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Abstract
We study streaming algorithms for principal com-
ponent analysis (PCA) in noisy settings. We
present computationally efficient algorithms with
sub-linear regret bounds for PCA in the presence
of noise, missing data, and gross outliers.

1. Introduction
Principal component analysis (PCA) is a ubiquitous tech-
nique in statistics, machine learning and data science. Given
a dataset {xi}ni=1 ⊂ Rd, PCA finds a low dimensional
subspace of Rd which captures maximum variance in the
dataset. PCA is often performed as a pre-processing step for
dimensionality reduction to help reduce computational and
statistical burden for a downstream learning task, especially
in the context of big data.

PCA can be posed as a stochastic optimization problem,
where the samples are assumed to be drawn i.i.d. from an
unknown distribution D and the goal is to find a subspace
that is almost as good as the optimal subspace in terms of
capturing the variance in the distribution; such a view moti-
vates design of stochastic approximation (SA) algorithms
that process one sample at a time with a computationally
cheap update and can scale to large datasets (Arora et al.,
2012; Balsubramani et al., 2013; Jain et al., 2016; Shamir,
2016; Allen-Zhu & Li, 2017a; Mianjy & Arora, 2018).

In this paper, we study PCA in a streaming setting. While
our algorithms are motivated by previous work on stochas-
tic approximation algorithms for PCA, in our analysis, we
also consider a non-stochastic setting where we make no
distributional assumptions on data. In particular, the data
may have been generated deterministically or even adversar-
ially. Such a setting makes sense for big data applications
where the data needs to be processed as it streams in, and
it is unreasonable to assume that successive samples are
independent or even identically distributed.
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Big data is characterized not only by its sheer “volume” but
also by its “veracity”, or the lack thereof. Most big data
analysts do not trust the raw data due to large corruptions
and deletions. It is therefore crucial to design algorithms
for PCA that can handle extremely noisy data as well as
missing data and also scale to very large datasets.

Instead of studying PCA as a stochastic optimization prob-
lem, one can consider online PCA. However, the focus of
online analysis, and in particular of past work on online
PCA (Tsuda et al., 2005; Warmuth & Kuzmin, 2006; 2008;
Nie et al., 2013), is on bounding the adversarial regret, rather
than on the runtime. A “good” online method might there-
fore have low online regret, and thus a low iteration com-
plexity as a stochastic procedure, but its expensive runtime-
per-iteration might make it unappealing for stochastic ap-
proximation. Some recent work by Garber et al. (2015);
Allen-Zhu & Li (2017b) on online PCA has focussed on
computationally efficient updates. Here, we are concerned
both with designing robust streaming algorithms for PCA
with arbitrary corruptions void of any distributional assump-
tions as well as obtaining methods with low overall runtime.

Therefore, in this paper, we consider both the nonstochastic
and stochastic settings – for the former we give variants of
online mirror descent with sublinear regret guarantees on
the PCA objective, for the latter we give extensions of the
computationally efficient Oja’s algorithm. We study PCA
in a streaming setting with noisy gradients, missing data,
partial observations, and gross outliers.

To the best of our knowledge, PCA with corrupted gradients,
where corruption can be in the form of noise, missing entries
or outliers has not been studied in the online setting. Our
first contribution is to provide variants of online mirror
descent which obtain optimal regret guarantees in terms
of time horizon T and scale gracefully with the amount of
corruption to the data.

In the stochastic setting, there have been multiple works
dealing with subspace recovery when data is missing un-
der some model (Balzano et al., 2010; Lounici et al., 2014;
Mitliagkas et al., 2014). Most of these works, either have
very stringent requirements on the distribution of the data
or prove only local convergence results. Our second main
contribution is in extending Oja’s algorithm, when data is
assumed to be stochastic, to the setting of corrupted gra-
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dients by nonstochastic noise, missing entries and partial
observations.

The rest of the paper is organized as follows. In Section 3 we
consider streaming PCA in presence of bounded noise, i.e.
when the observations are corrupted. In Section 4 we give an
algorithm for streaming PCA which is robust to missing data,
when the entries are missing at random from a Bernoulli
model. We then change the focus in Section 5 to the problem
of streaming PCA with partial observations, where only
a few entries per sample are observed due to the cost of
obtaining measurements. We propose a robust streaming
PCA algorithm that can handle outliers in Section 6. Finally,
we give experimental evidence for proposed methods in
Section 7 and conclude with a discussion in Section 8.

2. Notation and Preliminaries
We denote vectors and matrices with small and capital Ro-
man letters, e.g. u and U. The identity matrix of size k is
represented by Ik, where the subscript k is dropped when-
ever the size is clear from the context. The `2 norm of
a vector is denoted by ‖·‖. Frobenius norm and spectral
norm of matrices are denoted by ‖·‖F and ‖·‖2 respepc-
tively. For any two matrices M1,M2 ∈ Rd×d, the standard
inner-product is given as 〈M1,M2〉 = Tr

(
M>1 M2

)
. Further-

more, Pk = {P : P2 = P,P = P>, rank(P) = k} denotes
the set of rank-k orthogonal projection matrices.

Online Setting. The k-dimensional PCA problem in the
streaming setting can be formulated as follows. We are
presented with a sequence of vectors (xn)∞n=1 in Rd. After
observing x1, . . . , xt−1, we need to predict a k-dimensional
subspace, represented by a rank-k orthogonal projection
matrix P(t), so as to minimize the residual ‖xt − P(t)xt‖2
of the next vector in the stream.

We are interested in bounding the adversarial regret,
i.e. obtaining an upper bound for

∑T
t=1 ‖xt − P(t)xt‖2 −∑T

t=1 ‖xt−Pxt‖2, that holds for any sequence x1, . . . , xT ∈
Rd, and any competitor P ∈ Pk, where P(t) is the sequence
of projection matrices generated by an online algorithm.
Minimizing the regret above defined in terms of the residual
errors is equivalent to minimizing the regret defined in terms
of the variance captured. Therefore, the k-dimensional PCA
problem in the streaming setting can be formulated as find-
ing a sequence of subspaces, represented by orthogonal
projection matrices, P(t), that minimizes

R(T, P) =

T∑
t=1

x>t Pxt −
T∑
t=1

x>t P(t)xt, (1)

where P ∈ Pk is an arbitrary rank-k orthogonal projection
matrix. A sublinear regret bound implies that we can drive
the average regret, i.e. 1

TR(T, P), below any user-specified

ε > 0. This allows us to measure the performance of an
online algorithm in terms of overall runtime required to
achieve ε-average regret.

In the online setting, we consider algorithms that are variants
of online mirror descent, a standard algorithm in Online
Convex Optimization literature (Beck & Teboulle, 2003).
However, since the feasible set Pk is not convex, we relax
the feasible set by taking its convex hull,

C = {P : Tr (P) := k, 0 � P � I, P = P>}. (2)

Therefore, our updates are of the following form:

P(t+1) = ΠF (P(t) + ηg>t ), (3)

where η is the learning rate, gt is the gradient estimate at
time t, and ΠF is the projection operator onto the set C with
respect to Frobenius norm. The projection step is a simple
shift-and-cap procedure described in (Arora et al., 2013).

Since each iterate P(t) ∈ C can have rank larger than k, we
sample a rank-k projection matrix using the rounding pro-
cedure described in Algorithm 2 of (Warmuth & Kuzmin,

2008); we denote P̂
(t)

= rounding(P(t)). Since, the loss
function in (1) is linear, is easy to check that the sequence

P̂
(t)

has the same adversarial regret in expectation w.r.t. the
rounding. We refer to these updates as matrix gradient de-
scent (MGD). The following regret bound holds for MGD.

Theorem 2.1 (MGD regret). Assume ‖xt‖ ≤ 1 for all t in
1, . . . , T . Then, after T iterations of MGD with step size

η =
√

k
T , and starting at P(1) = 0, we have that

E[R(T, P)] ≤
√
kT . (4)

where expectation is w.r.t. randomization in the algorithm,
and P ∈ Pk is any arbitrary rank-k projection matrix.

Stochastic Setting. The regret bound in Theorem 2.1 is
minimax optimal with respect to the time horizon T and di-
mension d (Nie et al., 2013). The question of computational
efficiency, however, still remains. In particular, the per it-
eration complexity of MGD can grow as large as Ω(d3).
This is not desirable or even computationally tractable in a
big data setting, where the dimensionality of the data can
be very large. To the best of our knowledge, there are no
known algorithms in the regret minimization setting which
can be computationally better in the worst case and still
achieve optimal regret. This gives little hope that we can
come up with computationally attractive algorithms for the
online problem. Under the additional assumption that xt
are sampled i.i.d. from some unknown distribution D and
that ‖xt‖ ≤ 1 almost surely, recent work (Allen-Zhu & Li,
2017b) has shown that Oja’s algorithm can obtain sub-linear
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regret for the online PCA problem in the special case of
k = 1. At each iteration, Oja’s algorithm, for general k,
performs the following updates:

Ũt+1 = P
((

I + ηxtx>t
)
· · ·
(
I + ηx1x>1

)
U
)

P(t+1) = Ũt+1Ũ
>
t+1,

where entries of U ∈ Rd×k are sampled from a stan-
dard Gaussian distribution and P (A) orthonormalizes the
columns of A. Note that computing Ũt+1 takes O(dk2)
time, and we never need to form P(t+1) explicitly, so the per-
iteration computational cost of Oja’s algorithm is O(dk2).

3. Streaming PCA with corrupted gradients
Online Setting. We consider a setting where the stream-
ing algorithm receives noisy gradients, i.e. instead of in-
stantaneous gradients xtx>t , it receives the sequence ĝt =
xtx>t + Et. The noise could be a result of an inaccurate
computation in a big data setting, or a consequence of asyn-
chronous and noisy communication in a distributed or par-
allel computing scenario. If the noise in the gradient is
unbounded, then no learning is possible. Our first main
result is in the case of bounded noise and shows that the
regret bound for MGD degrades gracefully with the noise
level. Furthermore, MGD can easily tolerate noise with
overall budget that scales as o(T ) if we desire sublinear
regret guarantees.

Theorem 3.1 (MGD noisy gradient). Assume ‖xt‖ ≤ 1 for
all t in 1, . . . , T . Let E1, . . . ,ET be an arbitrary sequence of
error in gradients such that

∑T
t=1 ‖Et‖2 ≤ E and ‖Et‖F ≤

1 for all t = 1, · · · , T . Then, after T iterations of MGD
with step size η =

√
k/T , and starting at P(1) = 0, we have

that
E[R(T, P)] ≤ 4

√
kT + 2kE, (5)

where expectation is w.r.t. randomization in the algorithm
and P ∈ Pk is any arbitrary rank-k projection matrix.

Stochastic Setting. We consider the same stochastic set-
ting as Allen-Zhu & Li (2017b) and further assume that
ED[xt] = 0. As before, we consider corrupted gradients,
however, we assume that they arise due to additive corrup-
tion of data, i.e. each of the points xt are perturbed by
some noise vector yt. The noisy gradients we observe are
ĝt = (xt + yt)(xt + yt)

>. We assume yt is independent
of xt but make no other stochastic assumption on yt. We
do require that the total noise is bounded. We make this
explicit in the following theorem.

Theorem 3.2 (Oja noisy gradient). Assume that xt ∼ D,
‖xt‖ ≤ 1 almost surely for all t = 1, . . . , T and ED[xt] = 0.
Assume that

∑T
t=1 ‖yt‖+ ‖yt‖

2 ≤
√
T . After T iterations

of Oja’s algorithm starting with u ∼ N (0, I) and using step

size η = β√
T

for some small enough β, with probability
1− δ it holds that:

R(T, P∗) ≤ c
√
T

log(d+ log(2/δ))

β
+
√
T

log
(

8
3δ2

)
β

,

where c is some universal constant not depending on δ or d
and P∗ = arg maxP∈P1

∑T
t=1〈gt,P〉.

We remark that β has no dependence on d or T , however, it
is at mostO(log(1+δ)). Since the gradients we are working
with, ĝt, are not unbiased and not bounded by a constant
at each iteration necessarily, the result provided in (Allen-
Zhu & Li, 2017b) does not apply directly. We adapt their
analysis, by decomposing the instantaneous gradient ĝt =
(xt + yt)(xt + yt)

> into an unbiased term gt = xtx>t and
an error term ĝt − gt. The assumption that the noise is
sublinear allows us to control this error term and still achieve
a sublinear regret bound.

4. Learning with Missing Entries
Often in applications with large volumes of data streaming
in, malfunction of the measurement or data acquisition sys-
tems results in data corruption or large gaps in the collection.
Hence, it is crucial to design algorithms that can reliably
handle missing data. In this section, we introduce a simple
randomized scheme to extend the streaming MGD algorithm
to handle missing data. The key insight here is that with the
proposed randomized scheme we can still obtain unbiased
estimates of the instantaneous gradient based on missing
data.

The problem of PCA with missing data has been stud-
ied before in the stochastic setting (Balzano et al., 2010;
Mitliagkas et al., 2014). The setting we consider here is
closely related to that of Mitliagkas et al. (2014). In partic-
ular, both the missing-ness model as well as Oja’s updates
that we consider here are as in (Mitliagkas et al., 2014).
However, there are two key differences. First, we give sub-
linear regret bounds in a non-stochastic setting. Second, in
the stochastic setting, we make less stringent assumptions;
while Mitliagkas et al. (2014) assume that the data is gen-
erated using a spiked-covariance model, we only need to
assume that the distribution of data has bounded support.

In the Bernoulli model of missing-ness (Candès et al.,
2011) that we consider here, for each data point xt, we
sample d Bernoulli random variables Zi ∼ Bernoulli(q),
i = 1, . . . , d, to get the index set of observed entries
Ω := {i ∈ [d] : Zi = 1}. The observed vector x̃t is
then given by

x̃i =

{
xi, i ∈ Ω

0, otherwise
.
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Lets denote the distribution of the observed vector con-
ditioned on x by R. Then, it is easy to check that
ER[‖x̃‖0|x] = qd, i.e, on average qd elements of each
vector are observed under the model R. It is known that
x̃x̃> is not an unbiased estimator of xx> with respect toR
(see (Lounici et al., 2014) or Lemma ?? in the Appendix).
To address this issue, we propose the following random
model for constructing an unbiased estimator of xx>. As-
sume r entries of x are observed, and let Ω = {i1, · · · , ir}
be the indices of observed elements. We construct ĝ :=

x̂x̂> − zz> where x̂ = 1
q x̃ and z =

√
r−rq
q xiseis and is is

sampled uniformly at random from Ω. Let S denote the
conditional distribution of z given x. The following holds.
Lemma 4.1. ĝ is an unbiased estimator of xx>, that is:

ES,R[x̂x̂> − zz>|x] = xx>, (6)

where the expectation is with respect to both S andR.

Online Setting. Lemma 4.1 motivates the following r-
MGD updates with missing entries based on ĝt := −x̂tx̂

>
t +

ztz>t :
P(t+1) = ΠF

(
P(t) − ηtĝt

)
. (7)

MGD enjoys the following regret bound.
Theorem 4.2 (MGD regret with missing data). Assume
‖xt‖ ≤ 1 for all t in 1, . . . , T . Then, after T itera-
tions of the MGD update in (7), with step size η =

q2√
q2+dq(1−q)3+d2q2(1−q)2

√
k
T , and starting at P(1) = 0, we

have that:
E [R(T, P)] ≤ Cr,d

√
kT , (8)

for any rank-k projection matrix P. Here, Cr,d =√
q2+dq(1−q)3+d2q2(1−q)2

q2 , and the expectation is w.r.t. ran-
domization in the algorithm.

Note that the regret bound in Theorem 4.2 degrades grace-
fully with the parameter q. As q → 1, Cr,d → 1 and we
recover the bound in Theorem 2.1. On the other hand, as q
becomes smaller, the tradeoff parameter Cr,d grows and for
q = O(1/d), we get Cr,d = O(d2).

Stochastic Setting. As discussed in Section 2, MGD can
be inefficient. Again, we consider the stochastic setting
where xt are sampled i.i.d. from some distribution D and
‖xt‖ ≤ 1 almost surely. We consider Oja’s algorithm for
k = 1 with gradients ĝt. However, as the gradients are not
guaranteed to be positive-semidefinite, the results in (Allen-
Zhu & Li, 2017b) do not apply directly. We are able to adapt
the proof techniques by decomposing the gradient into a
positive semidefinite part and a negative semidefinite part.
It turns out that the negative semidefinite part can only hurt
us in terms of increasing the norm of the gradient, however,
this only leads to a constant factor in the regret bound.

Theorem 4.3 (Oja regret from missing data). Assume that
xt ∼ D for all t in 1, . . . , T and that ‖xt‖ ≤ 1 almost
surely. Let C = Ex∼D[xx>] with top eigenvalue λ, let
αn = 2n−1

qn + 2n−1µn(1−q)n
q2n , where µn is the n-th moment

of the Binomial distribution, and let α = α4 + 4α3 + 6α2.
Then, after T iterations of Oja’s algorithm with gradients
ĝt, initialization P(1) = uu>, where u ∼ N (0, I) and step
size η = log(1+δ/9)

(α+4λ2)
√
T

, with probability 1− δ it holds that:

ES,R[R(T, P)] ≤
√
T

log(1 + δ/18)
+

√
T (α+ 4λ2)O

(
log(d+ log

(
1
δ

)
)− log

(
1
δ

))
log(1 + δ)

,

for any rank-1 projection matrix P.

As q → 1 we see that the regret tends to
O
(√

T log(d+log(1/δ))
log(1+δ)

)
. For any fixed δ, the regret above

equals O(
√
T log(d)), which has an additional multiplica-

tive factor of log(d) compared to the bound in Theorem 4.2.
However, this does not take the per-iteration computational
cost of both algorithms into account. To better understand
the trade-off between Oja’s algorithm with missing entries
and MGD with missing entries we look at the overall run-
time needed to achieve ε-average regret. The total runtime of
MGD for achieving ε-average regret is O(d

3

ε2 ). On the other
hand the per-iteration complexity of Oja’s algorithm is O(d)
and thus the total run-time for achieving ε-average regret
is O(d log

2(d)
ε2 ). Therefore, we see that Oja’s algorithm has

much better overall performance in terms of runtime when
considering average regret as q → 1. The case is a bit dif-
ferent as we let q → 1

d . This suggests that α = O(d8) and
the regret bound for Oja’s algorithm is O(d8

√
T log(d)),

while the regret bound for MGD is O(d2
√
T ). Thus, Oja’s

algorithm with missing entries becomes intractable in such
a setting. However, we note that the regret bound for Oja’s
algorithm with missing entries might not be minimax op-
timal in terms of the dependence on dimensionality d and
in practice we have not observed such discrepancy in our
experiments.

5. Learning from Partial Observations
In many real world applications, acquiring a full feature vec-
tor may be challenging or there may be cost associated with
fetching each entry of the vector. Consequently, in such set-
tings, it is essential that data analysis solutions are designed
to work reliably and robustly with partially observed data.
In this section, we introduce a randomized scheme that en-
sures obtaining unbiased estimates of the gradient based on
partial observations. This allows a simple extension of the
streaming MGD algorithm to handle partial observations.
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We consider the uniform sampling model that has been used
extensively in the literature (see, e.g. (Recht, 2011)). In
particular, we observe r entries uniformly at random from
all subsets of cardinality r. At each iterate, we sample an
indexing subset Ω := {i1, .., ir} ⊆ [1 · · · d] with cardinality
0 < r ≤ d uniformly at random from all subsets of size r.
The observed vector x̃ is now constructed as

x̃i =

{
xi, i ∈ Ω

0, otherwise.

As in the previous section, let R denote the conditional
distribution of the observed vector. Again, we observe that
x̃x̃> is not an unbiased estimator of xx> with respect to
R (see Lemma ?? in the Appendix). To construct an unbi-
ased estimator of xx>, we propose the following stochastic

model. We define ĝ := x̂x̂> − zz> where x̂ =
√

d(d−1)
r(r−1) x̃,

and z =
√

dr−r2
r−1 x̃iseis and ei is the i-th standard basis vec-

tor and is is sampled uniformly at random from the set of
observed elements Ω. Let S be the conditional distribution
induced by this model. Then, the following holds.
Lemma 5.1. ĝ is an unbiased estimator of xx>, i.e.

ES,R[x̂x̂> − zz>|x] = xx>, (9)

where the expectation is with respect to both S andR.

Online Setting. Lemma 5.1 motivates the following
MGD updates with partial observations based on ĝt :=

−x̂tx̂
>
t + ztz>t :

P(t+1) = ΠF

(
P(t) − ηĝt

)
. (10)

We show that the following regret bound holds for MGD
with partial observations.
Theorem 5.2 (MGD regret from partial observations). As-
sume ‖x‖t ≤ 1 for all t in 1, . . . , T . Then, after T it-
erations of the MGD update in (10), with step size η =

r(r−1)√
d2(d−1)2+r4(d−r)2

√
k
T , and starting at P(1) = 0, we have

that:
E [R(T, P)] ≤ Cr,d

√
kT , (11)

for any rank-k projection matrix P. Here, the expectation is
w.r.t. randomization in the algorithm, and the multiplicative

factor Cr,d =

√
d2(d−1)2+r4(d−r)2

r(r−1) .

Note that the regret bound degrades gracefully with the frac-
tion of observed entries. The parameter Cr,d determines
the tradeoff between iteration complexity and the cost of
data access. As r → d, one can see that Cr,d → 1, which
recovers the bound in Theorem 2.1. On the other hand, as
r becomes smaller, Cr,d grows and for r = 2, one can see
that Cr,d = O(d2). This is especially interesting for appli-
cations where abundant number of samples are provided,
but obtaining measurements per sample is highly costly.

Stochastic Setting As in Section 4, MGD with partial
observations can have worst case per-iteration complexity
O(d3). We make the same stochastic assumptions as in the
previous section, extend Oja’s algorithm to work with the
gradients ĝt and adapt the regret bound from (Allen-Zhu
& Li, 2017b). All of our remarks about the per-iteration
computational cost of Oja from section 4 still hold.

Theorem 5.3 (Oja regret from partial observations). As-
sume that xt ∼ D for all t in 1, . . . , T and that ‖xt‖ ≤ 1
almost surely. Let C = Ex∼D[xx>] with top eigenvalue λ.
Then, after T iterations of Oja’s algorithm with gradients ĝt,
initialization P(1) = uu>, where u ∼ N (0, I) and step size
η = log(1+δ/9)

(11α2+4λ2)
√
T

, where α = d(d−1)
r(r−1) , with probability

1− δ it holds that:

ES,R[R(T, P)] ≤ 2
√
T

log(1 + δ/18)
+

√
T (11α2 + 4λ2)

log(1 + δ)
O

(
log

(
d+ log

(
1

δ

))
− log

(
1

δ

))
,

for any rank-1 projection matrix P.

When r → d, we essentially recover the regret bound in
Theorem 4.3 and the same comparison done in section 4
holds when discussing total computational time for MGD
versus Oja to achieve ε-average regret. When r → 2, we
see that α→ d2 and the regret for Oja’s algorithm becomes
O
(
d4 log(d)

√
T
)

. Again we see that MGD with partial
observations has a better worst-case regret bound in terms of
d and that both algorithms become intractable for large d.

6. Robust streaming PCA
Despite its ubiquitous nature, PCA as well as other sub-
space learning methods have a major weakness – they are
extremely sensitive to outliers. Corrupted data points, which
we refer to as outliers, can completely throw off the estimate
of the principal subspace even with a single outlier (Huber
& Ronchetti, 2009). In practice, we may encounter a high
percentage of corruption (Zhang & Lerman, 2014) and in
theory (under some assumptions) the percentage of outliers
tolerated by robust PCA algorithms can be significantly
higher than the common 50% breakdown point of point
estimators (Zhang & Lerman, 2014; Lerman et al., 2012;
Hardt & Moitra, 2013). In such cases, the inliers may still
be viewed as arising from D, but the outliers are likely to
be generated by a different distribution or may be even hard
to model. The presence of these outliers, whose proportion
may be significant, can completely distort the estimate of
the expected variance and therefore the PCA subspace.

There have been several attempts to endow PCA with re-
silience against outliers or other forms of gross corrup-
tions (see e.g., (De La Torre & Black, 2003; Fischler &
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Bolles, 1981; Gnanadesikan & Kettenring, 1972; Ham-
pel et al., 2005; Huber & Ronchetti, 2009; Hubert et al.,
2005; Ke & Kanade, 2005; Maronna et al., 2006; Recht
et al., 2010; Xu et al., 2010)). Following (Chandrasekaran
et al., 2011), Candès et al. (2011) established a convex
de-convolution method for extracting low-dimensional sub-
space structure in the presence of gross but sparse uniformly
distributed element-wise corruptions. Given a dataset X ∈
Rd×n, the robust PCA formulation considered by (Chan-
drasekaran et al., 2011) and (Candès et al., 2011), seeks a
rank-k representation of X, denoted by L ∈ Rd×n, that mini-
mizes the `1-norm of the residuals, ‖S‖1, where S := X−L.

The seminal work of (Chandrasekaran et al., 2011) and
(Candès et al., 2011) inspired the development of many
other convex methods for robust PCA, that are robust in
the presence of outliers (instead of element-wise corrup-
tions) (Xu et al., 2012; McCoy & Tropp, 2011; Zhang &
Lerman, 2014; Lerman et al., 2012). These works consider
absolute subspace deviations, i.e. they seek a rank-k sub-
space that minimizes

∑n
i=1 ‖xi−Pxi‖2, where ‖ ·‖ denotes

the `2-norm. They involve various convex relaxations of
this minimizer. Of particular interest to us are the Geomet-
ric Median Subspace (GMS) algorithm (Zhang & Lerman,
2014) and the REAPER algorithm (Lerman et al., 2012). We
prefer them since they do not require an arbitrary unknown
regularization parameter, they can deal with significantly
high percentage of outliers (both in theory and in practice)
and their batch formulations are faster.

However, both GMS and REAPER are batch algorithms and
therefore do not scale to big data. In this section, we study
robust PCA in a streaming setting. We build on absolute
subspace deviations model of (Zhang & Lerman, 2014)
and (Lerman et al., 2015) and propose a robust analogue of
streaming PCA that imparts it robustness in face of outliers.
Unlike Goes et al. (2014) who consider robust PCA in a
stochastic setting and focus on the ε-suboptimality, our goal
is to bound the following regret,

Rabs(T ) =

T∑
t=1

‖xt − P(t)xt‖2 − inf
P∈Pk

T∑
t=1

‖xt − Pxt‖2,

for any sequence x1, . . . , xT ∈ Rd.

The gradient of the loss function `(xt) = ‖xt − P(t)xt‖2
in the formulation above is given as (I−P(t))xtx>t

‖xt−P(t)xt‖
. This is

a rank-one update that is not guaranteed to be symmetric.
In order for our analysis to go through we consider the
following symmetrized loss: 1

2Ex[‖x−Px‖2 +‖x−P>x‖2].
The instantaneous gradient at the t-th iteration is then given
by

gt = −xtx>t (I−P(t))+(I−P(t))xtx>t
2‖(I− P(t))xt‖2

.

We denote yt = (I − P(t))xt, and ct = η
2‖yt‖2

, then the
proposed abs-MGD update can be written as:

P(t+1) = ΠF

(
P(t) + ct(xty>t + ytx

>
t )
)
. (12)

We bound the regret of abs-MGD updates in (12) as fol-
lows.

Theorem 6.1. Assume ‖xt‖ ≤ 1 for all t in 1, · · · , T . Then,

after T iterations of MGD with step size η =
√

k
T , and

starting at P(1) = 0, we have that:

Rabs(T ) ≤
√
kT .

7. Experimental Results
Per iteration complexity. Before presenting an empirical
evaluation of our algorithms we would like to discuss their
computational efficiency in theory. Note that each variant
of the MGD algorithm involves updating the current iterate
P(t) ∈ Rd×d with a rank-1 or a rank-2 matrix and then pro-
jecting onto a convex set of constraints. Since the projection
step operates on the eigenvalues of the current iterate (Arora
et al., 2013), a naive implementation would require O(d3)
time per iteration. To avoid recomputing eigenvalues, we
can keep an up-to-date eigendecomposition of each iterate
and perform an efficient rank-1 (or rank-2) update which
takes O(dk̃2) time where k̃ = rank(P(t)). Of course, k̃
may grow as large as d. In contrast, Oja’s algorithm and its
variants take only O(dk2) time per iteration.

Datasets and step-size tuning. We evaluate empirical
performance of our algorithms with missing data (MGD-
MD, Oja-MD) and partial observations (MGD-PO, Oja-
PO) on two real datasets, MNIST (LeCun et al., 1998) and
XRMB (Westbury, 1994) against vanilla MGD and classic
Oja’s algorithm (Oja, 1982) as well as with the state-of-
the-art algorithm (GROUSE) of Balzano et al. (2010). The
learning rate for variants of MGD and Oja’s algorithm is
set to ηt = η0√

t
, for MGD-PO to ηt = r2η0

d2
√
t
, and for MGD-

MD to ηt = q2 η0√
t
. The initial learning rate η0 is chosen

using cross validation on a held-out set. The learning rate
for GROUSE is set to ηt = η0√

t
, even though the theory

suggests a step size proportional to 1
t ; this choice was made

since GROUSE did not converge in our experiments with a
step size of Θ(1/t).

Empirical results. Figures 1 and 2 show the objective
as a function of the number of observations as well as a
function of elapsed time, for different values of rank (k),
on XRMB and MNIST datasets, respectively. We see that
both MGD-MD and MGD-PO recover the subspace even
when nearly 92% of the observations are missing. We see
consistently across experiments that (a) MGD outperforms
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Figure 1: Comparisons of Oja, MGD, MGD-PO, MGD-MD, Oja-PO, Oja-MD, GROUSE for PCA with missing data on XRMB dataset,
in terms of the variance captured on a test set as a function of number of observed entries for rank-4 (top) and runtime (bottom).

all other algorithms in terms of progress per number of
observations, and (b) Oja’s algorithm always performs better
than Oja-MD and Oja-PO both of which are nearly as bad as
GROUSE. For Oja’s algorithm, we note that even though the
theoretical guarantees in Theorems 4.3, and 5.3 only hold
for k = 1, our experiments suggest that the sub-linear regret
guarantees perhaps still hold for larger k. Furthermore, the
experimental results seem to be consistent with theoretical
guarantees in terms of per-iteration progress and total run-
time.

Comparison with theory. Our theoretical bounds for
k = 1 suggest that MGD is always better than MGD-PO
and MGD-MD when the observation ratio is small. Again,
when the observation ratio is small, Oja-MD and Oja-PO
have worse upper bounds on the average regret, compared to
MGD-PO and MGD-MD, by at least a factor of dimension-
ality and that both should perform worse than Oja with full
observations. Our experiments confirm these observations.
Note that even though both in Figures 1 and 2, MGD-PO and
MGD-MD seem to perform as well as MGD, this is in term
of observations and not in terms of number of iterations,
which are far fewer for MGD. Our experiments suggest ex-
tensions of our theory in at least two directions. First, for
Oja’s algorithm and its variants, similar theoretical upper
bounds on the regret should hold for general k. Second,
it is possible that there are matching lower bounds for the
algorithms dealing with partially observed and missing data.

Runtime. As expected, Oja’s algorithm and its variants
perform much better in terms of progress per runtime as their
per-iteration complexity is only O(dk2). MGD performs as
well as GROUSE, Oja-PO, and Oja-MD in terms of runtime.
This is because the rank of the iterates P(t) remains in O(k).
This is not the case, however, for MGD-PO and MGD-MD
and their progress per runtime is significantly slower.

Because of space constraints we deferred some experiments,
including plots for per-iteration progress of the algorithms
and plots for Robust-MGD, to the supplementary; the above
observations still hold for the deferred plots.

8. Discussion
In this paper, we study PCA in a streaming setting with no
distributional assumptions on data. In the big data setting
we consider, data is often contaminated with noise, out-
liers, or observed partially. We propose several efficient
algorithms to solve the above problems and prove sublinear
regret bounds. As we already discuss in the paper, the data
which our algorithms process can be generated by an adver-
sary and thus we quantify the loss of our algorithms in terms
of regret. Theorem 2.1 gives a bound on the regret of MGD
with respect to any fixed subspace P chosen in hindsight.
One might argue that this is not a real-world setting and the
subspaces we are comparing against should be allowed to
vary as incoming data is observed. We can strengthen our
results by comparing against sequences of subspaces, with
a bounded total shift, all chosen in hindsight.
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Figure 2: Comparisons of Oja, MGD, MGD-PO, MGD-MD, Oja-PO, Oja-MD and GROUSE for PCA with missing data on MNIST
dataset, in terms of the variance captured on a test set as a function of number of observed entries for rank-2 (top), and runtime (bottom).

Theorem 8.1 (MGD switch regret). Assume ‖xt‖ ≤ 1 for
all t in 1, · · · , T . Then, after T iterations of MGD with step

size η =
√

k
T , and starting at P(1) = 0, we have that

T∑
t=1

x>t P(t)
∗ xt−

T∑
t=1

Eround

[
x>t P(t)xt

]
≤
√

(6
√
kS + k)T

where (P(t)
∗ )Tt=1 is any competing sequence of subspaces in

C with total shift
∑T
t=1 ‖P

(t)
∗ − P(t−1)

∗ ‖F ≤ S.

Our experiments suggest the following directions for future
work: (a) extend the analysis of the Oja’s algorithm (i.e.
results in Theorems 3.2, 4.3 and 5.3) to general k > 1), and
(b) show lower bounds for regret guarantees in Section 4 and
Section 5 which depend on the number of missing entries.

We would also like to investigate Oja-like updates for the `2
Robust PCA formulation in Section 6, which preserve the
low-rank structure of the iterates P(t). Analyzing such an
algorithm, even in the special cases when data is stochastic
and k = 1, seems like a daunting task, because unlike the
standard PCA formulation, we do not have a closed form
solution for the optimization problem. This in turn is an
obstacle when trying to come up with potential functions
tracking the progress of the proposed algorithms.

We also remark that for robust streaming PCA in Section 6,
the iterates P(t) ∈ Rd×d are in the convex set C defined in
equation (2), however, they need not necessarily be projec-
tion matrices. Furthermore, due to the non-linear nature of
the objective we can not simply use the rounding procedure

as in (Warmuth & Kuzmin, 2008). In practice, we observe
that one can use the rank-k projection retrieved from the top
k eigen-vectors of P(t). This can be partially justified by
the results in (Lerman et al., 2015) which state that under
certain mild assumptions on the outliers, the solution to the
optimization problem minP∈P

∑T
t=1 ‖xt−Pxt‖2 is close to

the rank-k projection matrix retrieved from the solution of
the convex relaxation minP∈C

∑T
t=1 ‖xt−Pxt‖2. The result

in Theorem 6.1 can be extended to show that the sequence
(P(t))Tt=1 does not suffer large regret against the optimal
P∗ ∈ C. In future work, we hope to show that this implies
that the average of the iterates (P(t))Tt=1, or the final iter-
ate P(T ), is close in norm to P∗. This together with results
in (Lerman et al., 2015) would explain why in practice using
the rank-k projection closest to P(t) works well.

Another possible direction for future work is to design and
analyze streaming algorithms for related component anal-
ysis techniques in noisy settings. In particular, algorithms
based on online mirror descent have been used in the context
of partial least squares (Arora et al., 2016) and canonical
correlation analysis (Arora et al., 2017; Ge et al., 2016). It
is natural to consider extensions of these algorithms to noisy
settings with missing data and outliers.
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