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Property 5 (insensitivity to−∞). Since maxΩ(x) = maxq∈△D 〈q,x〉−Ω(q), if xj=−∞,

then qj = ∇maxΩ(x)j = 0 is the only feasible solution for the jth coordinate.

A.2. Proof of Proposition 1 (optimality of DP recursion)

Let vi(θ) be the highest-score path up to node i ∈ [N ]. Let Yi be the set of paths y =
(y1, . . . , yL) starting from node 1 and reaching node i, that is y1 = 1 and yL = i. Note that

L may depend on y but we do not make this dependency explicit. Because nodes are sorted in

topological order, we can compute vi(θ) by

vi(θ) = max
y∈Yi

L∑

t=2

θyt,yt−1
= max

y∈Yi

L−1∑

t=2

θyt,yt−1
+θyL,yL−1

= max
y∈Yi

L−1∑

t=2

θyt,yt−1
+θi,yL−1

.

Recall that Pi is the set of parent nodes of node i. From the associativity of the max operator,

vi(θ) = max
j∈Pi

max
y∈Yi

yL−1=j

(
L−1∑

t=2

θyt,yt−1
+ θi,yL−1

)

= max
j∈Pi

max
y∈Yi

yL−1=j

(
L−1∑

t=2

θyt,yt−1
+ θi,j

)

.

From the distributivity of + over max, we obtain

vi(θ) = max
j∈Pi



 max
y∈Yi

yL−1=j

L−1∑

t=2

θyt,yt−1



+ θi,j = max
j∈Pi

vj(θ) + θi,j ,

where we used the fact that the inner max operations are independent of yL = i. This con-

cludes the proof of the optimality of (3).

A.3. Proof of Proposition 2 (properties of DPΩ(θ))

We prove in this section the three main claims of Proposition 2. For the first two claims, we

rewrite (3) and (6) using the following notations:

v0i (θ) , max(u0
i (θ)) and vΩi (θ) , max(uΩ

i (θ)), where

u0
i (θ) , (θi,1 + v01(θ), . . . , θi,i−1 + v0i−1(θ),−∞,−∞, . . . ,−∞) ∈ R

N and

uΩ
i (θ) , (θi,1 + vΩ1 (θ), . . . , θi,i−1 + vΩi−1(θ),−∞︸︷︷︸

i

,−∞, . . . ,−∞) ∈ R
N .

These definitions are indeed valid as per Lemma 1, property 5.

Proof of DPΩ(θ) convexity. Since vΩ1 (θ) = 0, it is trivially convex. Assume that

vΩ2 (θ), . . . , v
Ω
i−1(θ) are convex. Then, vΩi (θ) is the composition of maxΩ and uΩ

i , a con-

vex function and a function which outputs a vector whose each coordinate is convex in θ. By

induction, since maxΩ is non-decreasing per coordinate (cf. Lemma 1 property 4), vΩi (θ) is

convex (e.g., ?, §3.2.4). Therefore vΩi (θ) is convex for all i ∈ [N ] and DPΩ(θ) = vΩN (θ) is

convex.

Proof of DPΩ(θ) bound. We clearly have vΩ1 (θ) ≥ v01(θ). Assume that vΩj (θ) ≥ v0j (θ) −

(j − 1)UΩ,N for all j ∈ {2, . . . , i − 1}. That is, uΩ
i (θ) ≥ u0

i (θ) − (i − 2)UΩ,N1, where

1 ∈ R
N is the unit vector. Then, by induction, we have

maxΩ(u
Ω
i (θ)) ≥ maxΩ(u

0
i (θ))− (i− 2)UΩ,N ≥ max(u0

i (θ))− (i− 1)UΩ,N ,

where we used Lemma 1, properties 1, 2 and 4. Therefore vΩi (θ) ≥ v0i (θ) − (i − 1)UΩ,N

for all i ∈ [N ] and hence, DPΩ(θ) ≥ LP(θ) − (N − 1)UΩ,N . Using a similar reasoning we
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obtain v0i (θ) − (i − 1)LΩ,N ≥ vΩi (θ) and therefore LP(θ) − (N − 1)LΩ,N ≥ DPΩ(θ). To

summarize, we obtain

LP(θ)− (N − 1)LΩ,N ≥ DPΩ(θ) ≥ LP(θ)− (N − 1)UΩ,N ,

which concludes the proof. Note that using property 1 of Lemma 1, this immediately implies

a bound involving LPΩ(θ) instead of LP(θ).

Proof that Ω = −γH ⇒ DPΩ(θ) = LPΩ(θ). We first show that maxΩ is associative.

Lemma 2. Associativity of maxΩ when Ω = −γH

We have maxΩ(maxΩ(x), c) = maxΩ(x, c) ∀x ∈ R
D, c ∈ R.

Proof. We simply use the closed form of maxΩ when Ω = −γH (cf. §B.1):

maxΩ(maxΩ(x), c) = γ log(exp(maxΩ(x)/γ) + exp(c/γ))

= γ log

(

exp

(

log
D∑

i=1

exp(xi/γ)

)

+ exp(c/γ)

)

= γ log

(
D∑

i=1

exp(xi/γ) + exp(c/γ)

)

= maxΩ(x, c),

and the lemma follows.

Using our shorthand notation, Lemma 2 can be used to write

maxΩ
(y1,...,yi,...,yL)

f(y) = maxΩ
v

maxΩ
(y1,...,v,...,yL)

f(y).

This is precisely the associative property that we used in the proof of Proposition 1. The

second property that we used, the distributivity of + over max, holds for any maxΩ, as per

Lemma 1 property 2. Thus, the same proof as Proposition 1 is also valid when we substitute

max with maxΩ, when Ω = −γH , which yields LPΩ(θ) = DPΩ(θ).

Proof that Ω = −γH ⇐ DPΩ(θ) = LPΩ(θ). Mirroring the previous proof, we first char-

acterize the regularizations Ω for which maxΩ is associative.

Lemma 3. Let Ω: △D → R be a regularization function, i. e., domΩ = △D. Assume that

there exist ω convex lower-semi-continuous defined on [0, 1] such that Ω(q) =
∑d

i=1 ω(qi). If

maxΩ(maxΩ(x), c) = maxΩ(x, c) ∀x ∈ R
D, c ∈ R,

then Ω(q) = −γ
∑d

i=1 qi log(qi) for some γ ≥ 0.

Proof. We start by writing the associativity property for three elements. For all x1, x2, x3 ∈ R,

maxΩ
(
(x1, x2, x3)

)
= maxΩ

(
maxΩ(x1, x2), x3)

)

= max
q+q3=1
q,q3≥0

q max
q̃1+q̃2=1

q̃i≥0

(
q̃1x1 + q̃2x2 − ω(q̃1)− ω(q̃2)

)
+ q3x3 − ω(q3)− ω(q)

= max
q1+q2+q3=1

qi≥0

q1x1 + q2x2 + q3x3 − Φ(q1, q2, q3), where

Φ(q1, q2, q3) , (q1 + q2)
(

ω
( q1
q1 + q2

)
+ ω

( q2
q1 + q2

))

+ ω(q1 + q2) + ω(q3).
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We have performed a variable change q1,2 = q q̃1,2 at the second line, and noticed q = q1+q2.

Therefore

maxΩ
(
(x1, x2, x3)

)
= Φ⋆(x1, x2, x3),

where Φ⋆ is the convex conjugate of Φ restricted to ]0, 1]3. By definition, we also have

maxΩ
(
(x1, x2, x3)

)
= Ω⋆(x1, x2, x3), so that Ω⋆ = Φ⋆ on R

3. As Ω is convex and lower

semi-continous, we can apply Moreau-Yoshida theorem and obtain Ω⋆⋆ = Ω = Φ⋆⋆ ≤ Φ.

Suppose that there exists q = (q1, q2, q3) ∈ △
3 such that Φ(q1, q2, q3) < Ω(q1, q2, q3). Given

the forms of Φ and Ω, Φ(q1, q2, 0) < Ω(q1, q2, 0). We let x = (x1, x2,−∞) ∈ R
3 such that

maxΩ(x1, x2,−∞) = maxΩ(x1, x2) = x1q1 + x2q2 − ω(q1)− ω(q2) = 〈x, q〉 − Ω(q)

< 〈x, q〉 − Φ(q) ≤ max
q∈△3

〈x, q〉 − Φ(q) = maxΩ
(
maxΩ(x1, x2),−∞)

)
,

leading to a contradiction. Therefore Ω ≥ Φ over △3, and finally Ω = Φ. We have used

the fact that the operator ∇maxΩ : R
2 → △2 is surjective, as △2 is a one-dimensional

segment,∇maxΩ is continuous and reaches the extreme values∇maxΩ(0,−∞) = (1, 0) and

∇maxΩ(−∞, 0) = (0, 1) — which allows to use the intermediate value theorem.

To conclude, for all q1, q2 ∈]0, 1] such that q1 + q2 ≤ 1, we have

ω(q1) + ω(q2) = (q1 + q2)
(

ω
( q1
q1 + q2

)
+ ω

( q2
q1 + q2

))

+ ω(q1 + q2)

ω(xy) + ω((1− x)y)− ω(y) = y(ω(x) + ω(1− x)) ∀ 0 < y ≤ 1, 0 < x < 1, (8)

where we have set y = q1 + q2 and x = q1
q1+q2

. The functional equation (8) was first studied

in the field of information theory. As first shown by ?, Theorem 0, and further extended (?),

all measurable solutions have the form

ω(x) = −γx log(x),

where γ ≥ 0 is a constant. The lemma follows.

Assuming that Ω is not equal to −γH for any γ ≥ 0, the previous lemma tells us that the

associativity property is not met for a triplet (x1, x2, x3) ∈ R
3. In Figure 5, we construct a

graph G such that

DPΩ(θ) = maxΩ(maxΩ(x1, x2), x3) 6= LPΩ(θ) = maxΩ(x1, x2, x3)

The proposition follows.
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Figure 5. In general, v6(θ) = DPΩ(θ) 6= LPΩ(θ).

A.4. Computation of ∇LPΩ(θ) and interpretation as an expectation

We show that ∇LPΩ(θ) ∈ conv(Y), and characterize a path distribution of which ∇LPΩ(θ)
is the expectation.
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Convex hull ofY . We rewrite LPΩ(θ) = maxΩ(u(θ)), where u(θ) , (〈Y ,θ〉)Y ∈Y . Using

the chain rule, we have

∇LPΩ(θ) = Ju(θ)
⊤∇maxΩ(u(θ)), (9)

where Ju is the Jacobian of u w.r.t. θ, a matrix of size |Y| × (N ×N). The horizontal slices

of Ju are exactly all the paths Y of Y . Using ∇maxΩ(u(θ)) ∈ △
|Y|, we conclude that

∇LPΩ(θ) ∈ conv(Y).

Induced distribution. From (9), we see that ∇LPΩ(θ) =
∑

Y ∈Y pθ,Ω(Y ) Y , where we

defined the distribution

pθ,Ω(Y ) ,
(

∇maxΩ(u(θ))
)

Y
.

Unfortunately, since u(θ) ∈ R
|Y|, computing pθ,Ω(Y ), let alone the expectation Eθ,Ω[Y ]

under that distribution, is intractable for general Ω.

A.5. Proof of Proposition 3 (computation of ∇DPΩ(θ))

Gradient computation. We first derive the recursion over E , ∇DPΩ(θ) using sensitivity

analysis, a.k.a backpropagation calculus. For any (i, j) ∈ E , since θi,j influences only vi, a

straighforward application of the chain rule gives

ei,j =
∂vN
∂θi,j

=
∂vN
∂vi

∂vi
∂θi,j

. (10)

Recall that v = (v1, . . . , vN ) and qi , ∇maxΩ(θi+v). With this vector defined, we can now

easily derive the two terms on the r.h.s of (10). Differentiating (6) w.r.t. θi,j straighforwardly

gives the second term ∂vi

∂θi,j
= qi,j .

The first term must be computed recursively. Recall that Cj denotes the children of node j.

Since a node j influences only its children i ∈ Cj , using the chain rule, we get

∂vN
∂vj

=
∑

i∈Cj

∂vN
∂vi

∂vi
∂vj

, ēj . (11)

Differentiating (6) w.r.t. vj again gives ∂vi

∂vj
= qi,j . By definition, we also have ∂vN

∂vi
= ēi and

ei,j = ēiqi,j . Hence,

ēj =
∑

i∈Cj

ēiqi,j =
∑

i∈Cj

ei,j .

Combining the above, for any j ∈ [N − 1], we obtain the following two-step recursion

∀ i ∈ Cj , ei,j = ēiqi,j and ēj =
∑

i∈Cj

ei,j .

The values (ei,j)(i,j)∈E can thus be computed in reverse topological order over the nodes of

G, initializing ēN = ∂vN

∂vN
= 1. The pseudo-code is summarized in Algorithm 1.

Associated random walk. It remains to show that E is also the expectation of Y ∈ Y
support of the following random walk, defined informally in the main text. Formally, we

define the random sequence (wt)t as

w0 = N, ∀ t > 0, ∀ i ∈ [N ], ∀ j ∈ Pi, P[wt = j|wt−1 = i] = qi,j .

We set yi,j , 1{∃ t > 0 s.t. wt−1 = i, wt = j} where 1 is the characteristic function of

an event, thereby defining a random variable Y ∈ Y , with distribution D. We leave implicit

the dependency of P in θ and Ω. As the depth of wt (number of edges to connect to the root
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Algorithm 1 Compute DPΩ(θ) and ∇DPΩ(θ)

Input: Edge weights θ ∈ R
N×N

v1 ← 0, ēN ← 1, Q,E ← 0 ∈ R
N×N

for i ∈ [2, . . . , N ] do ⊲ Topological order

vi ← maxΩ
j∈Pi

θi,j + vj

(qi,j)j∈Pi
← ∇maxΩ

j∈Pi

θi,j + vj

for j ∈ [N−1, . . . , 1] do ⊲ Reverse topological order

∀ i ∈ Cj , ei,j ← qi,j ēi, ēj ←
∑

i∈Cj
ei,j

Return: DPΩ(θ) = vN , ∇DPΩ(θ) = E ∈ R
N×N

Intermediate computation for Algorithm 2

ē , [ē]Ni=1 ∈ R
N , Q ∈ R

N×N

Algorithm 2 Compute 〈∇DPΩ(θ),Z〉 and ∇2DPΩ(θ)Z

Input: Edge weights and perturbation θ,Z ∈ R
N×N

Call Algorithm 1 with input θ to get ē and Q

v̇1 ← 0; ˙̄eN ← 0, Q̇, Ė ← 0 ∈ R
N×N

for i ∈ [2, . . . , N ] do ⊲ Topological order

v̇i ←
∑

j∈Pi
qi,j(zi,j + v̇j) (A1)

(q̇i,j)j∈Pi
← JΩ

(
(qi,j)j∈Pi

)
(zi,j + v̇j)j∈Pi

(A2)

for j ∈ [N−1, . . . , 1] do ⊲ Reverse topological order

∀ i ∈ Cj , ėi,j ← q̇i,j ēi + qi,j ˙̄ei (A3)
˙̄ej ←

∑

i∈Cj
ėi,j

Return: 〈∇DPΩ(θ),Z〉 = v̇N
∇2DPΩ(θ)Z = Ė ∈ R

N×N

node) is stricly decreasing with t, (wt)t reaches node 1 in finite time with probability one and

is constant after this event. We introduce the random variables (ȳj)j , defined for all j ∈ [N ]
as

ȳj , 1{∃ t ≥ 0, wt = j} =
∑

i∈Cj

yi,j if j 6= N , 0 otherwise.

By definition, using the fact that P[wt = j|wt−1 = i] is independent of t (Markov property),

for all i ∈ Cj and for all j ∈ [N − 1], we have

P[yi,j = 1] = E[yi,j ] = P[∃ t > 0, wt−1 = i]P[wt = j|wt−1 = i] = E[ȳi]qi,j .

Linearity of the expectation then provides

E[ȳj ] =
∑

i∈Cj

E[yi,j ],

with initialization E[ȳN ] = 1. We recover the same two-step recursion as the one defining

E and ē, with the same initialization. Hence the probabilistic interpretation of the gradient,

where the expectation is taken with respect to the distribution D of Y :

E = Eθ,Ω[Y ] and ē = Eθ,Ω[ȳ].

A.6. Computation of the directional derivative 〈∇DPΩ(θ),Z〉

The derivations of the following two sections allows to write Algorithm 2. Let v̇i ,

〈∇vi(θ),Z〉, where vi(θ) is defined in (6). Since vi only directly depends on vj + θi,j for

j ∈ Pi, a straighforward differentiation of 〈∇vi(θ),Z〉 gives

v̇i =
∑

j∈Pi

∂vi
∂vj

(v̇j + zi,j) .

Recall that ∂vi

∂vj
= qi,j and has already been obtained when computing ∇DPΩ(θ). Hence

equation (A1), reproduced here:

∀ i ∈ [2, . . . , N ] : v̇i =
∑

j∈Pi

qi,j(v̇j + zi,j). (12)

This recursion can be computed in topological order, starting from v̇1 = 0 to finish at v̇N =
〈∇DPΩ(θ),Z〉.
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A.7. Computation of the Hessian-vector product ∇2DPΩ(θ)Z

For convenience, let us define ∇2DPΩ(θ)Z , Ė. For (i, j) /∈ E , we evidently have ėi,j = 0.

For (i, j) ∈ E , since θi,j influences only vi and v̇i, we obtain

ėi,j =
∂v̇N
∂θi,j

=
∂v̇N
∂vi

∂vi
∂θi,j

+
∂v̇N
∂v̇i

∂v̇i
∂θi,j

.

We will now show how to derive each of the right-hand side terms in turn. We already know

that ∂vi
∂θi,j

= qi,j . We also have ∂v̇N
∂v̇i

= ui. Indeed, observe that v̇j only directly influences v̇i
for i ∈ Ci. Therefore, we have

∂v̇N
∂v̇j

=
∑

i∈Cj

∂v̇N
∂v̇i

qi,j ∀j ∈ [N − 1] (13)

and ∂v̇N

∂v̇1
= 1. Comparing (11) and (13), we see that (∂v̇N

∂v̇i
)
i

follows the same recursion as

(∂vN

∂vi
)
i
. Since ∂v̇N

∂v̇n
= ∂vN

∂vn
, both sequences are equal:

∂v̇N
∂v̇i

=
∂vN
∂vi

= ei.

Next, we derive ∂v̇i
∂θi,j

. Since, for j ∈ Pi, v̇j + zi,j does not depend on θi,j , differentiating (12)

w.r.t. θi,j , we obtain

∂v̇i
∂θi,j

=
∑

k∈Pi

∂qi,j
∂θi,j

(v̇k + zi,k)

=
∑

k∈Pi

∂2vi
∂θi,j∂θi,k

(v̇k + zi,k) , q̇i,j .

This can be conveniently rewritten in a vectorial form as

q̇i = ∇
2maxΩ(θi + v) (zi + v̇) = JΩ(qi) (zi + v̇),

where we have defined v̇ , (v̇1, . . . , v̇N ) and where we have used the function JΩ defined in

§B.1, that conveniently computes the Hessian of maxΩ from its gradient. The Hessian has this

form for both negentropy and ℓ22 regularizations. In a practical implementation, we only need

to compute the coordinates (i, j) of Q̇, for j ∈ Pi. Namely, as specified in (A2),

(q̇i,j)j∈Pi
← JΩ

(
(qi,j)j∈Pi

)
(zi,j + v̇j)j∈Pi

.

Finally, we derive ∂v̇N

∂vi
. Since vj influences only vi and v̇i for i ∈ Cj , the chain rule gives

∂v̇N
∂vi

=
∑

j∈Ci

∂v̇N
∂vj

∂vj
∂vi

+
∂v̇N
∂v̇j

∂v̇j
∂vi

=
∑

j∈Cj

ėi,j , ˙̄ei.

Combining the above, for any j ∈ [N − 1], we obtain the following two-step recursion (A3),

reproduced here:

∀ i ∈ Cj , ėi,j = q̇i,jei + qi,j ˙̄ei and ˙̄ej =
∑

i∈Cj

ėi,j .

Similarly to the computation of ∇DPΩ(θ), our algorithm computes this recursion in reverse

topological order over the graph G, yielding ∇2DPΩ(θ)Z = Ė.
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B. Examples of algorithm instantiations

We provide the explicit forms of maxΩ and its derivative for the negentropy and ℓ22 regular-

izations. Then, we provide details and pseudo-code for the two instances of differentiable

dynamic programming presented in §3.

B.1. Examples of maxΩ

Negative entropy. When Ω(q) = γ
∑D

i=1 qi log qi, where γ > 0 (smaller is less regularized),

we obtain

maxΩ(x) = γ log

(
D∑

i=1

exp(xi/γ)

)

∇maxΩ(x) = exp(x/γ)
/ D∑

i=1

exp(xi/γ)

∇2maxΩ(x) = JΩ(∇maxΩ(x)),

where JΩ(q) , (Diag(q)−qq⊤)/γ. Note that∇maxΩ(x) recovers the usual “softmax” with

temperature γ = 1. For a proof of the expression of maxΩ, see, e.g., (?, Example 3.25).

Squared ℓ2 norm. When Ω(x) = γ
2 ‖x‖

2
2 with γ > 0, we obtain the following expressions

maxΩ(x) = 〈q
⋆,x〉 −

γ

2
‖q⋆‖22

∇maxΩ(x) = argmin
q∈△D

‖q − x/γ‖22 = q⋆

∇2maxΩ(x) = JΩ(∇maxΩ(x)),

where JΩ(q) , (Diag(s) − ss⊤/‖s‖1)/γ and s ∈ {0, 1}D is a vector that indicates the

support of q. Note that ∇maxΩ(x) is precisely the Euclidean projection onto the simplex of

x/γ and can be computed exactly in worst-case O(D logD) time using the algorithm of (?)

or in expected O(D) time using the randomized pivot algorithm of (?). It can be efficiently

performed on Nvidia GPUs since recently. An important benefit of the squared ℓ2 norm,

compared to the negative entropy, is that∇maxΩ(x) tends to be sparse. This is useful, among

other things, to define sparse attention mechanisms (??).

B.2. Sequence prediction with the smoothed Viterbi algorithm

Computational graph. As illustrated in §3, the DAG contains a start node, S nodes for each

time step and end node. Therefore |V| = N = TS + 2. Only nodes from consecutive time

steps are connected to each other. Taking into account the start and end nodes, the total number

of edges is therefore |E| = (T − 1)S2 + 2S.

Representation. We follow the notation of §3, i.e. we represent Y and θ as T ×S×S tensors

(we can safely ignore the edges connected to the end node since their value is 0). We represent

Y as a binary tensor such that yt,i,j = 1 if Y is in states i and j in time steps t and t− 1, and

yt,i,j = 0 otherwise. Likewise, we represent the potentials θ as a real tensor such that θt,i,j
contains the potential of transitioning from state j to state i on time t.

Algorithms. Applying recursion (6) to this specific DAG, we obtain a smoothed version of

the Viterbi algorithm. Let vt,i be the score of being in state i up to time t. We can rewrite the

smoothed Bellman recursion as

vt,i(θ) , maxΩ
j∈[S]

vt−1,j(θ) + θt,i,j = maxΩ(vt−1(θ) + θt,i).
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Algorithm 3 Compute VitΩ(θ) and ∇VitΩ(θ)

Input: Potential scores θ ∈ R
T×S×S

⊲ Forward pass

v0 = 0S

for t ∈ [1, . . . , T ], i ∈ [S] do

vt,i = maxΩ(θt,i + vt−1)
qt,i = ∇maxΩ(θt,i + vt−1)

vT+1,1 = maxΩ(vT ); qT+1,1 = ∇maxΩ(vT )
⊲ Backward pass

uT+1 = (1, 0, . . . , 0) ∈ R
S

for t ∈ [T, . . . , 0], j ∈ [S] do

et,·,j = qt+1,·,j ◦ ut+1; ut,j = 〈et,·,j ,1S〉

Return: VitΩ(θ) = vT+1,1

∇VitΩ(θ) = (et−1,i,j)
T,S,S
t=1,i,j=1

Intermediary computations for Alg. 4:

Q , (q)T+1,S,S
t=1,i,j=1,U , (u)T+1,S

t=1,j=1

Algorithm 4 Compute 〈∇VitΩ(θ),Z〉 and ∇2VitΩ(θ)Z

Input: Z ∈ R
T×S×S ,θ ∈ R

T×S×S

Call Alg. 3 with input θ to get U , Q

⊲ Forward pass

v̇0 = 0S

for t ∈ [1, . . . , T ], i ∈ [S] do

v̇t,i = 〈qt,i, zt,i + v̇t−1〉
q̇t,i = JΩ(qt,i) (zt + v̇t−1)

v̇T+1,1 = 〈qT+1,1, v̇T 〉; q̇T+1,1 = JΩ(q̇T+1,1) v̇T

⊲ Backward pass

u̇T+1 = 0S ; Q̇T+1 = 0S×S

for t ∈ [T, . . . , 0], j ∈ [S] do

ėt,·,j = qt+1,·,j ◦ u̇t+1 + q̇t+1,·,j ◦ ut+1

u̇t,j = 〈ėt,·,j ,1S〉

Return: 〈VitΩ(θ),Z〉 = v̇T+1

∇2VitΩ(θ)Z = (ėt−1,i,j)
T,S,S
t=1,i,j=1

The value VitΩ(θ) , maxΩ(vT (θ)) can be computed in topological order, starting from

v0(θ). The total computational cost is O(TS2). Using the computations of §2.3 and §2.4 to

this specific DAG, we can compute∇VitΩ(θ), 〈∇VitΩ(θ),Z〉 and∇2VitΩ(θ)Z with the same

complexity. The procedures are summarized in Algorithm 3 and Algorithm 4, respectively.

From Proposition 2 property 1, VitΩ(θ) is a convex function for any Ω.

B.3. Monotonic aligment prediction with the smoothed DTW

Computational graph. As illustrated in §3, the DAG contains a start node and NANB nodes.

Therefore, |V| = N = NANB + 1. Due to the monotonic constraint, each node may only be

connected with at most 3 other nodes. The cardinality of Y is the delannoy(NA−1, NB−1)
number (??). That number grows exponentially with NA and NB .

Representation. We follow the notation of §3, i.e. we represent Y and θ as NA × NB

matrices. We represent Y as a binary matrix such that yi,j = 1 if ai is aligned with bj , and

yi,j = 0 otherwise. Likewise, we represent θ as a real matrix such that θi,j is a measure of

“discrepancy” between ai and bj .

Algorithms. Following the DTW literature (?), we seek an alignment with minimal cost. For

that reason, we introduce the smoothed min operator, its gradient and its Hessian as follows

minΩ(x) , −maxΩ(−x)

∇minΩ(x) = ∇maxΩ(−x)

∇2minΩ(x) = −∇
2maxΩ(−x)

= −JΩ(∇maxΩ(−x))

= −JΩ(∇minΩ(x)).

Applying (6) to the DTW DAG gives rise to a smoothed version of the algorithm. Let vi,j(θ)
be the alignment cost up to cell (i, j). Then the smoothed DTW recursion is

vi,j(θ) = θi,j +minΩ(vi,j−1(θ), vi−1,j−1(θ), vi−1,j(θ))

The value DTWΩ(θ) , vNA,NB
(θ) can be computed in O(NANB) time. Applying

the derivations of §2.3 and §2.4 to this specific DAG, we can compute ∇DTWΩ(θ),
〈∇DTWΩ(θ),Z〉 and ∇2DTWΩ(θ)Z with the same complexity. The procedures, with ap-

propriate handling of the edge cases, are summarized in Algorithm 5 and 6, respectively.
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Algorithm 5 Compute DTWΩ(θ) and ∇DTWΩ(θ)

Input: Distance matrix θ ∈ R
NA×NB

⊲ Forward pass

v0,0 = 0; vi,0 = v0,j =∞, i ∈ [NA], j ∈ [NB ]
for i ∈ [1, . . . , NA], j ∈ [1, . . . , NB ] do

vi,j = di,j +minΩ(vi,j−1, vi−1,j−1, vi−1,j)
qi,j = ∇minΩ(vi,j−1, vi−1,j−1, vi−1,j) ∈ R

3

⊲ Backward pass

qi,NB+1 = qNA+1,j = 03, i ∈ [NA], j ∈ [NB ]
ei,NB+1 = eNA+1,j = 0, i ∈ [NA], j ∈ [NB ]
qNA+1,NB+1 = (0, 1, 0); eNA+1,NB+1 = 1
for j ∈ [NB , . . . , 1], i ∈ [NA, . . . , 1] do

ei,j = qi,j+1,1 ei,j+1 + qi+1,j+1,2 ei+1,j+1+
qi+1,j,3 ei+1,j

Return: DTWΩ(θ) = vNA,NB

∇DTWΩ(θ) = (e)NA,NB

i,j=1

Intermediate computations for Algo. 6:

Q , (q)NA+1,NB+1,3
i,j,k=1 ; E , (e)NA+1,NB+1

i,j=1

Algorithm 6 Compute 〈∇DTWΩ(θ),Z〉, ∇2DTWΩ(θ) Z

Input: θ ∈ R
NA×NB ,Z ∈ R

NA×NB

Call Algo. 5 with input θ to retrieve Q and E

⊲ Forward pass

v̇i,0 = v̇0,j = 0, i ∈ [0, . . . , NA], j ∈ [NB ]
for i ∈ [1, . . . , NB ], j ∈ [1, . . . , NA] do

v̇i,j = zi,j + qi,j,1 v̇i,j−1 + qi,j,2 v̇i−1,j−1+
qi,j,3 v̇i−1,j

q̇i,j = −JΩ(qi,j) (v̇i,j−1, v̇i−1,j−1, v̇i−1,j) ∈ R
3

⊲ Backward pass

q̇i,NB+1 = q̇NA+1,j = 03, i ∈ [0, . . . , NA], j ∈ [NB ]
ėi,NB+1 = ėNA+1,j = 0, i ∈ [0, . . . , NA], j ∈ [NB ]
for j ∈ [NB , . . . , 1], i ∈ [NA, . . . , 1] do

ėi,j = q̇i,j+1,1 ei,j+1 + qi,j+1,1 ėi,j+1+
q̇i+1,j+1,2 ei+1,j+1+qi+1,j+1,2 ėi+1,j+1+
q̇i+1,j,3 ei+1,j + qi+1,j,3 ėi+1,j

Return: 〈∇DTWΩ(θ),Z〉 = v̇NA,NB

∇2DTWΩ(θ) Z = (ė)NA,NB

i,j=1

Note that when Ω is the negative entropy, DTWΩ(θ) is known as soft-DTW (?). While the

DP computation of DTWΩ(θ) and of its gradient were already known, the generalization to

any strongly convex Ω and the computation of ∇2DTWΩ(θ)Z are new. From Proposition

2 property 1, DTWΩ(θ) is a concave function of the discrepancy matrix θ for any Ω. With

respect to time-series, DTWΩ is neither convex nor concave.

C. Experimental details and further results

We finally provide details on the architecture used in experiments, with additionnals figures.

C.1. Named entity recognition (section §4.2)

Our model extracts word embedding from a 300-dimensional lookup table concatenated with

a 50-dimensional character embedding. This character embedding corresponds to the concate-

nation of the last hidden unit of a bi-directional character LSTM, as in ?. Character embedding

size is set to 50. A word LSTM then produces sentence-aware features for each word. This

LSTM is bi-directional with 100-dimensional hidden units per direction. The final features X

used to build the potential tensor θ are thus 200-dimensional. Note that, in contrast with ?:

• The look-up table is initialized with 300-dimensional embeddings from FastText (?),

trained on Wikipedia corpus.

• We do not pad letters prior to feeding the character LSTM as it is not principled.

• We do not train the unknown word embedding as we found it had no effect.

We convert tags to the IOBES (Inside-Outside-Begin-End-Stop) scheme to build a richer VitΩ
model than if we used the simpler IOB (Inside-Outside-Begin) scheme, that has a lower num-

ber of tags. We performed a small grid-search to select the step-size and batch-size used for

optimization: s ∈ {0.005, 0.01, 0.02}, b ∈ {8, 32, 128}. For each language and each loss, we

select the highest-scoring model on the validation set, and report the test score.

The model is strongly subject to overfitting using the convex surrogate loss and the log like-

lihood. We have to use a small batch size (b = 8) and vanilla SGD with large step size

(s = 0.01) to avoid this overfitting issue. For all losses, accelerated stochastic optimizers

have all lower generalization performance than SGD, as also noticed in (?) when using the
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Figure 6. Test predictions from the entropy and ℓ22 regularized named entity recognition (NER) models.

Red dots indicate ground truth. When using ℓ22 regularization, model predictions are sparse (grey borders

indicates non-zero cells). They are thus easier to introspect for ambiguities, as we can list a finite number

of possible outputs.

classical negative log-likelihood as a loss.

Visualization. The models using ℓ22 regularization perform nearly on par with the ones using

negentropy, as demonstrated in Table 1. On the other hand, ℓ22 regularization leads to tag

probability vectors that are sparse and hence easier to parse. They allow to detect ambiguities

more easily. We display a few tagged English sequences in Figure 6. The model using ℓ22
regularization correctly identifies an ambiguous entity (Union Bank of Switzerland) and can be

used to propose two tag sequences: (B-ORG, I-ORG, I-ORG, E-ORG) or (B-ORG, E-ORG, O,

S-LOC). Probabilities of every tag sequence can be computed using the matrix Q, as described

in §2.3 — this remains tractable as long as the matrix Q is sparse enough, so that the number of

non-zero probabilities sequence remains low. On the other hand, the model using negentropy

regularization never assign a zero probability to any tag sequence — it is therefore not tractable

to provide the user with a small set of interesting sequences.

C.2. Supervised audio-to-score transcription (section §4.3)

Audio sequences, sampled at 22.05 kHz, are split into frames of 512 samples. We extract

the following features from these sequences: energy, spectral centroid, spectral bandwidth,

and the 5 first MFCC features. All features are centered around the median and normalized.
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Figure 7. Alignment maps between score onsets and audio frames on test data from the Bach10 dataset.

Our end-to-end trained model qualitatively performs better than the baseline model.

The ∇DTWΩ layer is written in Cython1, and hence run on CPU. This technical choice was

suggested by the fact that we have to write explicit loops to specify the topological and reverse

topological pass over the DTW computation graph (see Algorithm 5). However, it is possible

to use only contiguous vector operations and thus take advantage of GPU computations — this

is left for future work. We use SciPy’s2 LBFGS-B solver to perform end-to-end training and

multinomial regression. We use a ℓ22 regularization on the weight W ,: we selected it using a

grid search over {10−5, 10−4, . . . , 1} and selected 10−3.

Further vizualisation. In Figure 7, we display the alignment maps we obtained using our

algorithm and using the baseline multinomial model followed by a hard-DTW alignment com-

putation. These alignment maps correspond to the predicted onsets of keys. Our model (in

orange) performs visibly better in predicting onsets.

C.3. Structured and sparse attention (section §5)

We use OpenNMT-py library3 to fit our structured attention model. Model architecture and

optimization details are as follow:

• We use a bidirectional LSTM encoder and decoder, with 500 units in each direction and

a depth of 2 layers .

• The decoder is fed with the input representation as in ?.

• SGD training with s = 1 learning rate, decaying from epoch 8 to epoch 15 with rate 0.65,

batch size of size 256.

• Training sentence of lengths superior to 50 are ignored, and translated sentence are forced

to a length inferior to 100.

• The temperature parameter is set to γ = 2 for entropy, and γ = 10 for ℓ22. Performance is

not affected much by this parameter, provided that it is not set too low in the ℓ22 case —

with a too small γ, VitΩ reduces to unregularized MAP estimation and ∇VitΩ has zero

derivatives.

We use a 1-million sentence subject of WMT14 English-to-French corpus, available at

1http://cython.org/
2http://scipy.org/
3http://opennmt.net/

http://cython.org/
http://scipy.org/
http://opennmt.net/
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Table 3. Detokenized BLEU score on newstest2014 data using regularized and unregularized attention.

Attention model WMT14 1M fr→en WMT14 en→fr

Softmax 27.96 28.08
Entropy regularization 27.96 27.98

ℓ22 reg. 27.21 27.28

http://nmt-benchmark.net/. We use Moses tokenizer and do not perform any post-

processing, before computing BLEU score on detokenized sentences (multi bleu.perl script).

Implementation. We implemeted a batch version of the ∇VitΩ layer on GPU, using the

PyTorch tensor API. Model with negentropy-regularized attention mechanism runs 1/2 as fast

as the softmax attention mechanism (approximately 7500 tokens/s vs 15000 tokens/s on a

single Nvidia Titan X Pascal). With ℓ22 regularization, it is only 1/3 as fast: approximately

5000 tokens/s. Although this remains reasonable, it could certainly be optimized by rewriting

kernels using lower-level languages (e.g., using ATen API from PyTorch.)

Further results. Table 3 provides BLEU scores for both translation directions on the 1 mil-

lion sentence subset of WMT14 we used. We observe that the introduction of structure and

sparsity does not hinder the general performance of the model. We provide several examples

of attention maps in Figure 8, that illustrate the sparsity patterns ℓ22 regularization uncovers.

http://nmt-benchmark.net/
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âc
e

au
x

m
oy
en
s de la

N
SA
.

For
example

,
the

presence
of

Mohammed
Merah

in
the

tribal
areas

in
Miranshah

was
reported

to
the

French
through

the
means

of
NSA

.
(eos)

Structured attention — entropy

A
ti
tr
e d’

ex
em

pl
e , la

pr
és
en
ce de

M
oh
am

m
ed

M
er
ah

da
ns le
s

zo
ne
s

tr
ib
al
es à

M
ira
ns
ha
h a

ét
é
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Figure 8. Attention on test samples from Newstest2014. Borders indicate non-zero cells. Translations

(y-axis) are often qualitatively equivalent, while attentions maps are sparse in the ℓ22 case.


