
An Efficient, Generalized Bellman Update For
Cooperative Inverse Reinforcement Learning

Dhruv Malik * 1 Malayandi Palaniappan * 1 Jaime F. Fisac 1 Dylan Hadfield-Menell 1 Stuart Russell 1

Anca D. Dragan 1

Abstract
Our goal is for AI systems to correctly identify
and act according to their human user’s objec-
tives. Cooperative Inverse Reinforcement Learn-
ing (CIRL) formalizes this value alignment prob-
lem as a two-player game between a human and
robot, in which only the human knows the pa-
rameters of the reward function: the robot needs
to learn them as the interaction unfolds. Previ-
ous work showed that CIRL can be solved as a
POMDP, but with an action space size exponential
in the size of the reward parameter space. In this
work, we exploit a specific property of CIRL—the
human is a full information agent—to derive an
optimality-preserving modification to the standard
Bellman update; this reduces the complexity of
the problem by an exponential factor and allows
us to relax CIRL’s assumption of human rational-
ity. We apply this update to a variety of POMDP
solvers and find that it enables us to scale CIRL to
non-trivial problems, with larger reward parame-
ter spaces, and larger action spaces for both robot
and human. In solutions to these larger problems,
the human exhibits pedagogic behavior, while the
robot interprets it as such and attains higher value
for the human.

1. Introduction
As AI agents improve in their ability to optimize for a
given objective, it becomes increasingly important that these
agents pursue the right objective. The value alignment prob-
lem (Hadfield-Menell et al., 2016; Bostrom, 2014) is that of
ensuring that robots optimize for what people want—that
robot objectives are aligned with their end-users’ objectives.
(We henceforth use robot to refer generically to an AI agent.)

*Equal contribution 1Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley. Correspon-
dence to: Dhruv Malik <dhruvmalik@berkeley.edu>, Malayandi
Palaniappan <malayandi@berkeley.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

Figure 1. A CIRL game. The human H and the robot R need to
work together to prepare a meal. R starts off unaware of which
meal H wants, but both H and R get rewarded only if they prepare
H’s desired meal. Solving such a CIRL game has thus far been
intractable. In Section 3, we derive a modified Bellman update for
computing optimal solutions to CIRL games that achieves an expo-
nential reduction in running time and relaxes CIRL’s assumption
of human rationality.

A highly-capable autonomous agent working towards the
wrong goal can cause undesired effects, the magnitude of
which will tend to increase with the capabilities of the agent.
Unfortunately, we humans have a hard time specifying what
it is that we actually want. For example, customers may
give mistaken instructions to an AI system and system de-
signers may select simple, but potentially incorrect, reward
functions to optimize (Amodei & Clark, 2016). Optimizing
for the wrong objective can lead to unintended and negative
consequences (Amodei et al., 2016).

Rather than optimize a pre-specified reward function, a robot
may instead attempt to infer what people internally want
but cannot perfectly explicate. The robot can use a person’s
actions to learn about the reward function over time. The
most common approach for this is Inverse Reinforcement
Learning (IRL) (Ng & Russell, 2000). IRL makes two
implicit assumptions: 1) that the robot is a passive observer,
watching the human, and 2) that the human acts as an expert
in isolation, ignoring that the robot needs to learn.

Cooperative Inverse Reinforcement Learning (CIRL)
(Hadfield-Menell et al., 2016) relaxes these two assump-
tions. It proposes a formulation in which the human H and
the robot R are on the same team and collaborate to achieve
the same goal. CIRL is a two-player game between H and

An Efficient, Generalized Bellman Update For Cooperative Inverse Reinforcement Learning

R, in which both take actions, and both get rewarded ac-
cording to the same reward function. The key to CIRL is
that only H knows the parameters of this reward function.

Take for instance the domain from Figure 1. H and R
work to prepare a meal using three ingredient types: bread,
meat, and tomatoes. H wants to prepare either a sandwich
(2 bread, 1 meat, 0 tomatoes), or tomato soup (1 bread, 1
meat, 2 tomatoes). R does not know a priori which meal
H wants, and, to emulate the difficulty that people have in
specifying what they want, we assume H cannot explicate
this information directly to R. At every time step, R and H
each prepare a single unit of any ingredient, or no ingredient
at all. They both receive reward of 1 if they succeed in
preparing the right recipe, and 0 otherwise.

In this domain, CIRL captures that the human has an in-
centive for the robot to infer the correct recipe; and that
the robot can take actions in response to the human’s, as
opposed to passively waiting until it knows which recipe is
right. Crucially, the robot shares the reward function and
has an incentive to maximize the human’s internal reward.
This creates an incentive to mitigate and avoid unintended
consequences from misspecified rewards.

Solving a CIRL game, however, amounts to solving a Dec-
POMDP. Previous work has shown that a CIRL game can
be reduced to a POMDP. However, the action space in this
POMDP is exponential in the size of the reward parameter
space. Since POMDP algorithms scale poorly with the size
of the action space, non-trivial CIRL games remain difficult
to solve with this approach. Additionally, solutions to CIRL
are only optimal under the assumption that the human is
optimal. This is a strong assumption: it is a well-established
fact in cognitive science that humans are often sub-optimal
in decision making (Tversky & Kahneman, 1975; Simon,
1957). Our contributions in this paper are three-fold:

1. A Modified Bellman Update: We exploit the fact that
the human is a full information agent in CIRL to derive an
optimality-preserving modification of the standard Bellman
update. This reduces the complexity of the problem by an
exponential factor. We show how to apply this modification
to existing POMDP solvers (both exact and approximate).

We further show that our modified Bellman update allows us
to relax CIRL’s assumption of human rationality. We instead
only require that the human’s policy be parameterized by
her Q-values. This allows us to solve more realistic CIRL
games where the human is modelled as sub-optimal.

2. Empirical Comparison: We show empirically that our
method helps scale POMDP solvers to CIRL games with
larger reward parameter and action spaces. We find a speed-
up of several orders of magnitude for exact methods, and
substantial improvements in value for approximate methods.

3. Implications: With the ability to solve more complex
CIRL problems, we analyze the solutions that emerge. In

contrast to IRL, we see solutions that exhibit implicit com-
munication. The human takes explicitly suboptimal actions
that are better signals for the right reward, and the robot
attains higher value for the human because it can take ad-
vantage of these signals to learn faster. The coordination
that emerges is a consequence of the human and robot being
on the same team and reasoning about helping each other.

2. Background
2.1. POMDPs

POMDPs provide a rich model for planning under uncer-
tainty (Sondik, 1971; Kaelbling et al., 1998). Formally, a
POMDP is a tuple 〈X,A,Z, T,O, r, γ〉 where X is the set
of states; A is the set of the agent’s actions; Z is the set of
observations; T (xt, at, xt+1) is the transition distribution;
O(xt+1, at, zt+1) is the observation distribution; r is the
reward function; and γ is the discount factor.

Consider a simplified instance of the cooking task from
Figure 1 where H picks her actions according to only her
desired recipe and the quantity of each ingredient prepared
so far, i.e., she does not consider R’s past or future behavior
when picking her actions. The simplified cooking task is
now a POMDP: R is the agent and H is a part of the en-
vironment. The state specifies H’s desired recipe and the
quantity of each ingredient already prepared. Thus, H picks
her actions as a function of only the state.

In a POMDP, the agent cannot observe the state; instead, it
maintains a belief b ∈ ∆X , where b(x) is the probability
that the agent is in state x. At each time step, the agent
receives an observation that helps inform its decisions. The
agent in our cooking task, R, does not know H’s desired
recipe—a component of the state. R observes H’s actions
and tries to infer the desired recipe from H’s behavior.

The behavior of the agent is specified by a conditional plan
σ = (a, v); a denotes the agent’s action and v is a mapping
from observations to future conditional plans for the agent
to follow. An example conditional plan for R is: prepare
meat now and if H responds by preparing bread, prepare
a second slice of bread; if H prepares tomatoes, prepare
another batch of tomatoes; or if H prepares meat, do not
prepare any ingredient.

The α-vector of a conditional plan contains the value of
following the plan at any given state:

ασ(x) = R(x) + γ
∑
x′∈X

∑
z∈Z

P (x′, z | x, a)αv(z)(x
′) (1)

The value of a plan at a belief b is the expected value
of the plan across the states i.e. Vσ(b) = b · ασ =∑
x∈X b(x)ασ(x). The goal of an agent in a POMDP is

to find the plan with maximal value from her current belief.

Value iteration (Sondik, 1971) can be used to compute the
optimal conditional plan. This algorithm starts at the horizon

An Efficient, Generalized Bellman Update For Cooperative Inverse Reinforcement Learning

and works backwards. It generates new conditional plans
at each time-step and evaluates them according to Eqn. 1.
It constructs all potentially optimal plans of length T and
selects the one with maximal value at the initial belief.

2.2. Cooperative Inverse Reinforcement Learning

Now, consider an instance of the cooking task where H
is a second agent in the game and no longer behaves in-
dependently of R. There is now a strong interdependence
between H’s and R’s behavior: H’s actions both depend on
and influence R’s belief. This problem is now no longer a
POMDP; it is a CIRL game.

A CIRL game is an asymmetric-information two-player
game between a human H and a robot R (Hadfield-Menell
et al., 2016). H knows the true reward function and R
does not initially. Formally, a CIRL game is a tuple: M =
〈X, {AH ,AR}, T, {Θ, r}, γ〉. X is the set of observable
world-states; AH and AR are the actions available to H
and R respectively; T (xt, a

H
t , a

R
t , xt+1) is the transition

distribution; Θ is the set of reward parameters; r is the
parameterized reward function shared by both agents; γ is
the discount factor. A solution to a CIRL game is a pair
of policies—one for H and R each—that maximizes the
expected reward obtained by H and R.

In our cooking task, Θ is the set of possible recipes. R does
not know H’s desired recipe, θ ∈ Θ. The reward function r
is parameterized by Θ: both agents receive a reward of 1 if
they succeed in preparing H’s desired recipe.

Reducing a CIRL game to a POMDP A CIRL game is a
Dec-POMDP (Bernstein et al., 2002) but it can be reduced
to a POMDP where the optimal policy corresponds to opti-
mal CIRL policy pairs (Hadfield-Menell et al., 2016). The
states in this POMDP are tuples of world-state and reward
parameter: S = X × Θ; the actions are tuples (δH , aR)
specifying a decision rule δH : Θ → AH for H, which
maps reward parameters to human actions, and an action aR

for R; the observations are H’s action at the last time step.

An example action in the reduced POMDP of the cooking
task is a tuple, where the first entry specifies that H prepares
bread if she prefers a sandwich and prepares tomatoes if she
prefers soup, and the second entry specifies that R prepares
bread (regardless of its belief).

This reduction enables us to solve a CIRL game using
POMDP algorithms. However, the size of the action space in
this POMDP is |AH ||Θ||AR|, as shown in Figure 2. (There
are |AH ||Θ| possible decision rules for H and |AR| actions
for R.) In other words, the action space in this POMDP
grows exponentially with the size of the reward parameter
space. Exact POMDP algorithms are exponential in the size
of the action space, so this approach can only be applied to
very small CIRL problems.

Additionally, the policy for R that is output by the reduced

;

;
}

⇤

Figure 2. A node in the search tree from the POMDP reduction
of our example CIRL game. Actions are tuples that contain an
action for R and a decision rule for H – a mapping from her
desired recipe to an action. This leads to a branching factor of
|AH ||Θ||AR| and makes application of POMDP methods ineffi-
cient. In Section 3.2, we derive a modified Bellman update that
prunes away all of H’s decision rules but the optimal response. (In
the diagram, the gray branches are pruned away by our modified
Bellman update.)

POMDP is optimal only if H is perfectly rational, i.e., if H
is guaranteed to always pick the optimal action. This is an
unrealistic assumption: humans are not idealized rational
agents (Tversky & Kahneman, 1975; Simon, 1957).

3. A Modified Bellman Update for CIRL
If H were following a fixed policy based on the state
s = (x, θ), we could encode H as a part of the environ-
ment. However, in the interactive setting of a CIRL game,
H may plan for changes in R’s belief. If we encode H in
the environment, the dynamics change in response to R’s
intended plan and the problem is no longer a POMDP. Our
main contribution is to derive a modified Bellman update
for POMDP algorithms to solve this problem.

Our key idea is as follows. During planning, we know R’s
intended future response to each of H’s actions. H has full
state information, so the α-vectors in value iteration allow
us to directly compute H’s Q-values. We can therefore also
compute her optimal action based on R’s intended future
response. This means we do not have to reason over the
set of decision rules for H: we can solve a CIRL game
by instead solving a POMDP with time-varying dynamics
and, importantly, where the action space has size |AR|.
This is exponentially smaller than the action space of size
|AH ||Θ||AR| in the reduced POMDP. This amounts to a
modified Bellman update.

3.1. The Transition Dynamics

If H follows a policy that depends only on the state s =
(x, θ), the dynamics of the game can be computed as:

An Efficient, Generalized Bellman Update For Cooperative Inverse Reinforcement Learning

P (s′, aH | s, aR) = P ((x′, θ′), aH | (x, θ), aR)

= P ((x′, θ′) | (x, θ), aH , aR) · P (aH | (x, θ), aR)

= T (x, aH , aR, x′) · 1(θ = θ′) · P (aH | x, aR, θ)
a.
= T (s, aH , aR, s′) · P (aH | x, aR, θ)

However, in the CIRL formulation, H does not behave ac-
cording to a fixed policy. H, who is assumed to be rational,
behaves according to her Q-values and picks the action that
maximizes her expected value. Due to the interdependence
between H’s and R’s behavior, these Q-values depend on
R’s conditional plan. The dynamics then are:

P (s′, aH | s, σ) = P ((x′, θ′), aH | (x, θ), (aR, v))

= T (x, aH , aR, x′) · 1(θ′ = θ) · P (aH | x, aR, v, θ)
= T (s, aH , aR, s′) · 1(aH = arg max

aH
QH(s, aH , σ))

(2)

These dynamics change over time since they depend on the
robot’s future behavior. However, R’s behavior depends on
these dynamics, so, we cannot pre-compute them as part of
a POMDP reduction. However, we do have access to R’s
future conditional plan during planning. This means we can
compute H’s Q-values, and, consequently, the transition
probabilities, with a modification to the Bellman update.

3.2. Adapting POMDP Value Iteration

POMDP value iteration rolls back the values of the game
from the horizon, storing them as α-vectors. If R follows a
plan σ = (aR, v), then we can compute H’s Q-values as

QH(s, aH , σ) =
∑
s′

T (s, aH , aR, s′) · αv(aH)(s
′).

H’s optimal action maximizes this expression. To leverage
this, we adapt the Bellman update in Eqn. 1 to replace the
dynamics of the game with P (s′, aH | s, σ) from Eqn. 2.
The modified Bellman update is then:

ασ(s) = R(s) + γ ·max
aH

∑
s′∈S

T (s, aH , aR, s′) · αv(aH)(s
′).

(3)

We can then use value iteration with this modified Bellman
update to compute the R’s optimal policy. The following
theorem establishes that the modified Bellman update, Eq.
3, is optimality-preserving.

Theorem 1. For any CIRL game, the policy computed by
value iteration with the modified Bellman update is optimal.

All theorem proofs are presented in Appendix A in the
supplementary material.

a. We let T (s, aH , aR, s′) = T (x, aH , aR, x′) · 1(θ = θ′).

This modification to the Bellman update allows us to solve
a CIRL game without having to include the set of H’s de-
cision rules in the action space. As depicted in Figure 2,
the modified Bellman update computes H’s optimal action
given the current state and the robot’s plan; all of H’s other
actions are pruned away in the search tree. The size of the
action space is then |AR| instead of |AH ||Θ||AR|. POMDP
algorithms are exponential in the size of the action space;
this modification therefore allows us to solve CIRL games
much more efficiently. The following theorem establishes
the complexity gains made by algorithm.
Theorem 2. The modification to the Bellman update pre-
sented above reduces the time and space complexity of a
single step of value iteration by a factor of O

(
|AH ||Θ|

)
.

3.3. Relaxing CIRL’s Assumption of Rationality

To achieve value alignment, we can now efficiently solve a
CIRL game to find an optimal policy for R. However, this
policy is optimal only if H is perfectly rational: a strong
assumption. This is rarely true in reality; we thus want to
find an optimal policy for R even when H is sub-optimal.

In addition to improving efficiency, our modified Bellman
update allows us to do exactly that and relax CIRL’s assump-
tion of rationality. The dynamics of our modified Bellman
update, presented above as Eq. 2, do not require that H is
perfectly rational. These dynamics will remain well-defined
so long as we know the distribution over H’s actions, πH ,
and can compute the probability that she picks any action
from her current state. To avoid compromising the interac-
tive nature of CIRL, we require that πH must be a function
of H’s Q-values, which account for the robot’s future be-
havior. The dynamics of the game are then given by:

P (s′, aH | s, σ) = T (s, aH , aR, s′)·πH(aH | QH(s, aH , σ)).

The modified Bellman update is then:

ασ(s) = R(s) + γ ·
∑
aH

πH(aH | QH(s, aH , σ))·∑
s′∈S

T (s, aH , aR, s′) · αv(aH)(s
′). (4)

With this modified Bellman update, we may now use value
iteration to solve CIRL games without assuming that the
human is perfectly rational. We instead only require that
the human selects her actions with respect to her Q-values.
This restriction is rather broad and includes a variety of
models of human decision making from cognitive science.
A popular example of such a model is Boltzmann-rationality,
where the human picks her actions according to a Boltzmann
distribution over her Q-values, i.e.,

πH(aH | QH(s, aH , σ)) ∝ exp(β ·QH(s, aH , σ))

where β is a parameter which controls how rational the hu-
man is. (A higher β corresponds to a more rational human.)

An Efficient, Generalized Bellman Update For Cooperative Inverse Reinforcement Learning

Algorithm 1 Adapted Value Iteration for CIRL Games
1: Γt ← Set of trivial plans
2: for t ∈ {T − 1, T − 2, . . . , 1, 0} do
3: Γt+1 ← Γt
4: Γt ← Set of all plans beginning at time t
5: for σ ∈ Γt do
6: for s = (x, θ) ∈ S do
7: QH(s, aH , σ) =

∑
s′ T (s, aH , aR, s′)·

8: αv(aH)(s
′)

9: ασ(s) = R(s) + γ ·∑aH

10: πH(aH | QH(s, aH , σ)) ·QH(s, aH , σ)
11: end for
12: end for
13: Γt ← Prune(Γt)
14: end for
15: aR∗ = argmaxσ∈Γ0

ασ · b0
16: Return aR∗

The time and space complexity of value iteration with this
Bellman update is identical to that with the modified Bell-
man update presented in Section 3.2, and analyzed in The-
orem 2. The pseudocode for our adapted algorithm is pre-
sented as Algorithm 1 below.

4. Adapting Approximate Algorithms
Approximate algorithms for POMDPs often rely on variants
of the Bellman update. This lets us use our modified Bell-
man update to improve approximate algorithms for CIRL.

4.1. PBVI

Background Point Based Value Iteration (PBVI) is an ap-
proximate algorithm used to solve POMDPs (Pineau et al.,
2003). The algorithm maintains a representative set of
points in belief space and an α-vector at each of these belief
points. It performs approximate value backups at each of
these belief points using this set of α-vectors. Let Γt+1

denote the set of α-vectors for plans that begin at time t+ 1.
The value at time t at a belief b is approximated as:

V (b) = max
a∈A

[∑
s∈S

R(s)b(s)

+ γ
∑
o∈O

max
α∈Γt+1

∑
s∈S

(∑
s′∈S

P (s′, o | s, a)α(s)

)
b(s)

]
.

The algorithm trades off computation time and solution
quality by expanding the set of belief points over time: it
randomly simulates forward trajectories in the POMDP to
produce new, reachable beliefs.

Our Adaptation If R takes action aR and follows a condi-
tional plan σ, then H’s Q-values are QH(x, aH , aR, α) =∑
s′ T (s, aH , aR, s′) · ασ(s′). Notice that we can compute

these Q-values at each step of PBVI. This lets us use the

modified Bellman update and to adapt PBVI to solve CIRL
games specifically. We replace the transition-observation
distribution in the PBVI backup rule with

P (s′, aH | s, aR, α) = T (s, aH , aR, s′)·
πH(QH(x, aH , aR, α)).

The modified backup rule for PBVI is thus given by

V (b) = max
aR∈AR

[∑
s∈S

R(s)b(s)

+γ
∑
aH

max
α∈Γt+1

∑
s∈S

(∑
s′∈S

P (s′, aH | s, aR, α)α(s)

)
b(s)

]
.

We now show that the approximate value function in PBVI
converges to the true value function. Let εB denote the
density of the set of belief points B in PBVI. Formally,
εB = maxb∈∆ minb′∈B ||b− b′||1 is the maximum distance
from any reachable, legal belief to the set B.
Theorem 3. For any belief setB and horizon n, the error of
our adapted PBVI algorithm η = ||Vn − V ∗n ||∞ is bounded
as

η ≤ (Rmax −Rmin)εB
(1− γ)2

.

4.2. POMCP

Background POMCP is a Monte Carlo tree-search (MCTS)
based approximate algorithm for solving large POMDPs
(Silver & Veness, 2010). The algorithm constructs a search
tree of action-observation histories and uses Monte Carlo
simulations to estimate the value of each node in the tree.
During search, actions within the tree are selected by UCB1.
This maintains a balance between exploiting actions known
to have good return and exploring actions not yet taken
(Kocsis & Szepesvári, 2006). At leaf nodes, a rollout policy
accrues reward which is then backed up through the tree.
The algorithm estimates the belief at each node by keeping
track of the hidden state from previous rollouts.

POMCP scales well with the size of the state space, but
not with the size of the action space, which determines the
branching factor in the search tree. POMCP is thus ill-suited
to solving the reduced POMDP of CIRL games since the
size of the action space is |AH ||Θ||AR|.
Our Adaptation Using the idea behind our modified Bell-
man update, we adapt POMCP to solve CIRL games more
efficiently. We approximate H’s policy while running the
algorithm (much like we exactly compute H’s policy in
exact value iteration). We maintain a live estimate of the
sampled Q-values for H at each node. With enough explo-
ration of the search tree (for instance, if actions are selected
using UCB1), the estimated Q-values converge to the true
values (in the limit). This guarantees that H’s policy con-
verges to her true policy. The following result establishes
convergence of our algorithm.

An Efficient, Generalized Bellman Update For Cooperative Inverse Reinforcement Learning

Theorem 4. With suitable exploration, the value func-
tion constructed by our adapted POMCP algorithm
converges in probability to the optimal value function,
V (h)→ V ∗(h). As the number of visits N(h) approaches
infinity, the bias of the value function E[V (h)− V ∗(h)] is
O(log(N(h))/N(h)).

The pseudocode for our adapted PBVI and our adapted
POMCP algorithm is presented as Algorithm 1 and 2 respec-
tively in Appendix B in the supplementary material.

5. Related Work
POMDP Algorithms We chose to explicate our modified
Bellman update in the context of PBVI and POMCP because
they are the seminal point-based and MCTS algorithms
respectively, for solving POMDPs. For example, SARSOP
(Kurniawati et al., 2008) and DESPOT (Ye et al., 2017),
two state-of-the-art algorithm for POMDPs, are variants of
PBVI and POMCP respectively. The principles we outlined
in Sections 3 and 4 can be easily adapted to a large variety
of point-based and MCTS algorithms, including any which
may be developed in the future, to derive even more efficient
algorithms for solving CIRL games.

MOMDP Algorithms The POMDP representation of CIRL
is also a mixed-observability Markov decision process
(MOMDP) since the state space can be factored into a fully-
and a partially-observable component. This structure allows
for more efficient solution methods; Ong et al. (2010) lever-
age the factored nature of the state space to create a lower
dimensional representation of belief space. This core idea
is orthogonal to ours, which exploits CIRL’s information
asymmetry instead. The two can be leveraged together.

Dec-POMDP Algorithms Dec-POMDP algorithms can be
used to solve CIRL directly, without using the POMDP re-
duction. These solution methods are generally intractable,
but recent work has made progress on this front. Such
Dec-POMDP algorithms which attempt to prune away un-
reasonable strategies resemble our approach. Amato et al.
(2009) use reachability analysis to identify reachable states,
then consider all policies which are useful at such states.
Hansen (2004) model other agents possible strategies as
part of a players belief, and prune away weakly dominated
strategies at each step. While such approaches use heuris-
tics to prune away some suboptimal strategies, we leverage
the information structure of CIRL to compute the optimal
strategy for H and prune away all other strategies. This
guarantees an exponential reduction in complexity while
preserving optimality; this is not true for the other methods.

Value Alignment Recent work has explored relaxing the
rationality requirement of CIRL (Fisac et al., 2017). Our
work improves on their relaxation in several ways: (1) Their
Bellman update assumes that the human acts Boltzmann-
rationally. Our modification can model a large variety of

Table 1. Time taken (s) to find the optimal robot policy using exact
VI and our adaptation of it for various numbers of possible recipes.
NA denotes that the algorithm failed to solve the problem.

RECIPES EXACT VI OURS

2 4.448 ± 0.057 0.071 ± 0.013
3 394.546 ± 6.396 0.111 ± 0.013
4 NA 0.158 ± 0.003
5 NA 0.219 ± 0.007
6 NA 0.307 ± 0.005

human behaviors (including this). (2) Their discretized
belief value iteration algorithm has neither the guarantee of
optimality of our adapted VI algorithm nor the scalability
of our adapted POMCP/PBVI algorithms.

6. Experiments
We now verify that our modified Bellman update allows
POMDP algorithms to solve CIRL games more efficiently
than the standard update. We ran three experiments: one for
exact value iteration (VI), PBVI, and POMCP each. The
results of the PBVI experiment are presented in Appendix
C.1 in the supplementary material due to space constraints.
To verify the results of our experiments, we ran further
experiments on a second domain. The details and results of
these experiments are presented in Appendix C.2.

6.1. Experimental Design

Domain Our experimental domain is based on our running
example from Section 1. Assume there are m recipes and n
ingredients. The state space is an n-tuple representing the
quantity of each ingredient prepared thus far. At each time
step, each agent can prepare any of the n ingredients or none
at all. Each of the m recipes corresponds to a different θ (i.e.
reward parameter) value. Both agents receive a reward of 1
if H’s desired recipe is prepared correctly and a reward of 0
otherwise. The robot R begins the game entirely uncertain
about H’s desired recipe i.e. R has a uniform belief over Θ.

We want to stress that this experimental domain is not trivial:
one of the domains we managed to solve in our experiments
had ∼ 1010 states.

Manipulated Variables Our primary variable is the type of
Bellman update used: modified vs. standard. We also varied
the number of recipes, i.e., size of the reward parameter
space, and the number of ingredients, i.e., size of H’s and
R’s action space.

Dependent Measures In our first experiment (exact VI),
we measured the time taken by the algorithms to solve the
problem. In our second experiment (PBVI), we measured
the value attained by the algorithms in a fixed time. In our
third experiment (POMCP), we measured the value attained
by the algorithms in a fixed number of samples.

An Efficient, Generalized Bellman Update For Cooperative Inverse Reinforcement Learning

Figure 3. (Left) The value attained by POMCP, FV-POMCP, and our adapted algorithm in 30,000 samples with various numbers of
ingredients. (Right) Value attained by POMCP, FV-POMCP and our approximate algorithm with 2 recipes and 6 ingredients.

Hypothesis POMDP algorithms are more efficient at solv-
ing CIRL games with the modified Bellman update than with
the standard Bellman update.

6.2. Analysis

Exact VI In our first experiment, we compared the time
taken by exact VI and by our adaptation of it with the modi-
fied Bellman update. We first fixed the number of ingredi-
ents at two and varied the number of recipes in the domain.
Table 1 compares the results. For the simpler problems,
where the number of recipes was 2 or 3, our adapted algo-
rithm solved the problem up to∼3500× faster than exact VI.
On more complex problems where the number of recipes is
greater than 3, exact VI failed to solve the problem after de-
pleting our system’s 16GB memory; in contrast, our adapted
algorithm solved each of these more complex problems in
less than 0.5 seconds. We next fixed the number of recipes
and compared the performance of both these algorithms for
various numbers of ingredients. Both the exact methods,
but especially the one using the standard Bellman update,
scaled much worse with the number of ingredients than with
the number of recipes. With even three ingredients, exact VI
timed out and failed to solve the problem within two hours;
our algorithm however solved the problem in five seconds.

POMCP We compared the value attained in 30,000 samples
by POMCP and by our adaptation with the modified Bell-
man update. We additionally compared these algorithms
with FV-POMCP, a state-of-the-art MCTS method for solv-
ing MPOMDPs, a type of Dec-POMDP in which all agents
can observe each others’ behavior (as in CIRL).

We first fixed the number of recipes at 2 and varied the num-
ber of ingredients. Our adapted algorithm outperformed the
other two algorithms across the board, especially for large
numbers of ingredients. The results of this comparison are
presented in Figure 3 (left). POMCP did poorly on games
with more than 4 ingredients. Although FV-POMCP scaled

better to more complex games than POMCP, its values had
high variance. For the largest games, with 6 and 7 ingre-
dients, our adapted algorithm was the only one capable of
solving the problem in 30,000 iterations. We also compared
the value attained by each algorithm across 500,000 samples
on the 6 ingredient game. The results of this comparison are
depicted in Figure 3 (right). Our algorithm converged to the
true value faster than either of the other algorithms.

We next fixed the number of ingredients at 4 and varied
the number of recipes. We found that the results of this
experiment broadly matched the results of our previous
experiment where we varied the number of ingredients. For
example, with 4 recipes, our method achieves an average
value of 0.631± 0.221 in 30,000 iterations while POMCP
gets 0.429± 0.183 and FV-POMCP gets 0.511± 0.124.

These results together demonstrate that POMDP algorithms
with our modified Bellman update scales much better to
more complex CIRL games than with the standard Bellman
update. This offers strong evidence for our hypothesis.

7. Discussion
The previous section showed that we can now solve larger,
non-trivial CIRL games. While we are still far from address-
ing value alignment in the high dimensional and continuous
real world, our work allows us to analyze CIRL solutions to
non-trivial problems and understand their implications for
value alignment.

7.1. CIRL vs IRL

In the absence of CIRL solutions, a standard approach to
learning the human’s internal reward is Inverse Reinforce-
ment Learning (IRL) (Ng & Russell, 2000). We thus com-
pare what advantages CIRL has compared to IRL. On a
collaborative task, IRL is equivalent to assuming that H
chooses her actions in isolation, and R uses observations of

An Efficient, Generalized Bellman Update For Cooperative Inverse Reinforcement Learning

Figure 4. Value attained by CIRL and standard IRL on the cooking
domain with various numbers of possible recipes. Unlike IRL,
CIRL produces solutions where H picks her actions pedagogically
and R reasons about H accordingly.

her behavior to infer her preferences. Specifically, H solves
a single-agent, fully-observable, variant of the problem, and
R responds by solving the POMDP described in Section 2.

We fix the number of ingredients at 3 and vary the number
of recipes. Figure 4 shows the results. In each experiment
the optimal CIRL solution prepares the correct recipe while
the IRL solution fails to do so up to 50% of the time. To
understand the nature of this difference in performance, we
analyze the CIRL and IRL solutions. Consider a case of
our running example with two recipes. The state is a tuple
(#meat,#bread,#tomatoes) and Θ = {sandwich =
(1, 2, 0), soup = (1, 1, 2)}. For both approaches, R initially
prepares meat. In the baseline IRL solution, H can initially
make any ingredient if she wants soup and can make meat
or bread if she wants a sandwich. In each case, she chooses
uniformly at random between allowed ingredients. This
conveys some information about her desired recipe, but is
not enough to uniquely identify it. Since the same ingredient
is optimal for multiple recipes, R is still confused after one
turn. This means R will sometimes fail to complete the
desired recipe, reducing average utility.

The CIRL solution, in contrast, relies on the implicit commu-
nication between the human and the robot. Here, if H wants
soup, she prepares tomatoes, as opposed to any ingredients
that are common with the sandwich. Even more interest-
ingly, she waits (i.e. does nothing) if she wants a sandwich.
This is pure signaling behavior—waiting is suboptimal in
isolation, but picking an ingredient is more likely to con-
fuse the robot. In turn R knows that H would have picked
tomatoes if she wanted soup, and responds appropriately.

In other words, H teaches the robot about her preferences
with her action selection. This works because H knows that
R will interpret her behavior pragmatically, i.e., R expects
to be taught by H. This is reflected in the experiment: the
optimal CIRL solution prepares the correct recipe each time.

The value alignment problem is necessarily cooperative:
without the robot, the human is unable to complete her de-
sired task, and without explicit signaling from the human,
the robot learns inefficiently, is less valuable and is more
likely to make a mistake. Pedagogic behavior from H natu-
rally falls out of the CIRL solution. In response, R interprets
H’s actions pragmatically. These instructive and commu-
nicative behaviors allow for faster learning and create an
opportunity to generate higher value for the human.

7.2. CIRL with Suboptimal Humans

To further investigate the performance of CIRL in realistic
settings (e.g., where H may not be rational), we ran an-
other experiment. We varied whether H behaved according
to CIRL or IRL, R’s model of H in training (rational or
Boltzmann-rational), and the actual model of H (same as
previous). We measured the proportion of times they pre-
pared the correct recipe in each setting, fixing the number
of ingredients at 3 and recipes at 4. Fig. 2 in Appendix D in
the supp. material shows the results. (We also conducted a
more comprehensive experiment with 20 human behaviors
instead of 2. Results are presented in Appendix E in the
supp. material.)

Averaged across different models of H used to train R,
when H behaved according to CIRL, H and R succeeded
in preparing the correct recipe > 90% of the time. This
was also true when H behaved Boltzmann-rationally. This
suggests that the pedagogic behavior that arises from CIRL
makes it more robust to any sub-optimality from H. In
contrast, when H behaved as in IRL (i.e., not pedagogically),
they only prepared the correct recipe ∼70% of the time
when H was rational, and ∼40% of the time when H was
not. So, the importance of pedagogic behavior from H to
achieve value alignment is clear.

7.3. Do People Behave Pedagogically?

A question arises at this point as to whether real people
will adopt the pedagogic behavior predicted by CIRL solu-
tions. To start testing this, we did run a (very preliminary)
pilot study to start investigating whether CIRL improves
interactions with real people. The details of this experiment
are presented in Appendix F in the supplementary mate-
rial. We found some encouraging evidence that suggests
people do indeed behave pedagogically when collaborating
with a robot; and that a CIRL-trained robot is can be bet-
ter at exploiting this pedagogic behavior to achieve fluid
human-robot collaboration than an IRL-trained robot.

In future work, we plan to conduct a more extensive human
subjects study to validate these preliminary findings.We
additionally plan to explore techniques to make the robot
better elicit pedagogic behavior from the human in their
interaction and to make CIRL robust to variations in human
behavior.

An Efficient, Generalized Bellman Update For Cooperative Inverse Reinforcement Learning

Acknowledgements
This work was supported in part by grants from the NSF
NRI, and the Open Philantrophy Project.

References
Amato, C., Dibangoye, J. S., and Zilberstein, S. Incremen-

tal Policy Generation for Finite-Horizon DEC-POMDPs.
In Gerevini, A., Howe, A. E., Cesta, A., and Refani-
dis, I. (eds.), ICAPS. AAAI, 2009. ISBN 978-1-57735-
406-2. URL http://dblp.uni-trier.de/db/
conf/aips/icaps2009.html#AmatoDZ09.

Amodei, D. and Clark, J. Faulty Reward Func-
tions in the Wild. https://blog.openai.com/
faulty-reward-functions/, 2016.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schul-
man, J., and Mané, D. Concrete Problems in AI Safety.
CoRR, abs/1606.06565, 2016. URL http://arxiv.
org/abs/1606.06565.

Bernstein, D. S., Givan, R., Immerman, N., and Zilberstein,
S. The Complexity of Decentralized Control of Markov
Decision Processes. Mathematics of Operations Research,
27(4):819–840, 2002.

Bostrom, N. Superintelligence: Paths, Dangers, Strategies.
Oxford University Press, Oxford, UK, 1st edition, 2014.
ISBN 0199678111, 9780199678112.

Fisac, J. F., Gates, M. A., Hamrick, J. B., Liu, C., Hadfield-
Menell, D., Palaniappan, M., Malik, D., Sastry, S. S.,
Griffiths, T. L., and Dragan, A. D. Pragmatic-pedagogic
value alignment. International Symposium on Robotics
Research, 2017.

Hadfield-Menell, D., Russell, S. J., Abbeel, P., and Dragan,
A. Cooperative Inverse Reinforcement Learning. In
Advances in neural information processing systems, pp.
3909–3917, 2016.

Hansen, E. A. Dynamic Programming for Partially Observ-
able Stochastic Games. In In Proceedings Of The Nine-
teenth National Conference On Artificial Intelligence, pp.
709–715, 2004.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R.
Planning and Acting in Partially Observable Stochas-
tic Domains. Artif. Intell., 101(1-2):99–134, May
1998. ISSN 0004-3702. doi: 10.1016/S0004-3702(98)
00023-X. URL http://dx.doi.org/10.1016/
S0004-3702(98)00023-X.

Kocsis, L. and Szepesvári, C. Bandit Based Monte-
Carlo Planning. In Proceedings of the 17th Euro-
pean Conference on Machine Learning, ECML’06, pp.
282–293, Berlin, Heidelberg, 2006. Springer-Verlag.

ISBN 3-540-45375-X, 978-3-540-45375-8. doi: 10.
1007/11871842 29. URL http://dx.doi.org/10.
1007/11871842_29.

Kurniawati, H., Hsu, D., and Lee, W. S. SARSOP: Effi-
cient Point-Based POMDP Planning by Approximating
Optimally Reachable Belief Spaces. In In Proc. Robotics:
Science and Systems, 2008.

Ng, A. Y. and Russell, S. Algorithms for Inverse Reinforce-
ment Learning. In in Proc. 17th International Conf. on
Machine Learning. Citeseer, 2000.

Ong, S. C., Png, S. W., Hsu, D., and Lee, W. S. Planning un-
der uncertainty for robotic tasks with mixed observability.
The International Journal of Robotics Research, 29(8):
1053–1068, 2010.

Pineau, J., Gordon, G., and Thrun, S. Point-Based Value
Iteration: An Anytime Algorithm for POMDPs. In IJCAI,
volume 3, pp. 1025–1032, 2003.

Silver, D. and Veness, J. Monte Carlo Planning in Large
POMDPs. In Advances in neural information processing
systems, pp. 2164–2172, 2010.

Simon, H. A. Models of man; social and rational. 1957.

Sondik, E. J. The Optimal Control of Partially Observable
Markov Processes. PhD thesis, Stanford University, 1971.

Tversky, A. and Kahneman, D. Judgment under uncertainty:
Heuristics and biases. In Utility, probability, and human
decision making, pp. 141–162. Springer, 1975.

Ye, N., Somani, A., Hsu, D., and Lee, W. DESPOT: On-
line POMDP Planning with Regularization. 58:231–266,
2017.

http://dblp.uni-trier.de/db/conf/aips/icaps2009.html#AmatoDZ09
http://dblp.uni-trier.de/db/conf/aips/icaps2009.html#AmatoDZ09
https://blog.openai.com/faulty-reward-functions/
https://blog.openai.com/faulty-reward-functions/
http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1606.06565
http://dx.doi.org/10.1016/S0004-3702(98)00023-X
http://dx.doi.org/10.1016/S0004-3702(98)00023-X
http://dx.doi.org/10.1007/11871842_29
http://dx.doi.org/10.1007/11871842_29

