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Abstract
Convex sparsity-inducing regularizations are ubiq-
uitous in high-dimensional machine learning, but
solving the resulting optimization problems can
be slow. To accelerate solvers, state-of-the-art
approaches consist in reducing the size of the op-
timization problem at hand. In the context of
regression, this can be achieved either by discard-
ing irrelevant features (screening techniques) or
by prioritizing features likely to be included in the
support of the solution (working set techniques).
Duality comes into play at several steps in these
techniques. Here, we propose an extrapolation
technique starting from a sequence of iterates in
the dual that leads to the construction of improved
dual points. This enables a tighter control of op-
timality as used in stopping criterion, as well as
better screening performance of Gap Safe rules.
Finally, we propose a working set strategy based
on an aggressive use of Gap Safe screening rules.
Thanks to our new dual point construction, we
show significant computational speedups on mul-
tiple real-world problems.

1. Introduction
Following the seminal work on the Lasso (Tibshirani, 1996)
(also known as Basis Pursuit (Chen & Donoho, 1995) in
signal processing), convex sparsity-inducing regularizations
have had a major impact on machine learning (Bach et al.,
2012). Now thoroughly analyzed in terms of statistical
efficiency (Bickel et al., 2009), these regularizers yield a
sparse solution, meaning both a more interpretable model,
as well as reduced time for prediction. In machine learning
applications, the default method to optimize such problems
is coordinate descent (Fu, 1998; Friedman et al., 2010).

Since by design only a few features are included in the
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optimal solution (what we will refer to as the support),
state-of-the-art techniques rely on limiting the size of the
(sub-)problems to consider. To do so, various approaches
can be distinguished: screening techniques (Wang et al.,
2013; Ogawa et al., 2013; Fercoq et al., 2015), following the
seminal work of El Ghaoui et al. (2012), strong rules (Tib-
shirani et al., 2012) implemented in the GLMNET package
or correlation screening (Xiang & Ramadge, 2012). Similar
techniques discarding gradients have also been considered
in the stochastic gradient descent literature (Vainsencher
et al., 2015; Shibagaki et al., 2016). When a screening rule
guarantees that all discarded features cannot be in the so-
lution, it is called safe. The current state-of-the-art safe
screening rules are the so-called Gap Safe rules (Ndiaye
et al., 2017) relying on duality gap evaluation, which itself
requires to know a suitable dual point.

Alternatively, working sets1 (WS) techniques (Fan et al.,
2008; Boisbunon et al., 2014; Johnson & Guestrin, 2015)
select a subset of important features according to a par-
ticular criterion, and approximately solve the subproblem
restricted to these features. A new subset is then defined,
and the procedure is repeated. While screening techniques
start from full problems and prune the feature set, WS tech-
niques rather start with small problems and include more
and more features if needed. For these techniques, duality
can also come into play, both in the stopping criterion of the
subproblem solver, as well as in the WS definition.

The organization of the paper is as follows: in Section 2, we
remind the practical importance of duality for Lasso solvers
and present a technique called dual extrapolation to obtain
better dual points. We also shed some light on the success
of our approach when combined with cyclic coordinate de-
scent by interpreting the latter as Dykstra’s algorithm in the
Lasso dual. In Section 3, we show how dual extrapolation
is well-suited to improve Gap Safe screening. We present
in Section 4 a WS strategy based on an aggressive relax-
ation of the Gap Safe rules. Experiments in Section 6 show
significant computational speedups on multiple real-world
problems.

1also called active sets; we choose working because in the
screening literature, active set refers to the non discarded features.
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Notation

For any integer d, [d] denotes the set {1, . . . , d}. We de-
note by n the number of observations , by p the number
of features, X = [x1| . . . |xp] ∈ Rn×p represents the de-
sign matrix, and y ∈ Rn is the observation vector. For
β ∈ Rp, Sβ := {j ∈ [p] : βj 6= 0} is its support. For
W ⊂ [p], βW is β restricted to the indices in W , XW is
the matrix X restricted to the columns with indices inW .
The vector 1K (resp. 0K) has K entries set to 1 (resp. 0).
The norm ‖·‖ denotes the Euclidean norm on vectors or
matrices. For x ∈ R, sign(x) = x/|x| (with the convention
0
0 = 0) and ST(x, u) = sign(x) · max(0, |x| − u) is the
soft-thresholding at level u ∈ R+. When applied to a vector,
sign and ST act entry-wise. For any closed convex set C,
we write ΠC for the (Euclidean) projection onto C.

2. Duality for the Lasso
The Lasso estimator is defined as a2 solution of

β̂ ∈ arg min
β∈Rp

1
2 ‖y −Xβ‖

2
+ λ ‖β‖1︸ ︷︷ ︸

P(β)

, (1)

where λ > 0 is a parameter controlling the trade-off between
data-fitting and regularization.

The Lasso dual formulation reads, see Kim et al. (2007),

θ̂ = arg max
θ∈∆X

1
2 ‖y‖

2 − λ2

2

∥∥θ − y
λ

∥∥2︸ ︷︷ ︸
D(θ)

, (2)

where ∆X = {θ ∈ Rn : ‖X>θ‖∞ ≤ 1} is the (rescaled)
dual feasible set. The associated duality gap is defined by
G(β, θ) := P(β)−D(θ), for any primal-dual pair (β, θ) ∈
Rp ×∆X . In particular, as illustrated in Figure 1a, the dual
problem is equivalent to computing Π∆X

(y/λ).

Proposition 1. Strong duality holds for Problem (1), and
primal and dual solutions verify:

θ̂ =
1

λ
(y −Xβ̂) . (3)

Moreover, G(β̂, θ̂) = 0.

Proof. See for example Bauschke & Combettes (2011).

2.1. Stopping iterative solvers

In general, Problem (1) does not admit a closed-form solu-
tion. Iterative optimization procedures such as (block) co-
ordinate descent (BCD/CD) (Tseng, 2001; Friedman et al.,
2007) (resp. ISTA/FISTA (Beck & Teboulle, 2009)) are
among the most popular algorithms when dealing with

2recall that the solution might not be unique

Algorithm 1 CYCLIC CD WITH DUAL EXTRAPOLATION

input :X = [x1| . . . |xp], y, λ, β0, ε
param :T,K = 5, f = 10
init :r = r0 = y −Xβ0, θ0 = r/max(λ, ‖X>r‖∞)
for t = 1, . . . , T do

if t = 0 mod f then // θ every f epoch only
s = t/f // dual point indexing

rs = r
compute θsres and θsaccel with eqs. (4) to (6)
θs = arg max

θ∈{θs−1,θsaccel,θ
s
res}
D(θ) // Eq (13)

if G(βt, θs) < ε then
break

for j = 1, . . . , p do
βt+1
j = ST

(
βtj +

x>j r

‖xj‖2 ,
λ
‖xj‖2

)
if βt+1

j 6= βtj then
r += (βtj − βt+1

j )xj
return βt, θs

high dimensional applications in machine learning (resp.
in image processing). A key practical question for iter-
ative algorithms is the stopping criterion: when should
the algorithm be stopped? Because strong duality holds
for the Lasso, for any pair (β, θ) ∈ Rp × ∆X , we have
P(β) − P(β̂) ≤ G(β, θ), which means that the duality
gap provides an upper bound for the suboptimality gap.
Therefore, given a tolerance ε > 0, if at iteration t of the
algorithm we can construct θt ∈ ∆X s.t. G(βt, θt) ≤ ε,
then βt is guaranteed to be an ε-optimal solution of (1).

Since Eq. (3) holds at optimality, a canonical choice of dual
point relies on residuals rescaling. It consists in choosing
a dual feasible point proportional to the residual rt := y −
Xβt, see for instance Mairal (2010):

θtres := rt/max(λ, ‖X>rt‖∞) . (4)

It is clear that if βt converges to β̂, θtres converges to θ̂,
hence the duality gap for (βt, θtres) goes to 0. Additionally,
the cost of computing θres is moderate: O(np), the same as
a single gradient descent step or an epoch of CD.

However, using θres has two noticeable drawbacks: it ig-
nores information from previous iterates, and rescaling the
residual rt makes an “unbalanced” use of computations in
the sense that most of the burden is spent on improving
β while θ is obtained by solving a crude 1D optimization
problem, i.e., min {α ∈ [λ,+∞] : rt/α ∈ ∆X}.
In practice (see Section 6), it turns out that, while safe and
simple, such a construction massively overestimates the sub-
optimality gap, leading to slow safe feature identification
and to numerical solvers running for more steps than actu-
ally needed. The new dual point construction we propose
aims at improving upon this default strategy.
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Algorithm 2 DYKSTRA’S ALTERNATING PROJECTION

input : ΠC1 , . . . ,ΠCp , z

init : θ = z, q1 = 0, . . . , qp = 0
for t = 1, . . . do

for j = 1, . . . , p do
θ̃ ← θ + qj

θ ← ΠCj (θ̃)

qj ← θ̃ − θ
return θ

Remark 1. Other criteria than suboptimality are also often
considered. For instance, the solver can be stopped as soon
as the `2 or `∞ norm of βt − βt−1 goes below a thresh-
old ε, or when the objective function stops decreasing fast
(P(βt−1) − P(βt) < ε). However, contrary to dual gap
stopping rules, such heuristic rules do not offer a control on
suboptimality. They are also tightly coupled with the value
of the step size, making the use of a general ε difficult.

2.2. Dual extrapolation

Building on the work on nonlinear regularized acceleration
by Scieur et al. (2016), we propose a new construction to
obtain a better dual point. Instead of relying only on the last
residual rt, its approximation is improved by extrapolating
previous residuals, i.e., using rt, rt−1, rt−2, etc.

Definition 1 (Extrapolated dual point). For a fixed number
of iterations K (default being K = 5), let

rtaccel =


rt, if t ≤ K
K∑
k=1

ckr
t+1−k, if t > K

(5)

where c = (c1, . . . , cK)> ∈ RK reads c = z/(z>1K), and
z solves the linear system (U t)>U tz = 1K with U t =
[rt+1−K − rt−K , . . . , rt − rt−1] ∈ Rn×K . Then,

θtaccel := rtaccel/max(λ, ‖X>rtaccel‖∞). (6)

This means that for the K first iterations, θtaccel is equal to
the classical dual point θtres. For subsequent iterations, the
K last values of the residuals are used to extrapolate the
limit of the sequence (rt), and this extrapolation is rescaled
to provide a feasible dual point.

Remark 2. The matrix (U t)>U t may be singular, and solv-
ing the linear system may need Tikhonov regularization.
This is discussed in Section 6.

Theorem 1. When rt is obtained from iterations of ISTA,
θtaccel converges to θ̂ as t goes to +∞.

Proof. We recall that for µ = ‖X‖22, the t-th iteration of
ISTA is βt+1 = ST(βt + X>rt/µ, λ/µ). The key result

Algorithm 3 DYKSTRA FOR THE LASSO DUAL

input : X = [x1| . . . |xp], y, λ
init : r = y, β̃1 = 0, . . . , β̃p = 0
for t = 1, . . . do

for j = 1, . . . , p do
r̃ ← r + xj β̃j

r ← r̃ − ST
( x>j r̃

‖xj‖2
, 1
‖xj‖2

)
· xj

β̃j ← ST
( x>j r̃

‖xj‖2
, 1
‖xj‖2

)
return r/λ

is that after some iterations, βt is a Vector AutoRegressive
(VAR) process. This is true, since ISTA achieves finite
support identification (Burke & Moré, 1988; Liang et al.,
2014): if βt → β̂, after a finite number of iterations, the
sign is identified sign(βt) = sign(β̂) and so is the support
Sβt = Sβ̂ =: Ŝ. In this regime, the non-linearity induced
by the soft-thresholding becomes a simple bias:

βt+1

Ŝ
= βtŜ +

1

µ
X>Ŝ (y −XŜβtŜ)− λ

µ
sign(βtŜ)

= βtŜ +
1

µ
X>Ŝ (y −XŜβtŜ)− λ

µ
sign(β̂Ŝ)

= (Idp−
1

µ
X>Ŝ XŜ)︸ ︷︷ ︸
A

βtŜ +
1

µ
X>Ŝ y −

λ

µ
sign(β̂Ŝ)︸ ︷︷ ︸

b

.

Hence, βtŜ is a (noiseless) VAR process: βt+1

Ŝ
= AβtŜ + b.

It follows that rt = y −XŜβtŜ is also a VAR, and we can
apply the result of Scieur et al. (2016, Prop. 2.2).

Theorem 1 gives guarantees about θaccel when rt is pro-
duced from ISTA iterates. In applications where X is avail-
able as an explicit matrix and not as an implicit operator for
which a fast transform exists (e.g., FFT, wavelets), CD is
more efficient (Friedman et al., 2007). While we do not have
an equivalent of Theorem 1 for CD, on the datasets used
in Section 6, we have observed excellent performance for
dual extrapolation when combined with cyclic CD (see Sec-
tion 6). Hence, we provide some insights on the efficiency
of extrapolation for cyclic CD, described in Algorithm 1, by
studying its connections with Dykstra’s algorithm (Dykstra,
1983). To be precise, note that the points extrapolated are
only the residual rt obtained every f epochs: performing
extrapolation at every CD update would be time consuming.

2.3. Dual perspective on CD

The Dykstra algorithm aims at solving problems of the form:

θ̂ = arg min
θ∈∩pj=1Cj

‖z − θ‖2 (7)
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where C1, . . . , Cp are p closed convex sets, with associated
projections ΠC1 , . . . ,ΠCp . The iterates of the (cyclic3) Dyk-
stra algorithm are defined in Algorithm 2 (see Bauschke &
Combettes (2011, Th. 29.2) for a convergence proof in the
cyclic case).

The connection with CD for the Lasso has already been no-
ticed (Tibshirani, 2017). In the Lasso dual, the closed con-
vex sets are the p slabs Cj = {θ ∈ Rn : −1 ≤ x>j θ ≤ 1},
and the point to be projected is z = y/λ. In this context,
Dykstra’s algorithm produces (non-necessarily feasible) it-
erates converging to θ̂.

The connection with CD can be made noticing that
(Idn−ΠCj )(θ) = ST(x>j θ/ ‖xj‖2 , 1/ ‖xj‖2)xj . Using
the change of variable r = λθ, r̃ = λθ̃ and qj = xjβj/λ
and the previous expression, Algorithm 2 is equivalent to Al-
gorithm 3. It is to be noted that this is exactly cyclic CD for
the Lasso, where the output r of the algorithm corresponds
to the residuals (and not the primal solution β).

On Figure 1, we illustrate Problem (2) for n = p = 2
(Figure 1a). Figure 1b (resp. Figure 1c) shows the iterates at
the end of each epoch, produced by the cyclic (resp. shuffle)
Dykstra algorithm, and their extrapolated version forK = 4.
This corresponds to Algorithm 1 with f = 1. On Figure 1b,
the iterates always lie on the same hyperplane, and they
follow a noiseless VAR converging to θ̂: using only the last
K = 4 points, extrapolation finds the true solution up to
machine precision at the 5th iteration (Figure 1d). On the
contrary, when the projection order on C1 and C2 is shuffled
(Figure 1c), the iterates might not lie on the same hyperplane,
and the trajectory tends to be less regular and harder to
extrapolate. In what follows, we only consider cyclic orders
due to their appealing interplay with extrapolation.

3. Gap Safe screening
The Lasso gives sparse solutions, meaning that |Sβ̂ | � p.
Hence, if it were possible to discard features whose associ-
ated final coefficients vanish, the problem would become
much smaller while having the same solutions. Discarding
such features is called screening, and a key proposition for
screening rules is the following:

∀j ∈ [p], |x>j θ̂| < 1⇒ β̂j = 0 . (8)

Hence, the knowledge of θ̂ allows to identify the equicorre-
lation set4 {j ∈ [p] : |x>j θ̂| = 1}. The problem restricted
to the equicorrelation set has the same solutions as (1), while
being simpler : it typically has far less features. However,
θ̂ is unknown so Equation (8) is not practical. To address
this issue, Fercoq et al. (2015) have introduced the Gap Safe

3in the shuffle variant, the order is shuffled after each epoch
4even when primal solutions are not unique, the equicorrelation

set contains the support of any solution (Tibshirani, 2013).
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(a) Lasso dual problem with X ∈ R2×2. A close-up on the dashed
rectangle around θ̂ is given in Figure 1b and Figure 1c.
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Figure 1. In the Lasso case, the dual solution θ̂ is the projection of
y/λ onto the convex set ∆X (the intersection of the two slabs).

rules to remove the j-th feature:

|x>j θ| < 1− ‖xj‖
√

2

λ2
G(β, θ)⇒ β̂j = 0, (9)

which for any primal-dual feasible pair (β, θ) ∈ Rp ×∆X ,
is safe, meaning that it will not wrongly discard a feature.

The Gap Safe rules have the appealing property of being
convergent: at optimality, features not in the equicorrela-
tion set have all been discarded. Additionally, they can be
applied in a safe way in a sequential setting (Ndiaye et al.,
2017) when only an approximate solution of Problem (1)
is available for a λ′ close to λ (e.g., for cross-validation).
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Dynamic screening (Bonnefoy et al., 2014; 2015) is also
possible using an iterate βt for a solver converging to β̂:
more and more features can be discarded along iterations.

Gap Safe rules performance depends strongly on how well
θ approximates θ̂. Hence, θ acts as a certificate to discard
irrelevant features: if the duality gap is large, the upper
bound in (9) is crude, resulting in fewer (possibly) discarded
features. Section 6.2 shows that θaccel helps discarding
more features than θres, thus accelerating CD solvers and
achieving safe feature identification in fewer epochs.

A potential drawback of screening rules is that, if the first
duality gaps are large, CD computations are wasted on use-
less features during the first iterations (note that this is not
the case when an approximation is available, e.g., when
performing cross-validation; see Section 6.3). In the next
section, we design a WS strategy to address this issue.

4. Working sets
Working set (WS) approaches involve two nested iteration
loops: in the outer one, a set of featuresWt ⊂ [p] is defined.
In the inner one, an iterative algorithm is launched to solve
the problem restricted toXWt (i.e., considering only the fea-
tures inWt). In this section, we propose a WS construction
based on an aggressive use of Gap Safe rules.

4.1. WS with aggressive gap screening

As it appears in Equation (9), the critical quantity measuring
the importance of the j-th feature is

dj(θ) :=
1− |x>j θ|
‖xj‖

, (10)

because

dj(θ) >

√
2

λ2
G(β, θ)⇒ β̂j = 0 . (11)

Rather than discarding feature j from the problem if dj(θ)
is too large, the WS is made of the coordinates achieving the
lowest dj(θ)’s values. To do so, a first approach would con-
sist in introducing a parameter r ∈]0, 1[ and creating a work-
ing set with features such that dj(θ) < r

√
2G(β, θ)/λ2.

However, a pitfall for this strategy is that the WS size is
not explicitly under control: an inaccurate choice of r could
lead to extremely large WS, and would limit their bene-
fits. Instead, to achieve a good control on the working set
growth, we reorder the dj(θ)’s in a non-decreasing way:
djp(θ) ≥ · · · ≥ dj1(θ). Then, for a given working set size
pt, we choose, following Massias et al. (2017):

Wt = {j1, . . . , jpt} . (12)

When θ = θtres and the features are normalized (a common,
but not systematic preprocessing step), this WS construction

simply consists in finding the xj’s achieving the largest cor-
relation with the residual, i.e., finding the largest

∣∣x>j rt∣∣’s.
Writing the data-fitting term F (β) = ‖y −Xβ‖2 /2, and
checking that ∇jF (βt) = −x>j rt, then the previous rule
coincides with gradient-based and correlation-based ones
(Stich et al., 2017; Perekrestenko et al., 2017):

1− dj(θtres) =
∣∣x>j rt∣∣ /max(λ,

∥∥X>rt∥∥∞)

∝
∣∣x>j rt∣∣ =

∣∣∇jF (βt)
∣∣ .

However, the advantage of Equation (10) is that there is no
restriction on the choice of the dual feasible point θ ∈ ∆X .
If a better candidate than rescaled residuals is available, it
should be used instead. Considering the (ideal) case where
the dual point constructed is θ̂, then the WS rule (12) yields
the equicorrelation set (if pt is large enough), which is the
best performance to expect in general for a WS construction.

When subproblems are solved with the same precision ε
as considered for stopping the outer-loop and if the WS
Wt grows geometrically (e.g., pt+1 = 2pt) and monoton-
ically (i.e.,Wt ⊂ Wt+1), then convergence is guaranteed
provided the inner solver converges. Indeed, this growth
strategy guarantees that as long as the problem has not been
solved up to precision ε, more features are added, eventually
starting the inner solver on the full problem until it reaches
an ε-solution. The initial WS size is set to p1 = 100, ex-
cept when an initialization β0 6= 0p is provided (e.g., for
path/sequential computations, see Section 6.3), in which
case we set p1 = |Sβ0 |. This WS construction has many
advantages: as it only requires a dual point, it is flexible
and can be adapted to other objective functions (contrary
to approaches such as Kim & Park (2010) which need to
rewrite the Lasso as a QP). Moreover, exact resolution of
the subproblems is not required for convergence. Our policy
to choose pt avoids two common WS drawbacks: working
sets growing one feature at a time, and cyclic behaviors,
i.e., features entering and leaving the WS repeatedly.

We have coined our proposed algorithm implementing this
WS strategy with dual extrapolation CELER (Constraint
Elimination for the Lasso with Extrapolated Residuals).

5. Practical implementation
The implementation5 is done in Python and Cython (Behnel
et al., 2011).

Linear system If the linear system (U t)>U tz = 1K is
ill-conditioned, rather than using Tikhonov regularization
and solve (U>t Ut + γI)z = 1K as proposed in Scieur et al.
(2016), we stop the computation for θaccel and use θres for
this iteration. In practice, this does not prevent the proposed

5 https://github.com/mathurinm/celer

https://github.com/mathurinm/celer
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Algorithm 4 CELER

input :X, y, λ, β0

param :pinit = 100, ε, ε = 0.3,max it,prune = True
init :θ0 = θ0

inner = y/
∥∥X>y∥∥∞

if β0 6= 0p then // warm start
p1 = |Sβ0 |

else
p1 = pinit

for t = 1, . . . ,max it do
compute θtres

θt = arg maxθ∈{θt−1,θt−1
inner,θ

t
res}
D(θ) // Eq. (4)

gt = G(βt−1, θt) // global gap

if gt ≤ ε then
break

for j = 1, . . . , p do
compute dtj = (1− |x>j θt|)/‖xj‖

if prune then
εt = εgt
set (dt)Sβt−1 = −1 // monotonicity

if t ≥ 2 then
pt = min(2|Sβt−1 |, p) // Eq. (14)

else
εt = ε
set (dt)Wt−1 = −1 // monotonicity

if t ≥ 2 then
pt = min(2pt−1, p) // doubling size

Wt =
{
j ∈ [p] : dtj among pt smallest values of dt

}
// Approximately solve sub-problem :

get β̃t, θtinner with Algorithm 1 applied to
(y,XWt , λ, (β

t−1)Wt , εt)
set βt = 0p and (βt)Wt

= β̃t

θtinner = θtinner/max(λ, ‖X>θtinner‖∞)
return βt, θt

methodology from computing significantly lower gaps than
the standard approach.

Practical cost of dual extrapolation The storage cost of
dual extrapolation is O(nK) (storing rt, . . . , rt−K). The
main computation cost lies in the dual rescaling of raccel,
which is O(np), and corresponds to the same cost as an
epoch of CD/ISTA. The cost of computing c is small, since
the matrix (U t)>U t is only K × K. One should notice
that there is no additional cost to compute the residuals: in
reasonable CD implementations, they have to be maintained
at all iterations to avoid costly partial gradients computa-
tion (see Algorithm 1); for ISTA their computation is also
required at each epoch to evaluate the gradients X>rt. As
usual for iterative algorithms, we do not compute the duality
gap (nor the dual points) at every update of β, but rather
after every f = 10 CD/ISTA epochs6. This makes the cost
of dual extrapolation small compared to the iterations in the

6This explains why the indices for β and θ differ in Algorithm 1

primal. The influence of f and K in practice is illustrated
in additional experiments in Appendix A.1.

Robustifying dual extrapolation Even if in practice we
have observed fast convergence of θtaccel towards θ̂, Theo-
rem 1 does not provide guarantees about the behavior of
θtaccel when the residuals are constructed from iterates of
CD or other algorithms. Hence, for a cost of O(np), in
Algorithm 1 we also compute θtres and use as dual point

θt = arg max
θ∈{θs−1,θsaccel,θ

s
res}
D(θ) . (13)

The total computation cost of the dual is only doubled,
which remains small compared to the cost of f epochs of
ISTA/CD, while guaranteeing monotonicity of the dual ob-
jective, and a behavior at least as good as θtres.

Pruning While the monotonic geometric growth detailed
in Section 4 guarantees convergence, if p1 is chosen too
large, the working sets will never decrease. To remediate
this, we introduce a variant called pruning:

pt = min(2|Sβt−1 |, p) , (14)

in whichWt approximately doubles its size at each iteration.
This still guarantees that, even if p1 was set too small, pt
will grow quickly to reach the correct value. On the other
hand, if p1 is too big, many useless features are included at
the first iteration, but is is likely that their coefficients will
be 0, and hence |Sβ1 | will be small, making p2 small. This
is illustrated by an experiment in Appendix A.2.

6. Experiments
6.1. Higher dual objective

We start by investigating the efficiency of our dual point in
a case where λ is fixed. Figure 2 shows, for the CD solver
given in Algorithm 1, the duality gaps evaluated with the
standard approach P(βt)−D(θtres) and our proposed dual
extrapolation P(βt)−D(θtaccel), as well as the exact subop-
timality P(βt)− P(β̂) (note that the latter is not available
to the practitioner before convergence). The experiment is
performed on the leukemia dataset (n = 72, p = 7, 129),
with the design matrix columns set to unit `2-norm, and
y centered and set to unit `2-norm so that the first primal
objective is P(0p) = 0.5. The algorithm is run without
warm start (β0 = 0p) for λ = λmax/20, and the values of
θtaccel and θtres are monitored7. P(β̂) is obtained by running
the solver up to machine precision.

For a better analysis of the impact of dual extrapolation,
in this experiment (and here only), we have not imposed

7λmax :=
∥∥X>y∥∥∞ is the smallest λ s.t. β̂ = 0p
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monotonicity of the various dual objectives, nor have we
used the best of both points as proposed in Equation (13).

As claimed in Section 2, we can observe that θres mas-
sively overestimates the suboptimality gap: while a true
suboptimality gap of 10−6 is reached around epoch 200, the
classical upper bound achieves this value at epoch 400 only.
This means that if the duality gap were used as stopping
criterion, the solver would run for twice too long. On the
contrary, after a number of iterations where it behaves like
the canonical approach, the proposed choice θaccel accel-
erates and provides a duality gap much closer to the true
suboptimality. After a sufficient number of epochs, the two
are even almost equal, meaning that θtaccel is extremely close
to θ̂. The difference between the two approaches is particu-
larly striking for low values of ε. We also see, that, although
more bumpy than the standard approach, our proposed dual-
ity gap does not behave erratically. Hence, stabilizing it as
stated in Equation (13) does not seem mandatory (but since
it is cheap, we still do it for other experiments). Practical
choices of f and K are discussed in Appendix A.1.

0 200 400 600 800
epoch t

10−9

10−6

10−3
P(βt)−D(θtres)

P(βt)−D(θtaccel)

P(βt)− P(β̂)

Figure 2. Duality gaps evaluated with the canonical dual point
θres and the proposed construction θaccel, along with the true
suboptimality gap. Performance is measured for Algorithm 1 on
the leukemia dataset, for λ = λmax/20. Our duality gap quickly
gets close to the true suboptimality, while the canonical approach
constantly overestimates it.

6.2. Better Gap Safe screening performance

Figure 2 shows that extrapolated residuals yield tighter es-
timates of the suboptimality gap than rescaled residuals.
However, one may argue either that using the duality gap
as stopping criterion is infrequent (let us nevertheless men-
tion that this criterion is for example the one implemented
in the popular package scikit-learn (Pedregosa et al.,
2011)), or that vanilla CD is seldom implemented alone,
but rather combined with screening or working set tech-
niques. Here we demonstrate the benefit of the proposed
extrapolation when combined with screening: the number
of screened features grows more quickly when our new dual
construction is used. This leads to faster CD solvers, and
quicker safe feature identification.

The dataset for this experiment is the Finance/E2006-log1p

dataset (publicly available from LIBSVM8), preprocessed
as follows: features with strictly less than 3 non-zero en-
tries are removed, features are set to unit `2-norm, y is
centred and set to unit `2-norm, and an unregularized inter-
cept feature is added. After preprocessing, n = 16, 087 and
p = 1, 668, 738.
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Figure 3. Number of variables discarded by the (dynamic) Gap
Safe rule as a function of epochs of Algorithm 1, depending on the
dual point used, for λ = λmax/5 (Finance dataset).

Figure 3 shows the number of screened variables as a func-
tion of the number of epochs in Algorithm 1, when using
either standard residual rescaling or dual extrapolation to
get the dual point θt in Equation (9). The solver stops once
a duality gap of 10−6 is reached. We can see that the faster
convergence of θtaccel towards θ̂ observed in Figure 2 trans-
lates into a better Gap Safe screening: features are discarded
in fewer epochs than when θtres is used. The gain in number
of screened variables is directly reflected in terms of com-
putation time: 70 s for the proposed approach, compared to
290 s for Gap Safe rule with rescaled residuals.

6.3. Working sets application to Lasso path

In practice, it rarely happens that the solution of Problem (1)
must be computed for a single λ: the ideal value of the regu-
larization parameter is not known, and β̂ is computed for sev-
eral λ’s, before the best is selected (e.g., by cross-validation).
The values of λ are commonly9 chosen on a logarithmic grid
of 100 values between λmax and λmax/102 or λmax/103.
For the Finance dataset, we considered λmax/102, leading
to a support of size 15, 000. In such sequential context,
warm start is standard and we implement it for all algo-
rithms. It means that all solvers computing β̂ are initialized
with the approximate solution obtained for the previous λ
on the grid (starting from λmax).

A comparison between CELER and the BLITZ algorithm
is presented in Figure 4. We refer to Johnson & Guestrin
(2015) for a more extensive comparison which shows that
BLITZ outperforms Lasso solvers such as L1 LS (Kim et al.,
2007), APPROX (Fercoq & Richtárik, 2015) or GLMNET
(Friedman et al., 2010) on a large collections of datasets and

8http://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/.

9this is the default grid in GLMNET or scikit-learn

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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settings. In our experiments, we have used BLITZ’s C++
open source implementation10. Results show that CELER
clearly outperforms BLITZ. It also shows that the dynamic
pruning of the working set does not bring much in this
setting. Figure 10 in Appendix A.3 shows the same result
for a coarser grid of 10 values of λ.
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Figure 4. Times to solve the Lasso path to precision ε for 100
values of λ, from λmax to λmax/100, on the Finance data. CELER

outperforms BLITZ. Both safe and prune versions behave similarly.

GLMNET comparison Another popular solver for the
Lasso is GLMNET, which uses working sets heuristics
based on KKT conditions. However, the resulting solu-
tions are not safe in terms of feature identification. Figure 5
shows that for the same value of stopping criterion11, the
supports identified by GLMNET contain much more fea-
tures outside of the equicorrelation set (determined with
Gap Safe rules after running CELER with ε = 10−14).
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Figure 5. Number of false positives for GLMNET and CELER on
a Lasso path on the leukemia dataset, depending on the stopping
criterion ε.

Single λ To demonstrate that the performance observed
in Figure 4 is not only due to the sequential setting, we also
perform an experiment for a single value of λ = λmax/20.
The Lasso estimator is computed up to a desired precision

10https://github.com/tbjohns/BlitzL1/
11on primal decrease for GLMNET, on duality gap for CELER

Table 1. Computation time (in seconds) for CELER, BLITZ and
scikit-learn to reach a given precision ε on the Finance dataset with
λ = λmax/20 (without warm start: β0 = 0p).

ε 10−2 10−3 10−4 10−6

CELER 5 7 8 10
BLITZ 25 26 27 30
scikit-learn 470 1350 2390 -

ε which is varied between 10−2 and 10−6 (all solvers use
duality gap). CELER is orders of magnitude faster than
scikit-learn, which uses vanilla CD. The WS approach of
BLITZ is also outperformed, especially for low ε values.
This is most likely due to a bad estimation of the subopti-
mality gap with the dual point chosen in BLITZ.

7. Discussion
The WS approach of BLITZ, analogous to that of CELER,
is based on a geometric interpretation of the dual. The
criterion to build Wt can be reformulated to match (12)
(with the notable difference that pt is determined at run-
time by solving an auxiliary optimization problem). How-
ever, for the analysis to hold, the dual point θt used in the
outer loop must be a barycenter of the previous dual point
θt−1 and the current residuals, rescaled on the subprob-
lem rt−1/max(λ, ‖X>Wt−1

rt−1‖∞). This prevents BLITZ
from using extrapolation. The flexibility of CELER w.r.t. the
choice of dual point enables it to benefit from the extrapo-
lated dual point returned by the inner solver. Figure 4 shows
that this dual point is key to outperform BLITZ.

For the sake of clarity and readability, we have focused on
the Lasso case. Yet, the same methodology could be applied
to generic `1-type problems: B̂ ∈ arg minB∈Rp×q F (B) +
λΩ(B), where F is a smooth function and Ω is a norm
separable over the rows of B. Many problems can be cast
as such an instance: Multitask Lasso, Multiclass Sparse
Logistic Regression, SVM dual, etc.

Conclusion
In this paper we have illustrated the importance of improv-
ing duality gap computations for practical Lasso solvers. Us-
ing an extrapolation technique to create more accurate dual
candidates, we have been able to accelerate standard solvers
relying on screening and working set techniques. Our ex-
periments on popular (sparse or dense) datasets showed the
importance of dedicating some effort to the improvement of
dual solutions: the combined benefits obtained both from
improved stopping time and from screening accuracy has
led to improved state-of-the-art solvers at little coding effort.

https://github.com/tbjohns/BlitzL1/
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A. Additional experiments
A.1. Choice of f and K
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Figure 6. Duality gap evaluated with θaccel as a function of the
parameter f , for K = 5.

Figure 6 shows that if the residuals used to extrapolate are
too close (small f ), the performance of acceleration is too
noisy (though the duality gap still converges to the true
suboptimality gap). For residuals too far apart (large f ), the
convergence towards θ̂ is slower and the duality gap does
not reach the true suboptimality gap as it should ideally.
f = 10 provides the best performance.
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Figure 7. Duality gap evaluated with θaccel as a function of the
parameter K, for f = 10.

Figure 7 shows that the choice of K is not critical: all
performances are nearly equivalent. Hence, we keep the
default choice K = 5 proposed in Scieur et al. (2016).

A.2. Working set size policy

In this section, we demonstrate how the growth policy we
chose in (14) behaves better than others. We consider two
types of growth: geometric of factor γ:

pt = min(γ|Sβt−1 |, p) , (15)

and linear of factor γ:

pt = min(γ + |Sβt−1 |, p) . (16)

We implement these two strategies with factor 2 and 4 for
the geometric, and 10 and 50 for the linear. We consider
two scenarios:

• undershooting, with p1 = 10 much smaller than the
true support size |S(β̂)| = 983 (obtained with λ =
λmax/20),

• overshooting, with p1 = 500 much larger than the true
support size |S(β̂)| = 63 (obtained with λ = λmax/5).

Figure 8 shows that, when the first working set is too small
(choice of p1 = 10), the approximate solutions are dense
and the subsequent Wt grow in size. Amongst the four
strategies considered, the geometric growth with factor 2
quickly reaches the targeted support size (contrary to the
linear strategies), and does not create way too large WS like
the geometric strategy with factor 4 does.

Figure 9 shows that, if the initial guess is too large, using
|Sβt−1 | instead of |Wt−1| immediately decreases the size of
W1, thus correcting the initial mistake and avoiding solving
too large subproblems.
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Figure 8. Size of working sets defined by CELER with linear or
geometric growth, when the support size is underestimated.
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A.3. Path on coarser grid of λ

We repeat the experiment of Section 6.3 with a grid of 10
values between λmax and λmax/102. The running time of
CELER is still inferior to the one of BLITZ.
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Figure 10. Times to solve the Lasso path to precision ε for 10
values of λ, from λmax to λmax/100, on the Finance data. CELER

outperforms BLITZ. Both safe and prune versions behave similarly.

A.4. Path on other dataset

Table 2 reproduces the results of Figure 4 on another
dataset: bcTCGA, obtained from the The Cancer Genome
Atlas (TCGA) Research Network12. For this dense dataset,
n = 536 and p = 17, 323 (unregularized intercept column
added). The grid goes from λmax to λmax/100. The conclu-
sions from Figure 4 still hold.

Table 2. Computation time (in seconds) for CELER (no pruning)
and BLITZ to reach a given precision ε for a Lasso path on a dense
grid, on the bcTCGA dataset.

ε 10−2 10−4 10−6 10−8

CELER 6 45 160 255
BLITZ 22 101 252 286

Note that for the lowest precision the Blitz solver stops
running due to internal stopping criterion measuring primal
decrease and time spent on working set, but the evaluated
duality gap when the solver stops is not always lower than ε
along the path.

12http://cancergenome.nih.gov/


