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Appendix
In this appendix we provide proofs of all the technical derivations. For the reader convenience the corresponding lemmas
and theorems are restated.

Appendix A: Normal Projections

The following standard lemma on normal projections will be needed later for computing expectations of projection esti-
mators and linking them to the dimension of the corresponding subspace.
Lemma 1. Let ε be a random N (0, IN ) vector in RN , and let S be a linear subspace in RN . Then the random vector
PS ε = USε has an N (0, US) distribution with US being the projection matrix onto S.
The squared norm ‖PS ε‖2 is χ2

d-distributed with d = dim(S). In particular E[‖PS ε‖2] = d.

Proof. By definition of Gaussian vectors, for every a ∈ RN we have that

E[exp(〈a, USε〉] = E[exp(〈UTS a, ε〉)] = exp(
1

2
〈a, USUTS a〉),

and since US is a projection matrix, USUTS = US , so USε ∼ N (0, US). Let {v1, . . . , vd} be an orthonormal basis for S
and V = [v1, . . . , vd]; then V TV = Id and V ε ∼ N (0, Id). Also,

‖PS ε‖2 =

d∑
i=1

(vTi ε)
2 = ‖V ε‖2,

thus ‖PS ε‖2 is χ2-distributed with d degrees of freedom, so

E[‖PS ε‖2] = d.

Appendix B: Two-Pass Dynamic Programming

Proof of (8). Since we defined πm̄ to be the partition having as elements all the segments of πm, in particular we have
m ⊂ m̄ and

PFm = PFm̄ PFm = PFm PFm̄ .
Moreover, since PFm̄ Y − PFm Y ∈ Fm̄, then by the projection theorem we have that

(Y − PFm̄ Y )⊥(PFm̄ Y − PFm Y ),

so the Pythagorean theorem implies that

‖Y − PFm Y ‖2 = ‖Y − PFm̄ Y ‖2 + ‖PFm̄ Y − PFm Y ‖2.

Thus, the minimization of criterion (4) simplifies to

min
m∈M

Crit(m) = min
06d′6d′′6D

{
min
|m̄|=d′′

{
‖Y − PFm̄ Y ‖2 + min

m⊂m̄
|m|=d′

‖PFm̄ Y − PFm PFm̄ Y ‖2
}

+ σ2K pen(d′, d′′)

}
.

Instead of computing this minimum exactly we will take a greedy step in the second minimum by defining

m̃ := arg min
|m̄|=d′′

‖Y − PFm̄ Y ‖2,

and plugging it into the third minimum to obtain the following relaxation:

min
m∈M

Crit(m) 6 min
06d′6d′′6D

{
‖Y − PFm̃ Y ‖2 + min

m⊂m̃
|m|=d′

‖PFm̃ Y − PFm PFm̃ Y ‖2 + σ2K pen(d′, d′′)

}

= min
06d′6d′′6D

{
min
|m|=d′′

‖Y − PFm Y ‖2 + min
m⊂m̃
|m|=d′

‖PFm̃ Y − PFm PFm̃ Y ‖2 + σ2K pen(d′, d′′)

}
.
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The second inner minimization of the last equation can then be relaxed by restricting it to partitions satisfying the clustering
property, since

min
m∈Mm̃,d′

‖PFm̃ Y − PFm PFm̄ Y ‖2 6 min
m∈Mȳm̃,d

′
‖PFm̃ Y − PFm PFm̄ Y ‖2.

This leads to the following upper bound:

min
m∈M

Crit(m) 6 min
06d′′6D

{
min
|m|=d′′

‖Y − PFm Y ‖2 + min
06d′6d′′

m∈Mȳm̃,d
′′

‖PFm̃ Y − PFm PFm̃ Y ‖2 + σ2K pen(d′, d′′)

}
.

Therefore, we can define the following relaxation for the minimization of the criterion in (4):

Critr(d
′′) := min

|m|=d′′
‖Y − PFm Y ‖2 + min

06d′6d′′

m∈Mȳm̃,d
′′

{
‖PFm̃ Y − PFm PFm̃ Y ‖2 + σ2K pen(d′m, d

′′
m)

}
,

which corresponds to (8).

Theorem 4.1. Let (yi)
N
i=1 ⊂ R, D ∈ N and K > 0. Then, recalling the dynamic programming recursions in (9) and (10),

• for all 1 6 d 6 D,

m̃d ∈ arg min
|m̄|=d

‖Y − PFm̄ Y ‖2,

• for all 1 6 δ 6 d 6 D,

˜̃m(d,δ) ∈ arg min
m∈Mȳm̃δ

‖PFm̄ Y − PFm PFm̄ Y ‖2.

Furthermore, Algorithm 1 correctly solves the minimization problem in (8), with time and space complexity O(N3 +D4)
and O(N2 +D3), respectively.

Proof. Here we abuse the notation of m andM so that if Y n is the sub-vector of the first n component of Y then m and
M are still defined by mere restriction to the first n component and PFm Y n still makes sense for m ∈M.

To prove the 1st point we need to show that Cd(n), defined inductively as

C1(n) := R[1,n], n ∈ J1, NK,
Cd(n) := min

i∈Jd,nK
{Cd−1(i− 1) +R[i,n]}, 2 6 d 6 D, d 6 n 6 N,

is equal to min
|m̄|=d

‖Y n − PFm̄ Y n‖2, with Y n = (Y1, . . . , Yn). This implies that for n = N we obtain the result for all d.

This is straightforward since if, for Y n, πm = {0 = i0 < i1 < · · · < id < id+1 = n} is a partition, then

‖Y n − PFm̄ Y n‖2 =

d∑
k=0

R[ik+1,ik+1].

Taking the minimum over |m̄| = d or, equivalently, over the values of i1, i2, . . . , id, we obtain

min
|m̄|=d

‖Y n − PFm̄ Y n‖2 = min
0=i0<i1<···<id<id+1=n

d∑
k=0

R[ik+1,ik+1]

= min
d6id+16n

{
min

0<i1<···<id−1<id

{
d−1∑
k=0

R[ik+1,ik+1]

}
+R[id+1,n]

}
= min
i∈Jd,nK

{Cd−1(i− 1) +R[i,n]}.
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This yields our 1st point:

m̃d ∈ arg min
|m̄|=d

‖Y − PFm̄ Y ‖2.

To prove the second point, we first define, in the same notations of Algorithm 1, Yr as a rearrangement of Y according to
the permutation φd, and m̃r as a rearrangement of m̃. Also Y (t)

r denotes the truncation of Yr to the tth-segment. By the
clustering property in (7) we have that m ∈Mȳm̃r ,δ

if and only if m̄ ∈Mȳm̃r ,δ
, hence

min
m∈Mȳm̃,δ

‖PFm̄ Y − PFm PFm̄ Y ‖2 = min
m∈Mȳm̃r

,δ

‖PFm̄r Yr − PFm PFm̄r Yr‖
2

= min
m∈Mȳm̃r

,δ

‖PFm̄r Yr − PFm̄ PFm̄r Yr‖
2.

Here we are back to the same setup of the 1st point, so we need to show that G(t,δ) defined inductively as

G(t,1) := R̄[1,t], t ∈ J1, dK,

G(t,δ) := min
i∈Jδ,tK

{G(i−1,δ−1) + R̄[i,t]}, 2 6 δ 6 t 6 d,

is equal to minm̄∈Mȳm̃r
,δ
‖PFm̄r Y

t
r − PFm̄ PFm̄r Y

t
r ‖2 and we obtain the desired result at t = d. The same derivation as

for the 1st point carries over by using ¯̄y(k,l) :=
∑l
i=k α(i)ȳ(i)∑l
i=k α(i)

and R̄[k,l] :=
∑l
i=k α(i)(ȳ(i) − ¯̄y(k,l))

2 for all 1 6 k 6 l 6 d

as defined in Algorithm 1, and we obtain the result since Y tr is constant over every segment.

Since both points hold, then by the definition of m(d̂,δ̂) in Algorithm 1 we obtain a solution to the minimization criterion
in (8), thus establishing the correctness of Algorithm 1.

Regarding the complexity of the algorithm, the first step consists in making the ȳ[k,l] and R[k,l] matrices. This can be
done efficiently by making a cumulative sum matrix (

∑l
i=k yi)k,l, whose rows can be formed inO(N) time and the whole

matrix in O(N2) time. We compute the ȳ[k,l] matrix in O(N2) time and R[k,l] in O(N2) time, hence this first step has
time complexity O(N3) and space complexity O(N2).

The 1st dynamic programming recurrence has time complexity O(DN2) and space complexity O(DN), since there are
O(DN) comparisons to perform in order to find the minimum of O(N) elements.

D backtracking operations are needed for the 1st dynamic programming recurrence. They run in O(D) time to obtain the
optimal models m̃d := {0 = i0 6 i1 < i2 < · · · < id 6 id+1 = N} from 1 to D. This backtracking procedure has time
complexity O(D2) and space complexity O(D2).

Each of the D sorting operations that return φd for all d can be done with O(D lnD) space and time complexity; more
efficient sorting algorithms can be used but since this is not the bottleneck operation in Algorithm 1 we do not require more
efficiency. On the other hand O(D lnD) space for sorting- D sorting stages can be done using the same memory space- is
overcome by the D2 storage cost of D storages. More efficient sorting algorithms are described in (Cormen et al., 2009)
and (Goodrich & Tamassia, 2001) Overall, these steps have time complexity O(D2 lnD) and space complexity O(D2).

For the second preprocessing steps we need to compute (α(k))
d
k=0, ¯̄y(k,l) and R̄[k,l]. As before, we do this via a cumulative

sum matrix (α(k))
d
k=0 which is built in O(D2) time, and a weighed cumulative sum matrix (

∑l
i=k α(i)ȳi)k,l built in

O(D2) time. We can then compute (¯̄y)[k,l] in O(D2) and R[k,l] in O(D2) time, and doing this for D models requires a
time complexity of O(D4) and a space complexity of O(D2).

The 2nd dynamic programming step with backtracking now requires a time complexity of O(D4) and a space complexity
of O(D3) to store ˜̃m(d,δ) for all d and δ.

Computing B(d,δ) requires obtaining pen((d, δ)) (see (20) and (19)), which can be done recursively using the s (2) and (3)
in O(DN + D2) in time and O(DN + D2) in space; the minimization to compute Crit(m(d̂,δ̂)), which requires O(D2)

time and O(1) space; and backtracking to obtain m(d̂,δ̂), which requires O(D) time and O(D) space, since everything is

already stored so we just need to look up m̃d̂ and rearrange back ˜̃m(d̂,δ̂) using φd̂.

The overall complexity of the algorithm is dominated by O(N3 +D4) in time and O(N2 +D3) in space.
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The time and space complexity can be improved upon using the efficient implementation in (Celisse et al., 2017) for the
dynamic programming of Steps 3 and 11, this implementation change the order of the for loops of d′ and d′′ and computes
recursively the values of R[i,n] and R̄[i,t] as needed, so no preprocessing of steps 1 and 9 is needed. With this, we get a
time and space complexity O(N2D +D4) and O(DN +D3), respectively. The useful regime in which the result of this
algorithm are significant is d′′m∗ = o( N

logN ) according to corollary 6.1 so we only to choose D within those constraint. To
balance computational performance and statistical performance we can choose D = O(N1/2) giving us a time and space
complexity O(N5/2 and O(N3/2), respectively.

Appendix C: Model Selection criterion for change points and clustering

Proof of (12). We start by computing the probability distribution of F ; the law of total probability yields

dµF =
∑
m∈M

pmdµF/m,

and Bayes’ theorem then provides the posterior distribution of Y/m,

dµm/Y

dµm
=
dµY/m

dµY

=
dµY/m∫

dµY/m′dµm′

=

∫
dµY/F dµF/m∑

m′∈M pm′
∫
dµY/F dµF/m′

.

Both µm/Y and dµm are absolutely continuous with respect to the counting measure, hence we have

dµm/Y

dµm
=
pm/Y

pm
.

We denote by φN the density of the multivariate N (0, IN ) distribution. The law of total probability again gives

dµY/m =

∫
f∈Fm

φN

(
Y − f
σ

)
lf/m(f)df.

Putting these conditional probabilities together, we obtain the following a-posteriori distribution for the random variable
m given the observation Y :

pm/Y =

pm

∫
f∈Fm

φN

(
Y − f
σ

)
lf/m(f)df

∑
m′∈M pm′

∫
f ′∈Fm

φN

(
Y − f ′

σ

)
lf/m′(f

′)df ′
.

This complete the proof.

Lemma 2. Let l : R→ R+ be a four times differentiable probability density function. Define, for f ∈ R, yn ∈ Rn:

Ln(f, yn) := −‖y
n − f1n‖22

2nσ2
+

1

n
ln l(f),

σ2
Ln(f) :=

1

|L′′n(f, yn)|
.

Let A ⊂ R∞ such that for all y ∈ A the following holds:

• the integrals
∫
R exp(Ln(f, yn))df are bounded uniformly (in n and yn) by some constant β.

• the sequence f̂n :=
∑n
k=1 yk
n converges and has as limit f̂ = lim

n→∞

∑n
k=1 yk
n .
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• Ln(·, yn) has a sequence of maximizers (f̄n(yn))∞n=1 at which Ln(·, yn) has a negative second derivative.

• there is a δ0, N0 and m,M > 0 such that for all n > N0 we have |L(i)
n (f, yn)| < M for all |f − f̄n| < δ0 for

i ∈ J2, 4K and m < |L(2)
n (f, yn)|, where L(i)

n is the ith-derivative of Ln(f, yn) with respect to f .

then the sequence (f̄n(yn))n∈N converges to f̄ = lim
n→∞

∑n
k=1 yk
n and we have:

∫
R

exp

(
−‖y

n − f1n‖22
2σ2

+ ln l(f)

)
df =

√
2πσLn(f̄n)√

n
exp(nLn(f̄n))(1 +O(n−3/2)).

Proof. We begin by observing that f̂n =
∑n
i=1 yi
n = arg maxf∈R−‖y

n−f1n‖22
2nσ2 . We will show that (f̄n)∞n=1 should have

the same limit as (f̂n)∞n=1.
Since d2

df2

∑n
k=1(yk − f)2 = 2n > 0, we have, by integration, that

−
n∑
k=1

(yk − f)2 +

n∑
k=1

(yk − f̂n)2 = −n(f − f̂n)2.

Thus, we obtain

lim sup
n→∞

1

2nσ2
sup

|f−f̂n|>δ

{
−

n∑
k=1

(yk − f)2 +

n∑
k=1

(yk − f̂n)2

}
= lim sup

n→∞

1

2σ2
sup

|f−f̂n|>δ
−(f − f̂n)2 = − δ2

2σ2
.

If there is δ0 > 0 and a subsequence (nl)
∞
l=1 such that |f̂nl − f̄nl | > δ0 for all l, then

− 1

2nlσ2

nl∑
k=1

(yk − f̄nl)2 6 − δ2
0

2σ2
− 1

2nlσ2

nl∑
k=1

(yk − f̂nl)2.

By assumption
∑n
k=1 yk
n = f̂n → f̂ then ln l(f̂n)→ ln l(f̂). Thus, there is an N1 such for all n > N1 we obtain

− 1

n
+
l(f̂)

n
6
l(f̂n)

n
.

On the other hand, l is bounded by some C, hence

1

n
ln l(f̄n) 6

1

n
ln(C).

This gives

1

n
ln l(f̄n)− 1

n
ln l(f̂n) 6

1

n
ln(C) +

1

n
− 1

n
ln l(f̂) = O

(
1

n

)
.

Therefore, for all f̂nl and f̄nl such that |f̂nl − f̄nl | > δ0 we have that

Lnl(f̄nl , y
nl) =− 1

2nlσ2

nl∑
k=1

(yk − f̄nl)2 +
1

nl
ln l(f̄nl)

6− 1

2nlσ2

nl∑
k=1

(yk − f̂nl)2 +
1

nl
ln l(f̂nl) +O(n−1

l )− δ2
0

2σ2

=Lnl(f̂nl , y
nl)− δ2

0

2σ2
+O(n−1

l ). (18)

This implies that there is an l0 such that Lnl0 (f̂nl0 , y
nl0 ) < Lnl0 (f̄nl0 , y

nl0 )− δ2
0

4σ2 , which in turn contradicts the fact that
f̄n is a maximizer of Ln for all n.
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From here we conclude that for all δ there is N2 ∈ N for all n > N2 we have |f̄n − f̂n| < δ/2, and since the sequence
(f̂n)∞n=1 converges, there is an N3 for all n > N3 we have that |f̂n − f̂ | < δ/2, which in turn implies that for all
n > N4 = max{N2, N3} we have |f̄n − f̂ | < δ. Thus our original claim and first part of the lemma is proved, namely,
that the sequence (f̄n)∞n=1 is convergent and f̂ = lim

n→∞
f̂n = lim

n→∞
f̄n = f̄ .

For a fixed δ > 0 we will approximate both terms of the following decomposition:∫
R

exp(nLn(f, yn))df =

∫
R−(f̂−δ,f̂+δ)

exp(nLn(f, yn))df +

∫
(f̂−δ,f̂+δ)

exp(nLn(f, yn))df.

Just as before, since f̄n → f̄ there is an N5 such for all n > N5 , for all f ∈ R− (f̂n − δ, f̂n + δ),

− 1

2nσ2

n∑
k=1

(yk − f)2 6 − 1

2nσ2

n∑
k=1

(yk − f̂n)2 − δ2

2σ2
.

Since both f̂n and f̄n have the same limit, then by continuity there is N6 starting from which we get:

− 1

2nσ2

n∑
k=1

(yk − f)2 6 − 1

2nσ2

n∑
k=1

(yk − f̄n)2 − δ2

4σ2
.

Following the same steps leading to (18), we obtain:

1

n
ln l(f) 6

1

n
ln l(f̄n) +O

(
1

n

)
6

1

n
ln(C) +O

(
1

n

)
.

These two results together imply for that there is an N7 such that for all n > N7 we have

Ln(f, yn) 6 − δ2

8σ2
.

Hence for n > N6 we can bound the first integral as follows:∫
R−(f̄n−δ,f̄n+δ)

exp(nLn(f, yn))df =

∫
R−(f̄n−δ,f̄n+δ)

exp((n− 1)Ln(f, yn)) exp(Ln(f, yn))df

6 exp

(
−(n− 1)

δ2

8σ2

)∫
R

exp(Ln(f, yn))df

6 exp

(
−(n− 1)

δ2

8σ2

)
β.

Now we turn to the integral over (f̄n − δ, f̄n + δ). Taking the Taylor series of Ln around f̄n (and omitting the second
argument, yn, for simplicity) we obtain

Ln(f) = Ln(f̂) + (f − f̄n)L(1)
n (f̄n) +

1

2
(f − f̄n)2L(2)

n (f̄n) +
1

6
(f − f̄n)3L(3)

n (f̄n) +O
(
(f − f̄n)4

)
,

where L(1)
n (f̄n) = 0, and using the Taylor expansion of exp(y) around 0 for the higher order terms we obtain

exp(nLn(f)) = exp(nLn(f̄n)) exp
(n

2
(f − f̄n)2L(2)

n (f̄n)
)
×
(

1 +
n

6
(f − f̄n)3L(3)

n (f̄n) + nO
(
(f − f̄n)4

))
.

For the term with odd derivative it is easy to see that the integral is zero∫
(f̄n−δ,f̄n+δ)

n

6
(f − f̄n)3L(3)

n (f̄n) exp
(n

2
(f − f̄n)2L(2)

n (f̄n)
)
df = 0
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The big-O term coming from the residual of the expansion can be neglected since by definition there is a C > 0 such that

∫
(f̄n−δ,f̄n+δ)

nO
(
(f − f̄n)4

)
exp

(n
2

(f − f̄n)2L(2)
n (f̄n)

)
df 6 2Cn

∫ ∞
f̄n

(f − f̄n)4 exp
(
−n

2
(f − f̄n)2|L(2)

n (f̄n)|
)
df

= Cn

∫ ∞
0

u3 exp
(
−n

2
u2|L(2)

n (f̄n)|
)
d(u2)

= Cn

∫ ∞
0

u5/2−1 exp
(
−n

2
u|L(2)

n (f̄n)|
)
du

= Cn−3/2 Γ(5/2)

|L(2)
n (f̄n)|

6 Cn−3/2 Γ(5/2)

m

= O(n−3/2).

The second derivative term can be approximated as follows:

∫
(f̄n−δ,f̄n+δ)

exp
(n

2
(f − f̄n)2L(2)

n (f̄n)
)
df =

∫ ∞
−∞

exp
(n

2
(f − f̄n)2L(2)

n (f̄n)
)
df +O

(
e−(n−1) δ2

8σ2

)
=

√
2πσLn(f̄n)√

n
+O

(
e−(n−1) δ2

16σ2

)
.

Since the last term is exponentially small on n for fixed δ putting everything together we get the final claim:

∫
R

exp(nLn(f))df =

√
2πσLn(f̄n)√

n
exp(nLn(f̄n))(1 +O(n−3/2))

Proof of (14). Observe first that the conditions of Lemma 2 hold for a large class of sufficiently smooth and bounded
(possibly improper) priors l(f) and for the data generated according to the sampling scheme in (11), since under these
assumptions the number of samples in each cluster [k] tends to infinity as N → ∞ a.s. and the sample mean converges
almost surely (a.s.), i.e., f̂k = lim

n→∞
f̂kn a.s. From Lemma 2, the sequence (f̄kn)∞n=1 is convergent for every cluster [k],

and f̂k = lim
n→∞

f̂kn = lim
n→∞

f̄kn = f̄k a.s. Thus, by continuity,

ln
(
σLn(f̄kn) exp(nLn(f̄kn))(1 +O(n−3/2))) = ln

(
σLn(f̂kn) exp(nLn(f̂kn))(1 +O(n−3/2)) +O(1))

)
= ln(σLn(f̂kn)) + nLn(f̂kn) + ln(1 +O(n−3/2)) +O(1)),

with σ2
Ln

(f) = 1
|L′′n(f,yn)| = σ2

1+σ2

n (ln(l(fn)))(2)
. From Lemma 2 we can rewrite the logarithm of the posterior distribution
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in (13) as follows:

ln pm/Y = ln pm −
d′+1∑
k=1

|[k]|
2

ln(2πσ2)−
d′+1∑
k=1

1

2
ln |[k]|+ 1

2

d′+1∑
k=1

lnσ2
Ln + (d′ + 1) ln

√
2π

−
d′+1∑
k=1

‖y[k] − f̂kek‖22
2σ2

+

d′+1∑
k=1

ln

(
1 + o

(
1

|[k]|

))
+O(d′m)

= ln pm −
N

2
ln(2πσ2)−

d′+1∑
k=1

1

2
ln |[k]| − 1

2

d′+1∑
k=1

ln

(
1 +

σ2

|[k]|
ln l(fk)

)(2)

+ (d′ + 1) ln(
√

2πσ)

− ‖y − f̂m‖
2
2

2σ2
+

d′+1∑
k=1

ln

(
1 + o

(
1

|[k]|

))
+O(d′m)

= lnCN + ln pm −
d′+1∑
k=1

1

2
ln |[k]| − 1

2

d′+1∑
k=1

ln

(
1 +O

(
1

|[k]|

))
+ (d′ + 1) ln(

√
2πσ)

− ‖y − PFm y‖22
2σ2

+

d′+1∑
k=1

ln

(
1 + o

(
1

|[k]|

))
+O(d′m),

where CN is constant depending only on N . If we want to maximize the likelihood we would be interested in finding
m ∈M such that for all m′ ∈M we have ln pm

pm′
> 0. Since

∑d′+1
k=1

1
|[k]| 6 d′+ 1 and ln(1 +x) = x+ o(x), this leads to

ln
pm/Y

pm′/Y
= ln

pm
pm′

+ (d′m − d′m′) ln(
√

2πσ)− 1

2

d′m+1∑
k=1

ln |[km]| −
d′
m′+1∑
k=1

ln |[km′ ]|


−
‖y − PFm y‖22 − ‖y − PFm′ y‖

2
2

2σ2
+O(d′m + d′m′),

hence maximizing the likelihood is equivalent to minimizing:

CritMAP(m) = ln
1

pm
+

1

2

d′m+1∑
k=1

ln |[km]|+ ‖y − PFm y‖22
2σ2

+O(d′m).

To avoid the dependency of the criterion on the number of elements in each cluster we observe that

d′+1∑
k=1

ln |[k]| = (d′ + 1) ln(

d′+1∏
k=1

|[k]|
1

d′+1 ) 6 (d′ + 1) ln
N

d′
,

from the arithmetic-geometric mean inequality, so we have that

0 6 (d′ + 1) ln
N

d′
− (d′ + 1) ln(

d′+1∏
k=1

|[k]|
1

d′+1 ) 6 (d′ + 1) ln
N

d′
,

Thus for all K > 1 we obtain the following upper bound, which corresponds to (14):

CritMAP(m) 6
‖y − PFm y‖22

2σ2
+K

(
ln

1

pm
+

1

2
(d′m + 1) ln

N

d′m

)
+O(d′m).

Appendix D: Oracle Inequality and Upper Bound on the Risk
Lemma 3. There exists a sequence (BN )N∈N for which for all m ∈M

pm =
exp(−d′m − d′′m)

BNS2(d′′m + 1, d′m + 1)CNd′′m
, (19)
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is a valid probability mass function onM, and this sequence satisfies the following bounds:

e3

(e− 1)2(e+ 1)
(1− 3e−N−1) 6 BN 6

e3

(e− 1)2(e+ 1)
.

Proof. Fixing d′ and d′′, we can make a model πm by first choosing a subset of cardinality d′′ from {1, 2, . . . , N};
there are CNd′′ ways to make this choice. This leaves us with d′′ + 1 segments. We then partition the segments into
exactly d′ + 1 parts, which corresponds to taking a partition into d′ + 1 parts of {1, 2, . . . , d′′ + 1}, where the distance
between any two elements of the same part is at least two. This can be done in S2(d′′ + 1, d′ + 1) ways. Thus if we let
A(d′, d′′) = {πm ∈ ΠN : |πm| = d′ and |πm|0 = d′′}, we have that

|A(d′, d′′)| = S2(d′′ + 1, d′ + 1)CNd′′ .

Since S2(·, ·), CNd′′m and the exponential are all non-negative, for p = (pm)m∈M to be a valid probability mass function we
only need to find a positive sequence (BN )N∈N such that pm sum to 1. Now,

∑
m∈M

pm = (BN )−1
N−1∑
d′=0

N∑
d′′=d′

∑
m∈A(d′,d′′)

(
S2(d′′ + 1, d′ + 1)CNd′′

)−1
exp(−d′ − d′′)

= (BN )−1
N−1∑
d′=0

N∑
d′′=d′

|A(d′, d′′)|
(
S2(d′′ + 1, d′ + 1)CNd′′

)−1
exp(−d′ − d′′)

= (BN )−1
N−1∑
d′=0

exp(−d′)
N∑

d′′=d′

exp(−d′′)

= (BN )−1
N−1∑
d′=0

exp(−d′)e
−d′ − e−N−1

1− e−1

= (BN )−1 1

1− e−1

(
1− e−2N

1− e−2
− e−N−1 − e−2N−1

1− e−1

)
= (BN )−1 e3

(e− 1)2(e+ 1)

(
1− e−2N − e−N−1 + e−2N−1 − e−N−2 + e−2N−2

)
= 1,

which holds for the choice BN = e3

(e−1)2(e+1)

(
1− e−2N − e−N−1 + e−2N−1 − e−N−2 + e−2N−2

)
. The bounds on BN

are easy to verify.

The choice of probability mass function (pm) in Lemma 3 distributes the mass evenly among models of the same dimen-
sions. On the other hand, to balance the exponential increase in the number of models the exponential factor makes pm
decrease exponentially with the dimensions. Together with the fact that the prior lY/m was absorbed in the error term of
the approximation in Lemma 2, we obtain a set of what can be considered as least favorable priors for our Bayesian setting,
and this will have the effect of reducing the upper bound on the risk.
Lemma 4. For 1 6 k 6 N − 1 and N > 4, with the convention 0 ln 0 = 0, the following bounds hold for the binomial
coefficients: (

N

k

)k
6 CNk 6

(
Ne

k

)k
,

and the following bounds hold for the Stirling numbers of the second kind:

kN−k 6 S(N, k) 6
1

2
(Ne)kkN−2k.

In particular, we have that

d′′m ln[d′′me]− d′m ln
d′′m
e

+ d′′m ln
N

d′′m
6 ln

1

pm
6 d′m ln[d′′me

2] + d′′m ln[d′me
2] + d′′m ln

N

d′′m
.
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Proof. For 1 6 l < k 6 N we have

N

k
6
N − l
k − l

6
N

k − l
.

Hence, (
N

k

)k
6
N(N − 1) . . . (N − l + 1)

k(k − 1) . . . 1
= CNk 6

Nk

k!
.

On the other hand we have that

k ln k − k =

∫ k

1

lnxdx− 1

=

k−1∑
l=1

∫ l+1

l

lnxdx− 1

6
k−1∑
l=1

ln(l + 1)− 1

6 ln(k!),

thus we obtain k lnN − ln(k!) 6 k(lnN − ln k + 1), and taking the exponential yields

CNk 6
Nk

k!
6

(
Ne

k

)k
.

The following bound for Stirling numbers of the second kind can be found in (Rennie & Dobson, 1969):

1

2
(k2 + k + 2)kN−k−1 − 1 6 S(N, k) 6

1

2
CNk k

N−k, 1 6 k 6 N − 1.

Using the upper bound on the binomial coefficients we can easily derive bounds for the Stirling numbers. In particular,
since

1

2
(k2 + k + 2)kN−k−1 − kN−k =

1

2
(k2 + k + 2)kN−k−1 − 2k

2
kN−k−1

=
1

2
(k2 − k + 2)kN−k−1

> 1,

we obtain the lower bound

S(N, k) >
1

2
(k2 + k + 2)kN−k−1 − 1 > kN−k.

The upper bound is derived as follows:

S(N, k) 6
1

2
CNk k

N−k 6
1

2
(Ne)kkN−2k.

Finally, since S2(N + 1, k + 1) = S(N, k), we have from Lemma 3 that

ln
1

pm
= ln

(
BNS

2(d′′m + 1, d′m + 1)CNd′′m exp(d′m + d′′m)
)

= lnBN + lnS(d′′m, d
′
m) + lnCNd′′m + d′m + d′′m

6d′m ln[d′′me
2] + d′′m ln[d′me

2] + d′′m ln
N

d′′m
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and

ln
1

pm
> ln

e3

(e− 1)2(e+ 1)
+ ln(1− 3e−N−1) + (d′′m − d′m) ln d′′m + d′m ln

N

d′m
+ d′m + d′′m

> d′′m ln[d′′me]− d′m ln
d′′m
e

+ d′′m ln
N

d′′m
,

since ln e3

(e−1)2(e+1) ≈ 0.604, and for N > 4 we have ln(1 − 3e−N−1) > ln(1 − 3e−5) ≈ −0.0204. This leads to the
desired result.

From this lemma, the penalty term in (15) behaves like d′′m ln N
d′′m

, which would correspond to the behavior of the first part
when the dimensions are close but would penalize more those models with d′m � d′′m.

Theorem 6.1 (Oracle inequality for f̂m̂). WithM restricted to models such that ed′m 6 N and for the choice of K = 3a,
pm as in 3, pen(m) as in 15 and m̂ ∈M corresponding to

m̂ ∈ arg min
m∈M

‖y − f̂m‖22 + σ2K pen(m), (20)

We obtain for all a > 1,

Ef∗ [‖PFm̂ Y −f∗‖2] 6 arg min
m∈M

{
a

a− 1
Ef∗ [‖PFm Y −f∗‖2]+

a2σ2

a− 1

(
7 + 3(d′m + 1) ln

N

d′m
+ 6 ln

1

pm

)}
. (21)

The proof of this theorem follows the line of reasoning described in (Massart, 2003). To establish this result we rely on the
Gaussian concentration inequality stated below and whose proof can be found in (Cirel’son et al., 1976; Boucheron et al.,
2013):
Lemma 5 (Tsirelson-Ibragimov-Sudakov Inequality). Assume thatF : Rd → R is 1-Lipschitz andX is a Gaussian random
vector following N (0, σ2I). Then, there exists a variable ξ ∼ exp(1) following an exponential distribution of parameter
1, such that

F (X) 6 E[F (X)] + σ
√

2ξ.

Proof of Theorem 6.1. By definition of m̂ we have that, for all m ∈M,

‖y − f̂m̂‖22 + σ2K pen(m̂) 6 ‖y − f̂m‖22 + σ2K pen(m).

By expanding the squares and using Y = f∗ + ε we obtain

‖y − f̂m‖22 = ‖f∗ − f̂m‖22 + 2〈ε, f∗ − f̂m〉+ ‖ε‖22.

On the other hand, we have by expanding the squares,

‖f∗ − f̂m̂‖22 6 ‖f∗ − f̂m‖22 + 2〈ε, f∗ − f̂m〉 − 2〈ε, f∗ − f̂m̂〉+ σ2K pen(m)− σ2K pen(m̂). (22)

The rest of the proof will consist in upper bounding the expected value of the terms of the right hand side of (22).

Again, since Y = f∗ + ε we also have, for all m ∈M, that

f̂m = PFm Y = PFm f∗ + PFm ε. (23)

We can use Lemma 1 to derive a simple bound on E[〈ε, f∗ − f̂m〉] as follows:

E[〈ε, f∗ − f̂m〉] = −E[〈ε, f̂m〉]
= −E[〈ε,PFm f∗ + PFm ε〉]
= −E[〈ε,PFm ε〉]
= −E[‖PFm ε‖22]

= −σ2d′m 6 0,
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so we can discard this term since it has a negative contribution of small order on the bound.

To bound 2〈ε, f̂m̂ − f∗〉 we use Young’s inequality 2〈u, v〉 6 a‖u‖22 + 1
a‖v‖

2
2 for all a > 0 as follows:

2〈ε, f̂m̂ − f∗〉 = 2〈PFm̂⊕〈f∗〉 ε, f̂m̂ − f
∗〉

= 2〈PFm̂	〈f∗〉 ε+ P〈f∗〉 ε, f̂m̂ − f∗〉

6 a‖PFm̂	〈f∗〉 ε+ P〈f∗〉 ε‖22 +
1

a
‖f̂m̂ − f∗‖22

= a(‖PFm̂	〈f∗〉 ε‖
2
2 + ‖P〈f∗〉 ε‖22) +

1

a
‖f̂m̂ − f∗‖22, a > 0.

This gives

2〈ε, f̂m̂ − f∗〉 −
1

a
‖f̂m̂ − f∗‖22 6 aσ2(‖PFm̂	〈f∗〉 ε‖

2
2/σ

2 + ‖P〈f∗〉 ε‖22/σ2). (24)

Since ‖P〈f∗〉 ε‖22/σ2 follows a χ2
1 distribution,

E[‖P〈f∗〉 ε‖22/σ2] = 1. (25)

Similarly, for all m ∈M, ‖PFm	〈f∗〉 ε‖22/σ2 follows a χ2
d̄m

distribution, where

d̄m := dim(Fm 	 〈f∗〉) =

{
d′m, if f∗ ∈ Fm,
d′m + 1, otherwise.

Thus,

E[‖PFm	〈f∗〉 ε‖
2
2/σ

2] = d̄m 6 d′m + 1. (26)

We now use a maximal inequality to bound E(a‖PFm̂	〈f∗〉 ε‖22 + σ2K pen(m̂)):

E
[‖PFm̂	〈f∗〉 ε‖22

σ2
− K

a
pen(m̂)

]
6 E

[
max
m∈M

‖PFm̂	〈f∗〉 ε‖22
σ2

− K

a
pen(m̂)

]
6
∑
m∈M

E
[
max

{
0,
‖PFm̂	〈f∗〉 ε‖22

σ2
− K

a
pen(m̂)

}]
. (27)

On the other hand, since the norm is 1-Lipschitz, the Gaussian concentration inequality from Lemma 5 implies that there
is an exponential random variable ξ ∼ exp(1) such that

‖PFm	〈f∗〉 ε‖2/σ 6 E[‖PFm	〈f∗〉 ε‖2/σ] +
√

2ξ

6 (E[(‖PFm	〈f∗〉 ε‖2/σ)2])1/2 +
√

2ξ

6
√
d′m + 1 +

√
2ξ,

where we used (26) in the last step. Taking the square we obtain

‖PFm	〈f∗〉 ε‖22
σ2

6
(√

d′m + 1 +
√

2ξ
)2

6

(√
d′m + 1 +

√
2 ln

1

pm
+

√
2 max

{
0, ξ − ln

1

pm

})2

6

(√
(d′m + 1) ln

N

d′m
+

√
2 ln

1

pm
+

√
2 max

{
0, ξ − ln

1

pm

})2

6 3(d′m + 1) ln
N

d′m
+ 6 ln

1

pm
+ 6 max

{
0, ξ − ln

1

pm

}
= 3 pen(m) + 6 max

{
0, ξ − ln

1

pm

}
,
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where we used the inequalities
√
a+ b 6

√
a+
√
b in the second step, the assumption N > ed′m in the third step and the

inequality (a + b + c)2 6 3a2 + 3b2 + 3c2 in the fourth step. Since the second term in the last line is nonnegative, this
implies also that

max

{
0,
‖PFm	〈f∗〉 ε‖22

σ2
− 3 pen(m)

}
6 6 max

{
0, ξ − ln

1

pm

}
.

On the other hand, we have that

E
[
max

{
0, ξ − ln

1

pm

}]
=

∫ ∞
0

max

{
0, t− ln

1

pm

}
e−tdt

=

∫ ∞
ln 1
pm

(
t− ln

1

pm

)
e−tdt

= −
[(
t+ 1− ln

1

pm

)
e−t
]∞
t=ln 1

pm

= pm,

hence taking K = 3a in (27) yields

E
[‖PFm̂	〈f∗〉 ε‖22

σ2
− K

a
pen(m̂)

]
6
∑
m∈M

E
[
max

{
0,
‖PFm̂	〈f∗〉 ε‖22

σ2
− 3 pen(m̂)

}]
6 6

∑
m∈M

E
[
max

{
0, ξ − ln

1

pm

}]
6 6

∑
m∈M

pm

6 6.

Combining the last result and equations (24), (25) and (27) brings us to

E
[
2〈ε, f̂m̂ − f∗〉 −

1

a
‖f̂m̂ − f∗‖22 − 3aσ2 pen(m̂)

]
6 aσ2E

[‖PFm̂	〈f∗〉 ε‖22
σ2

+
‖P〈f∗〉 ε‖22

σ2
− 3 pen(m̂)

]
6 aσ2

∑
m∈M

E
[
max

{
0,
‖PFm	〈f∗〉 ε‖22

σ2
− 3 pen(m)

}]
+ aσ2

6 7aσ2.

Going back to (22), substituting K by its value and subtracting 1
a‖f̂m̂ − f

∗‖22 from both sides we obtain

a− 1

a
‖PFm̂ Y − f∗‖22 6

‖f∗ − PFm Y ‖22 − 2〈ε,PFm Y − f∗〉+ 2〈ε,PFm̂ Y − f∗〉 −
1

a
‖PFm̂ Y − f∗‖22 − 3aσ2 pen(m̂) + 3aσ2 pen(m).

Taking the minimum of this expression over m ∈ M and the expectation, and omitting negative terms we obtain the
desired result for all a > 1:

Ef∗ [‖PFm̂ Y − f∗‖2] 6 arg min
m∈M

{
a

a− 1
Ef∗ [‖PFm Y − f∗‖2] +

a2σ2

a− 1

(
7 + 3(d′m + 1) ln

N

d′m
+ 6 ln

1

pm

)}
.

Corollary 6.1. For the set of models described in (1) with f∗ ∈ Fm∗ the following properties hold:

• Adaptation and Risk Upper bound: The following adaptive upper bound in terms of d′m∗ and d′′m∗ holds for a = 2:

Ef∗ [‖PFm̂ Y − f∗‖2] 6 4σ2

(
7 + 3(d′m∗ + 1) ln

N

d′m∗
+ 6

(
d′m∗ ln[d′′m∗e

13
6 ] + d′′m∗ ln[d′m∗e

2] + d′′m∗ ln
N

d′′m∗

))
.
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• Consistency: If d′′m∗ = o(N/ lnN), then limN→∞N−1Ef∗ [‖f̂m̂ − f∗‖2] = 0.

Proof. Equation (21) implies in particular that for m∗ such that f∗ ∈ Fm∗ we obtain

Ef∗ [‖PFm̂ Y − f∗‖2] 6
a

a− 1
Ef∗ [‖PFm∗ Y − f

∗‖2] +
a2σ2

a− 1

(
7 + 3(d′m∗ + 1) ln

N

d′m∗
+ 6 ln

1

pm∗

)
.

To simplify the first expectation of the right hand side, we can use (23) and Lemma ?? to obtain

Ef∗ [‖PFm∗ Y − f
∗‖2] = Ef∗ [‖PFm∗ ε‖

2] = σ2d′m∗ .

Then, using Lemma 4 we can upper bound the rest of the right hand side, and choosing a = C
C−1 yieds, for all C > 1,

Ef∗ [‖PFm̂ Y − f∗‖2] 6 Cσ2d′m∗ +
C2σ2

C − 1

(
7 + 3(d′m∗ + 1) ln

N

d′m∗
+ 6

(
d′m∗ ln[d′′m∗e

2] + d′′m∗ ln[d′m∗e
2] + d′′m∗ ln

N

d′′m∗

))
=
C2σ2

C − 1

((
1− 1

C

)
d′m∗ + 7 + 3(d′m∗ + 1) ln

N

d′m∗
+ 6

(
d′m∗ ln[d′′m∗e

2] + d′′m∗ ln[d′m∗e
2] + d′′m∗ ln

N

d′′m∗

))
6
C2σ2

C − 1

(
7 + 3(d′m∗ + 1) ln

N

d′m∗
+ 6

(
d′m∗ ln[d′′m∗e

13
6 ] + d′′m∗ ln[d′m∗e

2] + d′′m∗ ln
N

d′′m∗

))
.

This upper bound achieves a minimum for C = 2, yielding the Adaptation and Risk Upper bound result:

Ef∗ [‖PFm̂ Y − f∗‖2] 6 4σ2

(
7 + 3(d′m∗ + 1) ln

N

d′m∗
+ 6

(
d′m∗ ln[d′′m∗e

13
6 ] + d′′m∗ ln[d′m∗e

2] + d′′m∗ ln
N

d′′m∗

))
.

Given that d′m∗ 6 d′′m∗ 6 N , this last equation also implies that

Ef∗ [‖PFm̂ Y − f∗‖2] = O(d′m∗ lnN + d′′m∗ lnN) = O(d′′m∗ lnN).

Hence, as long as d′′m∗ = o(N/ lnN), we obtain limN→∞N−1Ef∗ [‖f̂m̂ − f∗‖2] = 0, which establishes the Consistency
result.
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