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1 Approximating HR as h(L)R.

We compute the product with each column ri of R independently. To achieve this using Chebyshev polynon-
ials (Shuman et al., 2011), one employs the equation

Hri ≈ h(L)ri =

c∑
m=0

amTm(L)ri,

where each Tm(L)ri is computed based on the recursion

Tm(L)ri =

(
4

λmax
L− 2I

)
Tm−1(L)ri − Tm−2(L)ri,

having as initial conditions

T0(L)ri = ri and T1(L)ri =

(
2

λmax
L− I

)
ri.

The constant am should be selected as am = 2−δ(m)
c+1

∑c
j=0 s(

λmax

2 (1 + cos(π 2j+1
2(c+1) ))) cos(cπ

2j+1
2(c+1) ), where

s(x) = 1{x≤λk} is a step-function. The total computational complexity amounts to dc matrix-vector multipli-
cations with a sparse matrix containing m non-zero elements.

2 Proof of Lemma 3.1

Proof. Let XΦ and XΨ be respectively the SC and CSC clustering assignments. Moreover, we denote for
compactness the additive error term by E = Ψ−ΦIk×dQ. We have that

CΨ = ‖Φ−XΨX>ΨΦ‖F
= ‖(I−XΨX>Ψ)(Ψ−E)‖F
≤ ‖(I−XΨX>Ψ)Ψ‖F + ‖(I−XΨX>Ψ)E‖F
≤ ‖(I−XΨX>Ψ)Ψ‖F + ‖E‖F
≤ ‖(I−XΦX>Φ)Ψ‖F + ‖E‖F
= ‖(I−XΦX>Φ)(ΦIk×dQ + E)‖F + ‖E‖F
≤ ‖(I−XΦX>Φ)ΦIk×dQ‖F + 2 ‖E‖F
= CΦ + 2 ‖Ψ−ΦIk×dQ‖F (1)

The lower bound comes from that XΦ in eq. (1) defines the argmin of our cost functions, and thus CΦ ≤
CΨ.
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3 Proof of Theorem 3.2

Proof. Let us start by noting that, by the unitary invariance of the Frobenius norm, for any k × k matrix M

‖ΦM‖F = ‖UIn×kM‖F = ‖In×kM‖F = ‖M‖F . (2)

We can thus rewrite the feature error as

‖Ψ−ΦIk×dQ‖F = ‖ΦΦ>R−ΦIk×dQ‖F
= ‖Φ>R− Ik×dQ‖F
= ‖Ik×nU>R− Ik×dQ‖F
= ‖R′ − Ik×dQ‖F . (3)

We claim that there is a unitary matrix Q that satisfies eq. (9). We describe this matrix as follows. Let
R′ = QLΣQ>R be the singular value decomposition of R′ and set

Q =

(
QL 0
0 Id−k

)
Q>R. (4)

Substituting this to the feature error, we have that

‖R′ − Ik×dQ‖F = ‖QLΣQ>R − Ik×dQ‖F
= ‖Σ−Q>LIk×dQQR‖F

= ‖Σ−Q>LIk×d

(
QL 0
0 Id−k

)
Q>RQR‖F

= ‖Σ−Q>L
(
QL 0

)
‖F

= ‖Σ− Ik×d‖F , (5)

which is the claimed result.

4 Proof of Corollary 3.2

Proof. To obtain the following extremal inequality for the singular values of R′, we note that R′ is composed
of i.i.d. Gaussian random variables with zero mean and variance 1/d, and thus use Cor. 3.1 setting R′ = N/d
providing for every i,

σi(R
′) = σi(N)/

√
d ≤ 1 +

√
k + ε√
d

. (6)

By simple algebraic manipulation, we then find that

‖Σ− Ik×d‖2F =

k∑
i=1

(σi(R
′)− 1)

2

≤ k

(√
k + ε√
d

)2

=
k

d
(
√
k + ε)2, (7)

which, after taking a square root, matches the claim.
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5 Relation Between Edge Similarity and Spectral Similarity

Corollary 5.1 (adapted from Cor. 4 (Hunter and Strohmer, 2010)). Let Ht−1 and Ht be the orthogonal
projection on to the span of [Uk]t−1(= Φt−1) and [Uk]t(= Φt). If there exists an α > 0 such that α ≤
λ

(t−1)
k+1 − λtk and α ≤ λtk, then,

‖Ht −Ht−1‖F ≤
√
2

α
‖Lt − Lt−1‖F . (8)

Note that the bounds on α are those described in their Thm. 3.
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