2]|3 p→ 0 and n

1
2 |µ̂3 − E[η3]|3 p→ 0.

Proof. We begin with the third moment estimation. For a new datapoint (T,X) independent of γ̂, define δ , 〈X, γ0 − γ̂〉
so that T − 〈X, γ̂〉 = δ + η. Since η is independent of (X, γ̂), and E[η] = 0, we have

EX,η[(δ + η)
3
]− 3EX,η[(δ + η)]EX,η[(δ + η)

2
] = E[η3] + EX [δ3]− 3EX [δ2]EX [δ]

or equivalently

E[η3] = EX,η[(δ + η)
3
]− 3EX,η[(δ + η)]EX,η[(δ + η)

2
]− EX [δ3] + 3EX [δ2]EX [δ]. (23)

Since EX [|δ|3] ≤ EX [δ6]
1
2 = OP (1/

√
n) by Cauchy-Schwarz and our assumption on γ̂, and |EX [δ]EX [δ2]| ≤ EX [|δ|3]

by Holder’s inequality, the equality (23) implies that

|E[η3]− (EX,η[(δ + η)
3
]− 3EX,η[δ + η]EX,η[(δ + η)

2
])| = OP (1/

√
n).

Since EX,η[(δ + η)
6
] = O(1), the central limit theorem, the strong law of large numbers, and Slutsky’s theorem imply that

µ̂3 − (EX,η[(δ + η)
3
]− 3EX,η[δ + η]EX,η[(δ + η)

2
]) = OP (1/

√
n).

Therefore,
|µ̂3 − E[η3]| = OP (1/

√
n).

The second moment estimation follows similarly using the identity, E[η2] = EX,η[(δ + η)
2
] − EX [δ2], and the fact that

EX [δ2] ≤ EX [|δ|3]
2
3 = OP (n−

1
3 ) by Holder’s inequality.

In light of Lemma 13 it suffices to estimate the vectors q0 and γ0 using n sample points so that

• n 1
2EX [|〈X, q̂ − q0〉|4]

1
4n−

1
2

p→ 0⇔ EX [|〈X, q̂ − q0〉|4]
1
4

p→ 0,

• n 1
2EX [|〈X, γ̂ − γ0〉|4]

1
4n−

1
2

p→ 0⇔ EX [|〈X, γ̂ − γ0〉|4]
1
4

p→ 0,

• n 1
2EX [|〈X, q̂ − q0〉|6]

1
2

p→ 0, and

• n 1
2EX [|〈X, γ̂ − γ0〉|6]

1
2

p→ 0,

and the rest of the conditions will follow. To achieve these conclusions we use the following result on the performance of
the Lasso. The following theorem is distilled from (Hastie et al., 2015, Chapter 11).
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Theorem 14. Let p, s ∈ N with s ≤ p and s = o(n2/3/ log p) and σ > 0, and suppose that we observe i.i.d. datapoints
(Ỹi, X̃i)

n
i=1 distributed according to the model Ỹ = 〈X̃, β0〉 + w for an s-sparse β0 ∈ Rp, X̃ ∈ Rp with standard

Gaussian entries, and w ∈ Rp independent mean-zero noise with ‖w‖∞ ≤ σ. Suppose that p grows to infinity with
n. Then with a choice of tuning parameter λn = 2σ

√
3 log p/n, the Lasso estimate β̂0 fit to this dataset satisfies

‖β̂0 − β0‖2 = OP (
√
s log p/n).

Proof. Using Theorem 11.1 and Example 11.2 of (Hastie et al., 2015), we know that since X̃ has iid N(0, 1) entries, if
λn = 2σ

√
3 log(p)/n, we have

Pr

[
‖β̂0 − β0‖2
σ
√

3s log p/n
> 1

]
≤ 2 exp

{
−1

2
log(p)

}
. (24)

Since p grows unboundedly with n, for any fixed ε > 0, we have that for some some finite Nε, if n > Nε, the right hand
side is at most ε. Thus we can conclude that: ‖β̂0 − β0‖2 = Op

(√
s log p/n

)
.

Notice that for q0 we know

Y = θ0T + 〈X,β0〉+ ε

= θ0〈X, γ0〉+ θ0η + 〈X,β0〉+ ε (from the definition of T )
= 〈X, q0〉+ θ0η + ε (since q0 = θ0γ0 + β0)

Hence,
Y = 〈X, q0〉+ ε+ θ0η,

and we know that the noise term, ε + θ0η is almost surely bounded by C + CM = C(M + 1). Hence, by Theorem
14, our Lasso estimate q̂ satisfies ‖q̂ − q0‖2 = OP (

√
s log p/n). Similarly, our Lasso estimate γ̂ satisfies ‖γ̂ − γ0‖2 =

OP (
√
s log p/n).

Now, since X has iid mean-zero standard Gaussian components, we know that for all vectors v ∈ Rp and a ∈ N it holds
E[|〈X, v〉|a] = O

(√
a
a‖v‖a2

)
. Applying this to v = q̂ − q and v = γ̂ − γ0 for a ∈ {4, 6} we have

EX [|〈X, q̂ − q0〉|4] = O(‖q̂ − q0‖42) = OP

([√
s log p
n

]4)

EX [|〈X, γ̂ − γ0〉|4] = O(‖γ̂ − γ0‖42) = OP

([√
s log p
n

]4)

EX [|〈X, q̂ − q0〉|6] = O(‖q̂ − q0‖62) = OP

([√
s log p
n

]6)

EX [|〈X, γ̂ − γ0〉|6] = O(‖γ̂ − γ0‖62) = OP

([√
s log p
n

]6)
.

Now for the sparsity level s = o
(
n2/3

log p

)
we have

√
s log p
n = o(n−

1
6 ) which implies all of the desired conditions for

Assumption 1.6.

I.2. Checking Consistency of First Stage (Assumption 1.5)

Next we prove that Assumption 1.5 is satisfied. Since maxα∈S ‖α‖1 = 2 it suffices by Lemma 3 to show that for our
choices of γ̂, q̂, µ̂2, and µ̂3 we have

EX [|〈X, q̂ − q0〉|8]
1
8

p→ 0 (25)

EX [|〈X, γ̂ − γ0〉|8]
1
8

p→ 0 (26)

|µ̂2 − E[η2]| p→ 0 (27)

|µ̂3 − E[η3]| p→ 0. (28)
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Parts (27) and (28) follow directly from Lemma 13. Since X consists of standard Gaussian entries, an analogous argument
to that above implies that

EX [|〈X, q̂ − q0〉|8]
1
8 = O(‖q̂ − q0‖2) = OP

([√
s log p
n

])
EX [|〈X, γ̂ − γ0〉|8]

1
8 = O(‖γ̂ − γ0‖2) = OP

([√
s log p
n

])
.

Now for the sparsity level s = o( n
2
3

(M+1)2 log p
) we have

√
s log p
n = o(1) which implies also conditions (25) and (26).

I.3. Checking Convexity Conditions (Assumption 2.2)

Finally, we establish the convexity conditions (Assumption 2.2). We consider Θ = R, which is convex. Without loss
of generality, assume 3E[η2]2 > E[η4]; otherwise, one can establish the convexity conditions for −m. Let Fn(θ) =
1
n

∑n
t=1m(Zt, θ, ĥ(Xt)). Since Fn is continuously differentiable, Fn is the derivative of a convex function whenever

∇Fn(θ) ≥ 0, for all θ ∈ Θ. Since Fn is linear in θ we have for all θ ∈ Θ

∇Fn(θ) =
1

n

n∑
t=1

−(Tt − 〈γ̂, Xt〉)4 + (Tt − 〈γ̂, Xt〉)µ̂3 + 3(Tt − 〈γ̂, Xt〉)2µ̂2,

the established consistency of (γ̂, µ̂3, µ̂2) and Slutsky’s theorem imply that

∇Fn(θ)− 1

n

n∑
t=1

−(Tt − 〈γ,Xt〉)4 + (Tt − 〈γ,Xt〉)E[η3] + 3(Tt − 〈γ,Xt〉)2E[η2]
p→ 0.

The strong law of large numbers now yields

∇Fn(θ)− (3E[η2]2 − E[η4])
p→ 0.

Hence,
Pr(∇Fn(θ) < 0) ≤ Pr(|∇Fn(θ)− (3E[η2]2 − E[η4])| > 3E[η2]2 − E[η4])→ 0,

verifying Assumption 2.2. The proof is complete.

J. Proofs of Auxiliary Lemmata
J.1. Proof of Lemma 11

Since each Yn is binary, and Yn
p→ 1, for every ε > 0,

Pr[|Xn(1− Yn)| > ε] ≤ Pr[Yn = 0] = Pr[|1− Yn| > 1/2]→ 0.

Hence, Xn(1− Yn)
p→ 0. Both advertised claims now follow by Slutsky’s theorem (van der Vaart, 1998, Thm. 2.8).

J.2. Proof of Lemma 12

Let Xn,i denote the i-th coordinate of Xn, i.e. ‖Xn‖pp =
∑d
i=1X

p
n,i. By the assumption of the lemma, we have that for

every ε, δ, there exists n(ε, δ), such that for all n ≥ n(ε, δ):

Pr
[
max
i

E [|Xn,i|p|Zn] > ε
]
< δ

Let En denote the event {maxi E [|Xn,i|p|Zn] ≤ ε}. Hence, Pr[En] ≥ 1− δ, for any n ≥ n(ε, δ). By Markov’s inequality,
for any n ≥ n (ε

pδ/2d, δ/2d), the event En implies that:

Pr [|Xn,i|p > εp|Zn] ≤ E [|Xn,i|p|Zn]

εp
≤ δ

2d
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Thus, we have:

Pr[|Xn,i| > ε] = E [Pr [|Xn,i|p > εp|Zn]]

= E [Pr[|Xn,i|p > εp|Zn]|En] · Pr[En] + E [Pr[|Xn,i|p > εp|Zn]|¬En] · Pr[¬En] ≤ δ

d

By a union bound over i, we have that Pr[maxi |Xn,i| > ε] ≤ δ. Hence, we also have that for any ε, δ, for any
n ≥ n(ε

pδ/2d, δ/2d), Pr[‖Xn‖∞ > ε] ≤ δ, which implies Xn
p→ 0.


