
Ranking Distributions based on Noisy Sorting

Adil El Mesaoudi-Paul 1 Eyke Hüllermeier 1 Róbert Busa-Fekete 2

Abstract
We propose a new statistical model for ranking

data, i.e., a new family of probability distributions

on permutations. Our model is inspired by the

idea of a data-generating process in the form of

a noisy sorting procedure, in which deterministic

comparisons between pairs of items are replaced

by Bernoulli trials. The probability of produc-

ing a certain ranking as a result then essentially

depends on the Bernoulli parameters, which can

be interpreted as pairwise preferences. We show

that our model can be written in closed form if

insertion sort is used as sorting algorithm and can

be characterized recursively if quick sort is used,

and propose a maximum likelihood approach for

parameter estimation. We also introduce a gener-

alization of the model, in which the constraints on

pairwise preferences are relaxed, and for which

maximum likelihood estimation can be carried

out based on a variation of the generalized itera-

tive scaling algorithm. Experimentally, we show

that the models perform very well in terms of

goodness of fit, compared to existing models for

ranking data.

1. Introduction
The analysis of ranking data has a long tradition in statistics,

and corresponding methods have been used in various fields

of application, such as psychology and the social sciences

(Marden, 1996). More recently, applications in information

retrieval (Liu, 2009) and machine learning (F¨urnkranz &

H¨ullermeier, 2010) have caused a renewed interest in the

analysis of rankings and related statistical tools, such as

probability distributions on rankings.

In contrast to probability distributions on the reals, the num-

ber of parametric distributions on rankings (permutations

1

Heinz Nixdorf Institute and Department of Computer Science,

Paderborn University, Germany

2

Yahoo Research, New York, USA.

Correspondence to: Adil El Mesaoudi-Paul <adil.paul@upb.de>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018

by the author(s).

of a fixed size) is rather limited. The most popular models

are Mallows (Mallows, 1957) and Plackett-Luce (Plackett,

1975; Luce, 1959), and to a lesser extent Babington Smith

(Babington-Smith, 1950). In this paper, we add another

class of probability distributions to this repertoire.

Our model is inspired by the idea of a data-generating pro-

cess in the form of a noisy sorting procedure (Biernacki &

Jacques, 2013), that is, the idea that a ranking is produced

as the result of a sorting process, in which comparisons are

not deterministic but dependant on chance. More specifi-

cally, comparisons between pairs of items are modelled as

Bernoulli trials, with the Bernoulli parameters representing

pairwise preferences. While these preferences obey certain

consistency constraints for our basic model, we also intro-

duce a generalization for which these constraints are relaxed.

For two sorting algorithms, insertion sort and quick sort, we

show that the former model can be written in closed form,

and that the latter has a recursive characterization.

In addition to proposing the models themselves, we address

the problem of parameter estimation based on sample data.

More specifically, we devise procedures for efficient maxi-

mum likelihood estimation. In an experimental study, we

assess the performance of our models in terms of goodness

of fit on a large number of real-world data sets.

The rest of the paper is organized as follows. In the next

section, we introduce notation and recall the basic families

of probability distributions on rankings. Our new model

classes are introduced in Section 3, their instantiation for

specific sorting algorithms is discussed in Section 4, and the

problem of parameter estimation is addressed in Section 5.

Experimental results are presented in Section 6, prior to

concluding the paper in Section 7.

2. Probability Distributions on Rankings
Consider a fixed set O = {o1, . . . , oK} of K choice alterna-

tives (objects/options/items). We identify a ranking over O
with a permutation ⇡ 2 SK , where SK denotes the collec-

tion of permutations on [K] = {1, . . . ,K}. Thus, each ⇡
is a mapping [K] �! [K], such that ⇡(k) denotes the posi-

tion of the kth item ok in the associated ranking. With each

ranking ⇡, we associate an ordering ⇡�1
, where ⇡�1

(j) is

the index of the item on position j. To simplify notation, we

Ranking Distributions based on Noisy Sorting

shall denote by ⇡ both a ranking and the associated ordering,

writing the former in brackets and the latter in parentheses.

For example, ⇡ = [2, 3, 1], ⇡ = (3, 1, 2), as well as the

function ⇡ defined by ⇡(1) = 2,⇡(2) = 1,⇡(3) = 1, all

denote the ranking in which o3 is at the top, o1 in the middle,

and o2 on the last position.

2.1. Mallows Distribution and Extensions

The Mallows model (MM) (Mallows, 1957) belongs to the

exponential family of distributions and is parametrized by a

reference ranking ⌧ and a dispersion parameter �:

P⌧,�(⇡) =
1

C(�)
exp

�
� �D(⇡, ⌧)

�
,

where D(⇡, ⌧) is the Kendall distance (the number of pair-

wise inversions between ⇡ and ⌧) and C(�) a normalization

constant. Thus, Mallows is a distance-based model: the

probability of a ranking ⇡ decreases with increasing dis-

tance from ⌧ , which is the mode of the distribution.

The generalized Mallows model (GMM) (Fligner & Ver-

ducci, 1986) is an extension of the MM model, which has

K � 1 dispersion parameters �1, . . . ,�K�1. Each of the

latter affects one specific position in the ranking, thereby

allowing permutations at the same distance from the refer-

ence ranking to have different probabilities. The probability

of a ranking ⇡ according to the GMM model is given by

P⌧,�(⇡) =
1

C(�)
exp

0

@�
K�1X

j=1

�jVj(⇡)

1

A ,

where Vj(⇡) =

P
i>j

q
⇡�1

(i) < ⇡�1
(j)

y
is the number

of inversions for item oj in ⇡ with respect to the identity

permutation

1

. As such, the GMM model uses an insertion

procedure in its generative process, in which a ranking is

generated by iteratively inserting elements according to the

reference ranking into a list. The probability of inserting an

element into a specific position is controlled by the inversion

distance and the �-parameters.

Meek & Meila (2014) further extend the GMM to the re-

cursive inversion model (RIM), which is able to capture a

hierarchical structure on the items. Instead of inserting sin-

gle items, complete subsequences are merged in a recursive

manner, preserving the order within each subsequence. The

model is specified by a binary recursive decomposition of

the items represented by a structure ⌧ , and the number of

inversions is controlled by a parameter ✓i associated with

each merge operation. By representing a RIM as a binary

tree, where the leaves correspond to the items and the in-

ternal vertices I to the parameters ✓i, the probability of a

1J·K maps true predictaes to 1 and false predicates to 0.

ranking ⌧(✓) becomes proportional to

Y

i2I
exp

�
� ✓ivi(⇡,⇡⌧)

�
,

where vi(⇡,⇡⌧) is the number of inversions at vertex i of

⌧(✓) for the ranking ⇡.

2.2. Plackett-Luce Distribution

The Plackett-Luce (PL) model (Plackett, 1975; Luce, 1959)

is parametrized by a vector ✓ = (✓1, ✓2, . . . , ✓K) 2 RK
+ .

Each ✓i can be interpreted as the weight or “strength” of the

option oi. The probability assigned by the PL model to a

ranking represented by a permutation ⇡ 2 SK is given by

P✓(⇡) =

KY

i=1

✓⇡�1(i)

✓⇡�1(i) + ✓⇡�1(i+1) + . . .+ ✓⇡�1(K)
(1)

The product on the right-hand side of (1) is the probability

of producing the ranking ⇡ in a stagewise process: First, the

item on the first position is selected, then the item on the

second position, and so forth. In each step, the probability

of an item to be chosen next is proportional to its weight.

Consequently, items with a higher weight tend to occupy

higher positions. In particular, the most probable ranking

(i.e., the mode of the PL distribution) is simply obtained by

sorting the items in decreasing order of their weight:

⌧ = argmax

⇡2SK
P✓(⇡) = argsort

k2[K]
{✓1, . . . , ✓K} (2)

2.3. Babington Smith Distribution

The Babington Smith (BS) model is defined as follows

(Babington-Smith, 1950):

P✓(⇡) =
1

C(✓)

Y

1i<jK

p⇡�1(i),⇡�1(j) , (3)

where pi,j is the probability to observe a preference oi � oj
in a direct comparison between oi and oj , and C(✓) is a

normalization constant. Thus, the parametrization ✓ of the

BS model consists of all pairwise probabilities pi,j = 1�
pj,i, 1 i < j K.

The BS distribution results from the following “trial and

error” data-generating process: First, the order of each pair

of objects oi and oj is determined independently at random

(as a result of a Bernoulli trial, i.e., by flipping a coin with

bias pi,j). Then, in case all pairwise comparisons form a

consistent ranking, this ranking is adopted, otherwise the

first step is repeated.

2.4. Comparison

The previous models can naturally be distinguished in terms

of their parametrization. The Mallows model is quite re-

stricted and not very flexible. It has one degree of freedom

Ranking Distributions based on Noisy Sorting

to determine the location of the distribution (the reference

ranking), and another parameter to determine the spread

(comparable, for example, to the normal distribution on the

reals). The PL model is more flexible (for example, see

(Cheng et al., 2012) for a comparison of the expressivity of

Mallows and PL), with a number of parameters that is linear

in the number of items. BS has an even richter parametriza-

tion, the size of which grows quadratically with the number

of items.

From a preference modeling point of view, the parametriza-

tions of PL and BS are both quite natural: PL specifies

the strength of each option individually, whereas BS takes

pairwise comparisons as a point of departure. Thus, while

PL implies relatively strong consistency properties, such

as strong stochastic transitivity, BS principally allows for

preferential cycles.

3. Ranking Distributions based on Sorting
PL and BS can both be interpreted in terms of an underlying

data-generating process, in which a ranking is produced

as the result of a specific stochastic process. However, es-

pecially in the case of BS, the “cognitive plausibility” of

the process is questionable: It is difficult to imagine that a

ranking of items is indeed produced by repeating the full

set of stochastic pairwise comparisons, independently of

each other, till reaching consistency (especially since most

of such repetitions will be futile).

As an arguably more plausible assumption, one could imag-

ine that a ranking is the result of a (noisy) sorting procedure.

Indeed, when people produce a ranking, they often apply

some kind of sorting process, in which items are compared

only if necessary. This idea has recently been put forward

by Biernacki and Jacques (Biernacki & Jacques, 2013), and

provides the main point of departure for our contribution.

A sorting algorithm puts objects stored in a list in a certain

order, based on pairwise comparisons between these objects.

Most often, the objects to be sorted are numbers, and the

pairwise comparison is determined based on some binary

relation, for example, the relation for increasing and �
relation for decreasing order. Note that the list submitted as

input to a (deterministic) sorting algorithm does not affect its

output, but it does have an influence on its time complexity,

and on the pairs of items that are compared. Therefore,

the time complexity of sorting algorithms is often analyzed

under the assumption of a uniform distribution over the

possible inputs (average time complexity analysis).

3.1. Insertion Sort Rank Data Model

The model by Biernacki and Jacques (Biernacki & Jacques,

2013), called Insertion Sort Rank data (ISR) model, is spec-

ified by a reference ranking ⌧ and real parameter p, very

much like the Mallows model. The former corresponds to

the “correct” ranking, i.e., the mode of the distribution, and

p 2 [0.5, 1] is the noise parameter that controls the peaked-

ness of the distribution. More specifically, the following

assumption is made: A sorting algorithm (insertion sort) is

run on an initial ordering ⇡, and whenever two items oi and

oj are compared, the “right” outcome (consistent with ⌧) is

produced with probability p (hence the “wrong” outcome

with probability 1� p).

The algorithm’s probability to terminate with a ranking �
obviously depends on the initial ordering ⇡, which is a

latent variable of the model. To get rid of this influence, the

initialization is “averaged out”, i.e., an expectation is taken

over all initial rankings. Assuming a uniform distribution

for ⇡, we thus obtain

P(� | ⌧, p) = 1

K!

X

⇡2SK
P(� |⇡, ⌧, p) . (4)

This model can also be written as follows:

P(� |P) =

1

C 0
(P)

X

⇡2SK
P(� |⇡,P) ,

=

1

C 0
(P)

X

⇡2SK

KY

i=1

Y

j 6=i

pi,j
d�,⇡
i,j , (5)

where P is a K ⇥K matrix P = [pi,j]1i,jK with entries

pi,j = pi,j(⌧, p) =

⇢
p if ⌧(oi) < ⌧(oj)

1� p if ⌧(oi) > ⌧(oj)
. (6)

That is, the matrix P is uniquely determined by ⌧ and p
(and vice versa). Moreover, for rankings �,⇡ 2 SK ,

D�,⇡
=

⇥
d�,⇡i,j

⇤
1i,jK

is a binary matrix with entries d�,⇡i,j = 1 if the sorting algo-

rithm, given ⇡ as initial ordering and producing � as output,

has compared oi to oj with a win for oi, and to 0 otherwise.

Finally,

C 0
(P) =

X

�2SK

X

⇡2SK

KY

i=1

Y

j 6=i

pi,j
d�,⇡
i,j

is the normalization constant.

Biernacki and Jacques tackle the problem of estimating

the parameters of the model, ⌧ and p, using the maximum

likelihood principle. To this end, they adopt a latent variable

interpretation of the model and propose an EM algorithm.

3.2. The Conjunctive Noisy Sorting Model

Our model is a modification of (5), which looks very similar

at first sight: Instead of averaging out the influence of the

Ranking Distributions based on Noisy Sorting

initial ranking ⇡ in an additive way, by aggregating the prob-

abilities P(� |⇡, ⌧, p) with an arithmetic mean, we apply the

product as an aggregation function:

PA(� | ⌧, p) /
Y

⇡2SK
PA(� |⇡, ⌧, p) ,

where A is the underlying sorting algorithm. As for the

latter, one may of course consider algorithms other than in-

sertion sort. Indeed, any pairwise-comparison-based sorting

algorithm can in principle be extended to a noisy sorting

model by using stochastic pairwise comparisons (Braverman

& Mossel, 2008; 2009). In Section 4, we will instantiate our

model for two algorithms, insertion sort and quick sort.

There are different motivations for the above modification.

First, as will be seen, the multiplicative variant has appeal-

ing mathematical properties and can be handled a bit more

easily. Second, the model can also be motivated intuitively.

The product is a conjunctive aggregation function (Grabisch

et al., 2009), and combining probabilities in a conjunctive

way is in agreement with standard (deterministic) sorting,

where the “correct” output ordering � is obtained regardless

of the initial ordering ⇡, that is, as a result for all initial

orderings ⇡. Therefore, we call our model the Conjunctive

Noisy Sorting (CNS) model.

Recall the definition of the matrix P with entries (6), which

is in one-to-one relationship with the model parameters ⌧
and p. With this notation, the CNS model can also be written

as follows:

PA(� |P) =

1

C(P)

Y

⇡2SK
P(� |⇡,P) ,

=

1

C(P)

Y

⇡2SK

KY

i=1

Y

j 6=i

pi,j
d�,⇡
i,j , (7)

where C(P) =

P
�2SK

Q
⇡2SK

QK
i=1

Q
j 6=i pi,j

d�,⇡
i,j

. To

simplify this representation, we introduce

D�
=

⇥
d�i,j
⇤
1i,jK

, d�i,j =
X

⇡2SK
d�,⇡i,j .

With this notation, the model becomes

PA(� |P) =

1

C(P)

KY

i=1

Y

j 6=i

pi,j
d�
i,j , (8)

where

C(P) =

X

�2SK

KY

i=1

Y

j 6=i

pi,j
d�
i,j . (9)

In Section 4, explicit expressions for the exponents d�i,j will

be provided for two instantiations of the model (insertion

sort and quick sort). Note that, since pi,j = p or pi,j = 1�p

in (9), the normalization constant can be written as a power

series in p:

C(p) =

e(K)X

j=0

↵
(K)
j · pj

The degree e(K) and the coefficients ↵
(K)
j are specific to

K but can be precomputed.

3.3. The Generalized Conjunctive Noisy Sorting Model

CNS is a relatively simple model, comparable to Mallows

and ISR in terms of its parametrization. The distribution

has a single mode at ⌧ , and all pairwise preferences are

consistent with this reference. Here, we consider a more

general model, which subsumes the CNS model as a special

case, and in which these assumptions are relaxed. More

specifically, like in the BS model, pairwise preferences pi,j
are allowed to be defined independently for each pair of ob-

jects oi and oj , and are not assumed to obey any consistency

conditions. Thus, we assume a noisy sorting procedure in

which, whenever the comparison of objects oi and oj is re-

quired, a coin with success probability pi,j is flipped, and the

outcome of this Bernoulli experiment determines the order

of the two elements: oi is preferred to oj if the outcome is 1,

and oj is preferred to oi otherwise. We furthermore assume

that all pairwise comparisons are independent of each other,

and that pi,j = 1 � pj,i for all i, j 2 [K]. We summarize

the probabilities pi,j in the matrix P 2 [0, 1]K⇥K
, which

constitutes the parametrization of the model, referred to as

Generalized Conjunctive Noisy Sorting (GCNS) model.

Together with a sorting algorithm A and an initial ordering

⇡, GCNS defines a distribution PA(· |⇡,P) over SK . Thus,

for each ranking � 2 SK , PA(� |⇡,P) is the probability

to end up with � when applying A to the input ⇡, and

comparing items oi and oj according to pi,j . Again, we

eliminate the latent variable ⇡ via conjunctive aggregation:

PA(� |P) /
Y

⇡2SK
PA(� |⇡,P)

To obtain a more compact representation, we introduce

binary matrices D�,⇡
=

⇥
d�,⇡i,j

⇤
1i,jK

for rankings �,⇡ 2
SK , where the entry d�,⇡i,j in D�,⇡

is set to 1 if the sorting

algorithm A, given ⇡ as initial ordering and producing � as

output, has compared oi to oj with a win for oi, and to 0

otherwise, and the matrices

D�
=

⇥
d�i,j
⇤
1i,jK

, d�i,j =
X

⇡2SK
d�,⇡i,j . (10)

We shall consider only such sorting algorithms for which all

these matrices are well-defined (which means that, given �
and ⇡, it is clear whether and how oi and oj have been com-

pared); this includes insertion sort and quick sort, amongst

Ranking Distributions based on Noisy Sorting

others. Using this notation, the GCNS model can be written

as follows:

PA(� |P) =

1

C(P)

KY

i=1

Y

j 6=i

p
d�
i,j

i,j , (11)

where

C(P) =

X

�2SK

KY

i=1

Y

j 6=i

p
d�
i,j

i,j . (12)

Based on (11), one can see that GCNS is a special case of

the log-linear model over the symmetric group, because the

log of the probabilities can be written as a linear function of

the logarithm of the parameters. Note that the key quantity

in the model is D�
, which we shall compute in a closed

form when insertion sort is used as sorting algorithm, and

characterize recursively when quick sort is used.

Extreme probabilities pi,j 2 {0, 1} may cause problems

in the case of inconsistencies, such as preferential cycles

p1,2 = p2,3 = p3,1 = 1, which are not excluded in our

general model. Applying a sorting algorithm A to some

P 2 {0, 1}K⇥K
, an initial ordering ⇡ will be turned into

an ordering � with probability 1, i.e., PA(� |⇡,P) = 1 and

PA(�
0 |⇡,P) = 0 for all �0 6= �. Then, unless the same

� is produced for all initial orderings ⇡, which is unlikely

in the case of inconsistencies, the product

Q
⇡ PA(� |⇡,P)

will vanish for all �, which means that (11) is no longer

well-defined. Therefore, we subsequently exclude extreme

probabilities and assume 0 < pi,j < 1 for all i, j 2 [K].

Observation 1. Assuming that pi,j > 0 for all i, j 2 [K],
the model (11) is well-defined in the sense that C(P) > 0;
moreover, PA(� |P) > 0 for all � 2 SK .

3.4. Connection to BS

Our model has an interesting connection to BS. The latter is

parametrized by the same probability matrix P, specifying

probabilities pi,j = 1� pj,i for each pair of objects oi, oj .

Moreover, with a normalizing constant C 00
(P), it can be

written as follows:

P(� |P) =

1

C 00
(P)

KY

i=1

Y

j 6=i

p
d�
i,j

i,j ,

where d�i,j = 1 if �(i) < �(j) and = 0 otherwise. Com-

paring this expression with (11), it can be seen that BS has

exactly the same structure as our model. The key difference

concerns the values d�i,j , which can be seen as weights spec-

ifying the importance of the comparison between oi and oj .

In BS, d�i,j 2 {0, 1} and d�i,j + d�j,i ⌘ 1, which means that

each pair has the same importance. In our model, where

a pair (oi, oj) can be more or less relevant when produc-

ing a ranking � with a sorting algorithms A, more general

(integer) values are possible.

Interestingly, if the BS model is restricted such that pi,j = p
if ⌧(i) < ⌧(j) and pi,j = 1� p if ⌧(i) > ⌧(j), for a fixed

⌧ 2 SK and probability p, it reduces to the Mallows model

(Mallows, 1957). For exactly the same restriction, GCNS

reduces to CNS. Roughly speaking, Mallows is to BS what

CNS is to GCNS. Moreover, since GCNS can be seen as a

“sorting variant” of BS, CNS can also be seen as a “sorting

variant” of Mallows. This is another strong motivation of

our model.

4. Instantiations of the Ranking Model
To make the definition of our models complete, we make use

of two sorting algorithms A: insertion sort, denoted by I,
and quick sort, denoted by Q. For insertion sort algorithm,

we show that (8) and (11) can be written in closed form,

and for quick sort algorithm, we show that they can be

characterized in a recursive way.

4.1. Insertion Sort

In (stochastic) insertion sort, we start with an empty order-

ing, in which all K objects are inserted one by one, in the

order determined by the initial ranking ⇡. In the lth iter-

ation, we are given a partial ordering (oi(1), . . . , oi(l)) of

l < K objects and insert another object o. To this end, o is

first compared with oi(1), then with oi(2), and so forth. It is

inserted as position j if oi(j) is the first item that looses its

comparison with o; in case o is beaten by all l items, it is

put on position l + 1.

Thus, in stochastic insertion sort, we produce an output rank-

ing � from an initial ranking ⇡ by comparing only a subset

of all possible pairs of items. Note that the output of the

noisy sorting procesure is a random ordering that depends

on the success probabilities P = [pi,j], and also on the

initial ordering ⇡, i.e., the order in which items are inserted.

The following example elaborates on this dependence.

Example 1. Consider insertion sort with two different ini-
tial orderings ⇡ = (o1, o2, o3) and ⇡0

= (o3, o2, o1). Let
the pairwise probabilities be p1,2 = 1/4, and p1,3 = p2,3 =

1/2. Now let us compute the probability of observing
� = (o1, o2, o3). Starting from ⇡, we first insert o1, then o2,
and finally o3. Ending with � is thus only possible if o1 has
beaten o2 in the first comparison, o1 has also beaten o3, and
o2 has beaten o3. Therefore, the probability of observing
� is proportional to p1,2p1,3p2,3 = 0.0625. Starting from
⇡0, � is produced with fewer comparisons, and the same
probability is proportional to p1,2p2,3 = 0.125.

Now, we are going to focus on D�
=

P
⇡2SK D�,⇡

, where

the sum is elmentwise. The following observation allows us

to compute D�
in a concise way.

Lemma 1. Assume that �id = (o1, . . . , oK). Then, for

Ranking Distributions based on Noisy Sorting

insertion sort, the matrix D�id is given by

d�id
i,j =

8
<

:

K!
2 if i < j� K

bi,j+2

�
(K � bi,j � 2)! bi,j ! if j < i

0 otherwise
,

where bi,j = i � j � 1. Furthermore, for any � 2 SK ,
we have D�

= B�D�idB�|
, where B� is the permutation

matrix that corresponds to �.

Proof. The first case is easy to verify, since insertion sort

with an initial ordering ⇡ compares two objects only in case

they are concordant (in the same order) in �
id

and ⇡. The

number of such orderings is

K!
2 .

The second case is more involved, since one needs to cal-

culate all initial orders ⇡ 2 SK in which a pair of objects,

say oi and oj , are discordant and compared to each other

in the course of the sorting procedure. Assume that inser-

tion sort is run with ⇡ as initial order, and the output is �
id

.

It is easy to see that object oi and oj are not compared if

there is a third object ok, which is between oj and oi with

respect to �
id

, and also between oj and oi in ⇡; Figure 1

illustrates such a configuration of objects. Therefore, the

number of orderings for which oi and oj are compared is

equal to

� K
bi,j+2

�
(K � bi,j � 2)!, because oi and oj and the

items between them have to be ordered such that oi is the

first, oj is the second, and all items between oj and oi with

respect to �
id

preceed them in ⇡. In addition, the items

between oi and oj can be permuted arbitrarily in the initial

order, which results in the term bi,j !.

The last claim can be verified based on the fact that the

argument above holds for an arbitrary permutation of objects.

This concludes the proof.

Figure 1. An initial ordering ⇡ and output ordering for which in-

sertion sort does not compare oi and oj .

4.2. Quick Sort

The quick sort algorithm is inherently random due to the

random choice of the pivot item. We make use of a deran-

domized version by taking as pivot the item in the middle

of the initial ordering (i.e., the item on position dK/2e for

an ordering with K items).

In noisy quick sort, we start by picking a pivot element op
from the elements {o1, . . . , oK} to be ordered. We then

proceed with the partition operation, in which we construct

two sub-orderings, one collecting the items that lost and the

other one the items that won the pairwise comparison with

the pivot element. The same process is repeated with each

of the two sub-orderings (unless a sub-ordering reduces to

a single item), eventually producing a complete ordering

of the items. Again, we note that the output of the noisy

sorting model based on quick sort depends on the pairwise

probabilities P and the initial ordering ⇡. This dependence

is illustrated in the following example.

Example 2. Consider the quick sort algorithm with two
different initial orderings ⇡ = (o1, o2, o3) and ⇡0

=

(o2, o1, o3). Let the pairwise probabilities be given as in
Example 1. It is easy to see that the probability of ob-
serving � = (o1, o2, o3) starting from ⇡ is proportional to
p1,2p2,3 = 0.125. When starting with ⇡0, this probability is
proportional to p1,2p1,3p2,3 = 0.0625.

The following lemma gives a recursive expression of D�

for the case of quick sort as a sorting algorithm.

Lemma 2. Assume that �id = (o1, . . . , oK). Then, for
quick sort, the matrix D�id is given by

d�id
ij = (K � 1)!

2

4
iX

k=1

Q(k,K, i, j) +

KX

k=j

Q(1, k, i, j)

3

5 ,

where

Q(`, u, i, j) =

8
>><

>>:

0 if i < p = d i+j
2 e < j

2 if p = i or p = j
Q(1, p� 1, i, j) if j < p
Q(p+ 1, u, i, j) if i > p

Furthermore, for any � 2 SK , we have D�
= B�D�idB�|

,
where B� is the permutation matrix that corresponds to �.

Proof. The first case of the recursion Q(`, u, i, j) follows

from the fact that neither oi nor oj is chosen as pivot, in

which case they will not be compared any more. In the

second case, either oi or oj is chosen as pivot, in which

case they will be compared. Otherwise, the recursion corre-

sponds to the quick sort recursion.

5. Parameter Estimation
In this section, we address the problem of parameter estima-

tion, i.e., the question of how to fit our models to a given

sample D = {�1, . . . ,�n} ⇢ SK using the principle of

maximum likelihood (ML) estimation.

5.1. The CNS Model

Given a set of observations {�1, . . . ,�n}, the ML estima-

tion consists of solving the following constrained optimiza-

Ranking Distributions based on Noisy Sorting

tion problem:

max

P⌧

nX

`=1

KX

i=1

X

j 6=i

d�`,⌧
i,j log p⌧i,j � n logC(P⌧

) (13)

s. t. p⌧i,j =

⇢
p if ⌧(i) < ⌧(j)

1� p if ⌧(i) > ⌧(j)
8i, j 2 [K], i 6= j

Recall that P⌧
is equivalently represented by the reference

order ⌧ and the probability p, i.e., the maximization in the

above problem is over these two parameters.

We tackle the problem with simple hill-climbing search

for ⌧ in the discrete space SK , initialized with the Borda

ranking (i.e., sorting items according to their average rank

in the data). The neighborhood of an ordering is defined as

the set of all orderings that can be obtained by a swap of

two adjacent items. For a fixed ⌧ , the optimization problem

(13) reduces to a simple one-dimensional problem:

max

p

nX

`=1

2

4
X

⌧(i)<⌧(j)

d�`,⌧
i,j log p+

X

⌧(i)>⌧(j)

d�`,⌧
i,j log(1� p)

3

5

� n logC(P⌧
)

s. t. p 2 [0.5, 1]
(14)

This problem is convex (the distribution belongs to the expo-

nential family) and can be solved numerically, for example

by means of the golden section method.

In each iteration of the algorithm, the best candidate solution

(⌧, p) in the neighborhood of the current best solution is

adopted, and the search stops if no improvement is possible

anymore.

5.2. The GCNS Model

The GCNS model (11) is parametrized by P. Here, the

maximum likelihood (ML) principle cannot be applied di-

rectly, because the normalizing factor C(P) in (12) cannot

be written in a closed form in terms of the model parameters.

Therefore, we opt for using the generalized iterative scal-

ing (GIS) procedure (Darroch & Ratcliff, 1972), an iterative

method for estimating the probabilities in a log-linear model.

Given a set of observations {�1, . . . ,�n}, ML estimation

amounts to solving the following constrained optimization

problem:

max

P

nX

`=1

KX

i=1

X

j 6=i

d�`
i,j log pi,j � n logC(P)

s. t. pi,j + pj,i = 1, 8i, j 2 [K], i 6= j .

(15)

Let �#j denote the jth ranking according to some fixed

ordering over SK (e.g. Lehmer code). With fj = #{i 2
[n] : �i = �#j}, the empirical frequencies corresponding

to the probabilities of all possible permutations, the GIS

procedure seeks to find a parameter estimate P0
for which

K!X

`=1

p0` d
�#`
i,j =

K!X

`=1

bp` d
�#`
i,j (16)

for all i 6= j, where p0` = PA(�#` |P0
).

Observe that the GIS procedure can be adapted to produce

the parameters of the log-linear model instead of the proba-

bilities pi,j (Malouf, 2002). In addition, we note that GIS

requires the computation of a vector of length K!, a very

costly operation that will be tackled based on a Monte Carlo-

based approximation technique. Further, based on Lemma 1

and 2, it is easy to see that the sum of exponents is constant

for every ordering in case of both insertion and quick sort,

that is

PK
i=1

P
i 6=j d

�
i,j = BK for all � 2 SK .

According to (Darroch & Ratcliff, 1972), P0
in (16) is the

(unconstrained) ML estimate for P. In our case, however,

the constraints pi,j + pj,i = 1 in (15) need to be taken into

account. Therefore, we accompany each update step in the

GIS procedure with a projection step, which ensures that

the estimated parameters satisfy the constraints. One update

step of the iterative procedure for the parameter estimation

thus can be written as

p
(n+1)
i,j = ⇧

⇣
p
(n)
i,j + �(n)

⌘
,

where

�(n) = log

 PK!
`=1 bpld

�#`
i,j

PK!
`=1 p

(n)
l d

�#`
i,j

! 1
BK

,

and ⇧(x) denotes the least-squares projection of x =

(xi,j , xj,i), given by

argmin

y2R2
+

||x� y||2 s. t. yi,j + yj,i = 1 ,
(17)

which can be determined analytically.

5.3. Sampling

The model (11) can be sampled by using MCMC based on

the fact that one can compute the acceptance ratio as

log

PA(�|P)

PA(�0|P)

=

KX

i=1

X

j 6=i

(d�i,j � d�
0

i,j) log pi,j .

This allows us to make use of the Metropolis-Hastings (MH)

algorithm. We use Mallows (Mallows, 1957) as proposal

distribution. The pseudo-code of the sampling is given

in Algorithm 1. The reference ranking of the Mallows

model P(· |�,�), denoted by �, is always set to the current

ranking �i�1 (see line 5). In this case, it is easy to verify

that the stationary distribution of the Markov chain is indeed

Ranking Distributions based on Noisy Sorting

PA(� |P), because the Mallows model is symmetric in the

sense that P(� |�,�0
) = P(�0 |�,�), and assigns positive

probability to every ranking when � > 0. Therefore, the

detailed balance condition is satisfied, and the ergodicity of

the chain is also ensured.

Algorithm 1 Metropolis-Hastings with Mallows proposal

1: procedure MH(T,�)

2: Select initial ordering �0

3: D = ;
4: for i = 1! T do
5: �i ⇠ P(· |�,�i�1) . Proposal from Mallows

6: qi
PK

i=1

PK
j 6=i(d

�i
i,j � d

�i�1

i,j) log pi,j
7: Accept �i with probability min (1, exp(qi))
8: D = D [{�i}
9: return D

6. Experiments
To investigate the performance of our new model and the

effectiveness of parameter estimation, we conducted experi-

ments on 213 real-world data sets from the PrefLib reposi-

tory (http://www.preflib.org). These data sets originate from

different domains, ranging from actual elections over movie

rankings to competitor rankings from various sporting com-

petitions. The number of items varies between 3 and 10

(details are summarized in the supplementary material).

All models are fit using maximum likelihood estimation,

and Kullback-Leibler (KL) divergence between an empiri-

cal distribution and its estimation is used as a measure of

the goodness of fit. In a first setting, we fit the models to

the entire data, while in a second setting, we only fit to

half of the data and determine divergence on the other half

(averaging over 20 random splits).

In a first experiment, we compare ISR with our new variant

CNS, with both insertion and quick sort as underlying sort-

ing algorithms, using MM as an additional baseline. The

ISR, CNS, and MM models are comparable in terms of

their parametrization. A summary of the results in terms of

win/tie/loss statistics is given in Table 1 (while the complete

results can be found in the supplementary material). As can

be seen, CNS shows a very strong performance, especially

with insertion sort as a sorting algorithm.

In a second experiment, we compare CNS with its gen-

eralization GCNS, again with insertion and quick sort as

underlying sorting algorithms in both models. The results in

Table 1 clearly show that GCNS leads to better approxima-

tions. This is hardly surprising, given that GCNS has more

parameters and therefore allows for fitting distributions in

a more flexible way. Again, an instantiation with insertion

sort seems to be preferable to the use of quick sort.

Table 1. Win/tie/loss statistics for the first (above) and second (be-

low) experiment (first line/first setting, second line/second setting).

CNSI CNSQ ISR MM

CNSI — 197/0/16 197/0/16 170/0/43

— 204/0/9 191/0/22 167/0/46

CNSQ 16/0/197 — 165/0/48 143/0/70

9/0/204 — 153/0/60 139/0/74

ISR 16/0/197 48/0/165 — 60/1/152

22/0/191 60/0/153 — 57/0/156

MM 43/0/170 70/0/143 152/1/60 —

46/0/167 74/0/139 156/0/57 —

CNSI CNSQ GCNSI GCNSQ

CNSI — 197/0/16 0/1/212 65/0/148

— 204/0/9 25/0/188 81/0/132

CNSQ 16/0/197 — 4/0/209 8/0/205

9/0/204 — 10/0/203 18/0/195

GCNSI 212/1/0 209/0/4 — 170/0/43

188/0/25 203/0/10 — 169/0/44

GCNSQ 148/0/65 205/0/8 43/0/170 —

132/0/81 195/0/18 44/0/169 —

7. Conclusion and Future Work
Adopting the idea of a data-generating process in the form

of a noisy sorting procedure, we proposed a variant of a

parametrized probability distribution on rankings as recently

proposed by Biernacki and Jacques (Biernacki & Jacques,

2013), as well as a generalization that is more flexible and

makes less stringent coherence assumptions. Our models

have an intuitive interpretation, exhibit convenient mathe-

matical properties, and seem to fit empirical data very well.

For two sorting algorithms, insertion sort and quick sort,

we developed parameter estimation techniques based on a

closed-form expression of the likelihood function for the

former, and a recursive characterization of it for the latter.

Experimentally, insertion sort leads to better performance.

In future work, we plan to consider other sorting algorithms,

such as merge sort and heap sort. Another direction worth

to investigate is the analysis of algebraic properties of our

models using tools from computational algebraic geometry

(Geiger et al., 2006); such properties may simplify the han-

dling of the model and help to further improve efficiency

of parameter estimation. Last but not least, we are also

interested in using the model for other machine learning

problems, in which distributions on rankings are needed,

such as learning to rank (Ailon et al., 2005; Ailon, 2008;

Cao et al., 2007) and multi-armed bandits (Busa-Fekete &

H¨ullermeier, 2014; Sz¨or´enyi et al., 2015).

Acknowledgements
The authors gratefully acknowledge financial support by the

Germany Research Foundation (DFG).

Ranking Distributions based on Noisy Sorting

References
Ailon, N. Reconciling Real Scores with Binary Compar-

isons: A New Logistic Based Model for Ranking. In

Proceedings of Advances in Neural Information Process-
ing Systems (NIPS), pp. 25–32, 2008.

Ailon, N., Charikar, M., and Newman, A. Aggregating

Inconsistent Information: Ranking and Clustering. In

Proceedings of the Annual ACM Symposium on Theory
of Computing (STOC), pp. 684–693, 2005.

Babington-Smith, B. Discussion of Professor Ross’s Paper.

Journal of the Royal Statistical Society B, 12:153–162,

1950.

Biernacki, C. and Jacques, J. A Generative Model for Rank

Data Based on Insertion Sort Algorithm. Computational
Statistics & Data Analysis, 58(15):162–176, 2013.

Braverman, M. and Mossel, E. Noisy Sorting Without

Resampling. In Proceedings of the Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 268–276,

2008.

Braverman, M. and Mossel, E. Sorting from Noisy Informa-

tion. CoRR, abs/0910.1191, 2009.

Busa-Fekete, R. and H¨ullermeier, E. A Survey of Preference-

based Online Learning with Bandit Algorithms. In Pro-
ceedings of Conference on Learning Theory (COLT), pp.

18–39, 2014.

Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., and Li, H. Learning

to Rank: From Pairwise Approach to Listwise Approach.

In Proceedings of International Conference on Machine
Learning (ICML), pp. 129–136, 2007.

Cheng, W., H¨ullermeier, E., Waegeman, W., and Welker, V.

Label Ranking with Partial Abstention Based on Thresh-

olded Probabilistic Models. In Proceedings of Advances
in Neural Information Processing Systems (NIPS), pp.

2501–2509, 2012.

Darroch, J. N. and Ratcliff, D. Generalized Iterative Scaling

for Log-Linear Models. The Annals of Mathematical
Statistics, 43(5):1470–1480, 1972.

Fligner, M. A. and Verducci, J. S. Distance Based Ranking

Models. Journal of the Royal Statistical Society. Series B
(Methodological), pp. 359–369, 1986.

F¨urnkranz, J. and H¨ullermeier, E. Preference Learning: An

Introduction. In Preference learning, pp. 1–17. Springer,

2010.

Geiger, D., Meek, C., and Sturmfels, B. On the Toric

Algebra of Graphical Models. The Annals of Statistics,

34(3):1463–1492, 2006.

Grabisch, M., Marichal, J.-L., Mesiar, R., and Pap, E. Ag-
gregation Functions. Cambridge University Press, 2009.

Liu, T.-Y. Learning to Rank for Information Retrieval. Foun-
dations and Trends in Information Retrieval, 3(3):225–

331, 2009.

Luce, R. D. Individual Choice Behavior: A Theoretical
Analysis. Wiley, 1959.

Mallows, C. Non-null Ranking Models. Biometrika, 44(1):

114–130, 1957.

Malouf, R. A Comparison of Algorithms for Maximum

Entropy Parameter Estimation. In Proceedings of Confer-
ence on Natural Language Learning (COLING), pp. 1–7,

2002.

Marden, J. I. Analyzing and Modeling Rank Data. CRC

Press, 1996.

Meek, C. and Meila, M. Recursive Inversion Models for

Permutations. In Proceedings of Advances in Neural
Information Processing Systems (NIPS), pp. 631–639,

2014.

Plackett, R. The Analysis of Permutations. Applied Statis-
tics, 24:193–202, 1975.

Sz¨or´enyi, B., Busa-Fekete, R., Paul, A., and H¨ullermeier,

E. Online Rank Elicitation for Plackett-Luce: A Dueling

Bandits Approach. In Proceedings of Advances in Neural
Information Processing Systems (NIPS), pp. 604–612,

2015.

