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Abstract
In many real-world problems, there is the possibil-
ity to configure, to a limited extent, some environ-
mental parameters to improve the performance
of a learning agent. In this paper, we propose
a novel framework, Configurable Markov Deci-
sion Processes (Conf-MDPs), to model this new
type of interaction with the environment. Fur-
thermore, we provide a new learning algorithm,
Safe Policy-Model Iteration (SPMI), to jointly
and adaptively optimize the policy and the envi-
ronment configuration. After having introduced
our approach and derived some theoretical results,
we present the experimental evaluation in two
explicative problems to show the benefits of the
environment configurability on the performance
of the learned policy.

1. Introduction
Markov Decision Processes (MDPs) (Puterman, 2014) are
a popular formalism to model sequential decision-making
problems. Solving an MDP means to find a policy, i.e., a
prescription of actions, that maximizes a given utility func-
tion. Typically, the environment dynamics is assumed to be
fixed, unknown and out of the control of the agent. Several
exceptions to this scenario can be found in the literature,
especially in the context of Markov Decision Processes
with imprecise probabilities (MDPIPs) (Satia & Lave Jr,
1973; White III & Eldeib, 1994; Bueno et al., 2017) and
non-stationary environments (Bowerman, 1974; Hopp et al.,
1987). In the former case, the transition kernel is known
under uncertainty. Therefore, it cannot be specified using a
conditional probability distribution, but it must be defined
through a set of probability distributions (Delgado et al.,
2009). In this context, Bounded-parameter Markov Deci-
sion Processes (BMDPs) consider a special case in which
upper and lower bounds on transition probabilities are spec-
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ified (Givan et al., 1997; Ni & Liu, 2008). A common
approach is to solve a minimax problem to find a robust
policy maximizing the expected return under the worst pos-
sible transition model (Osogami, 2015). In non-stationary
environments, the transition probabilities (possibly also the
reward function) change over time (Bowerman, 1974). Sev-
eral works tackle the problem of defining an optimality
criterion (Hopp et al., 1987) and finding optimal policies in
non-stationary environments (Garcia & Smith, 2000; Chee-
vaprawatdomrong et al., 2007; Ghate & Smith, 2013).

Although the environment is no longer fixed, both Markov
decision processes with imprecise probabilities and non-
stationary Markov decision processes do not admit the pos-
sibility to dynamically alter the environmental parameters.
However, there exist several real-world scenarios in which
the environment is partially controllable and, therefore, it
might be beneficial to configure some of its features in order
to select the most convenient MDP to solve. For instance, a
human car driver has at her/his disposal a number of possible
vehicle configurations she/he can act on (e.g., seasonal tires,
stability and vehicle attitude, engine model, automatic speed
control, parking aid system) to improve the driving style
or quicken the process of learning a good driving policy.
Another example is the interaction between a student and
an automatic teaching system: the teaching model can be
tailored to improve the student’s learning experience (e.g.,
increasing or decreasing the difficulties of the questions or
the speed at which the concepts are presented). It is worth
noting that the active entity in the configuration process
might be the agent itself or an external supervisor guiding
the learning process. In the latter case, for instance, a super-
visor can dynamically adapt where to place the products in a
supermarket in order to maximize the customer (agent) sat-
isfaction. Similarly, the design of a street network could be
configured, by changing the semaphore transition times or
the direction of motion, to reduce the drivers’ journey time.
In a more abstract sense, the possibility to act on the envi-
ronmental parameters can have essentially two benefits: i)
it allows improving the agent performance; ii) it may allow
to speed up the learning process. This second instance has
been previously addressed in (Ciosek & Whiteson, 2017;
Florensa et al., 2017), where the transition model and the
initial state distribution are altered in order to reach a faster
convergence to the optimal policy. However, in both the
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cases the environment modification is only simulated, while
the underlying environment dynamic remains unchanged.

In this paper, we propose a framework to model a Config-
urable Markov Decision Process (Conf-MDP), i.e., an MDP
in which the environment can be configured to a limited
extent. In principle, any of the Conf-MDP’s parameters can
be tuned, but we restrict our attention to the transition model
and we focus to the problem of identifying the environment
that allows achieving the highest performance possible. At
an intuitive level, there exists a tight connection between
environment and policy: variations of the environment in-
duce modifications of the optimal policy. Furthermore, even
for the same task, in presence of agents having access to
different policy spaces, the optimal environment might be
different.1 The spirit of this work is to investigate and
exercise the tight connection between policy and model,
pursuing the goal of improving the final policy performance.
After having introduced the definition of Conf-MDP, we
propose a method to jointly and adaptively optimize the
policy and the transition model, named Safe Policy-Model
Iteration (SPMI). The algorithm adopts a safe learning ap-
proach (Pirotta et al., 2013b) based on the maximization of
a lower bound on the guaranteed performance improvement,
yielding a sequence of model-policy pairs with monoton-
ically increasing performance. The safe learning perspec-
tive makes our approach suitable for critical applications
where performance degradation during learning is not al-
lowed (e.g., industrial scenarios where extensive exploration
of the policy space might damage the machinery). In the
standard Reinforcement Learning (RL) framework (Sutton
& Barto, 1998), the usage of a lower bound to guide the
choice of the policy has been first introduced by Conserva-
tive Policy Iteration (CPI) (Kakade & Langford, 2002), im-
proved by Safe Policy Iteration (SPI) (Pirotta et al., 2013b)
and subsequently exploited by (Ghavamzadeh et al., 2016;
Abbasi-Yadkori et al., 2016; Papini et al., 2017). These
methods revealed their potential thanks to the preference
towards small policy updates, preventing from moving in a
single step too far away from the current policy and avoiding
premature convergence to suboptimal policies. A similar
rationale is at the basis of Relative Entropy Policy Search
(REPS) (Peters et al., 2010), and, more recently, Trust Re-
gion Policy Optimization (TRPO) (Schulman et al., 2015)
and Proximal Policy Optimization (PPO) (Schulman et al.,
2017). In order to introduce our framework and highlight
its benefits, we limit our analysis to the scenario in which
the model space (and the policy space) is known. However,
when the model space is unknown, we could resort to a
sample-based version of SPMI, which could be derived by
adapting that of SPI (Pirotta et al., 2013b).

1In general, a modification of the environment (e.g., changing
the configuration of a car) is more expensive and more constrained
w.r.t. to a modification of the policy.

We start in Section 2 by recalling some basic notions about
MDPs and providing the definition of Conf-MDP. In Sec-
tion 3 we derive the performance improvement bound and
we outline the main features of SPMI (Section 4) along
with some theoretical results (Section 5).2 Then, we present
the experimental evaluation (Section 6) in two explicative
domains, representing simple abstractions of the main ap-
plication of Conf-MDPs, with the purpose of showing how
configuring the transition model can be beneficial for the
final policy performance.

2. Preliminaries
A discrete-time Markov Decision Process (MDP) (Puter-
man, 2014) is defined as M = (S,A, P,R, γ, µ) where
S is the state space, A is the action space, P (s′|s, a) is
a Markovian transition model that defines the conditional
distribution of the next state s′ given the current state s
and the current action a, γ ∈ (0, 1) is the discount factor,
R(s, a) ∈ [0, 1] is the reward for performing action a in
state s and µ is the distribution of the initial state. A policy
π(a|s) defines the probability distribution of an action a
given the current state s. Given a model-policy pair (P, π)
we indicate with Pπ the state kernel function defined as
Pπ(s′|s) =

∫
A π(a|s)P (s′|s, a)da. We now formalize the

Configurable Markov Decision Process (Conf-MDP).

Definition 2.1. A Configurable Markov Decision Process is
a tuple CM = (S,A, R, γ, µ,P,Π) where (S,A, R, γ, µ)
is an MDP without the transition model and P and Π are
the model and policy spaces.

More specifically, Π is the set of policies the agent has
access to and P is the set of available environment config-
urations (transition models). The performance of a model-
policy pair (P, π) ∈ P×Π is evaluated through the expected
return, i.e., the expected discounted sum of the rewards col-
lected along a trajectory:

JP,πµ =
1

1− γ

∫
S
dP,πµ (s)

∫
A
π(a|s)R(s, a)dads, (1)

where dP,πµ is the γ-discounted state distribution (Sutton
et al., 2000), defined recursively as:

dP,πµ (s) = (1− γ)µ(s) + γ

∫
S
dP,πµ (s′)Pπ(s′|s)ds′. (2)

We can also define the γ-discounted state-action distribu-
tion as δP,πµ (s, a) = π(a|s)dP,πµ (s). While solving an MDP
consists in finding a policy π∗ that maximizes JP,πµ un-
der the given fixed environment P , solving a Conf-MDP
consists in finding a model-policy pair (P ∗, π∗) such that
P ∗, π∗ = arg maxP∈P,π∈Π J

π,P
µ . For control purposes,

the state-action value function, or Q-function, is introduced
as the expected return starting from a state s and performing

2The proofs of all the lemmas and theorems can be found in
Appendix A.
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action a:

QP,π(s, a) = R(s, a) + γ

∫
S
P (s′|s, a)V P,π(s′)ds′. (3)

For learning the transition model we introduce the state-
action-next-state value function or U-function, defined as
the expected return starting from the state s, performing
action a and landing to state s′:

UP,π(s, a, s′) = R(s, a) + γV P,π(s′), (4)
where V P,π is the state value function or V-function.
These three functions are tightly connected due to the
trivial relations: V P,π(s) =

∫
A π(a|s)QP,π(s, a)da and

QP,π(s, a) =
∫
S P (s′|s, a)UP,π(s, a, s′)ds′. Furthermore,

we define the policy advantage function AP,π(s, a) =
QP,π(s, a) − V P,π(s) that quantifies how much an action
is better than the others and the model advantage function
AP,π(s, a, s′) = UP,π(s, a, s′)−QP,π(s, a) that quantifies
how much the next state is better than the other ones. In
order to evaluate the one-step improvement in performance
attained by a new policy π′ or model P ′ when the current
policy is π and the current model is P , we introduce the
relative advantage functions (Kakade & Langford, 2002):

AP,π
′

P,π (s) =

∫
A
π′(a|s)AP,π(s, a)da,

AP
′,π

P,π (s, a) =

∫
S
P ′(s′|s, a)AP,π(s, a, s′)ds′,

and the corresponding expected values under the γ-
discounted distributions: AP,π

′

P,π,µ =
∫
S d

P,π
µ (s)AP,π

′

P,π (s)ds

and AP
′,π

P,π,µ =
∫
S
∫
A δ

P,π
µ (s, a)AP

′,π
P,π (s, a)dsda.

3. Performance Improvement
The goal of this section is to provide a lower bound to
the performance improvement obtained by moving from a
model-policy pair (P, π) to another pair (P ′, π′).

3.1. Bound on the γ-discounted distribution

We start providing a bound for the difference of γ-
discounted distributions under different model-policy pairs.

Proposition 3.1. Let (P, π) and (P ′, π′) be two model-
policy pairs, the `1-norm of the difference between the γ-
discounted state distributions can be upper bounded as:∥∥∥dP ′,π′µ − dP,πµ

∥∥∥
1
≤ γ

1− γ
DP ′π

′
,Pπ

E ,

where DP ′π
′
,Pπ

E = Es∼dP,πµ
∥∥P ′π′(·|s)− Pπ(·|s)

∥∥
1
.

This proposition provides a way to upper bound the dif-
ference of the γ-discounted state distributions in terms of
the state kernel dissimilarity.3 The state kernel couples
the effects of the policy and the transition model, but it is

3More formally, DP ′π
′
,Pπ

E is just a premetric (Deza & Deza,
2009) and not a metric (see Appendix B for details).

convenient to keep their contribution separated, getting the
following looser bound.
Corollary 3.1. Let (P, π) and (P ′, π′) be two model-
policy pairs, the `1-norm of the difference between the γ-
discounted state distributions can be upper bounded as:∥∥∥dP ′,π′µ − dP,πµ

∥∥∥
1
≤ γ

1− γ

(
Dπ′,π
E +DP ′,P

E

)
,

where Dπ′,π
E = Es∼dP,πµ

∥∥π′(·|s)− π(·|s)
∥∥

1
and DP ′,P

E =

E(s,a)∼δP,πµ

∥∥P ′(·|s, a)− P (·|s, a)
∥∥

1
.

It is worth noting that when P = P ′ the bound resembles
Corollary 3.2 in (Pirotta et al., 2013b), but it is tighter as:

E
s∼dP,πµ

∥∥π′(·|s)− π(·|s)
∥∥

1
≤ sup

s∈S

∥∥π′(·|s)− π(·|s)
∥∥

1
,

in particular the bound of (Pirotta et al., 2013b) might yield a
large bound value in case there exist states in which the poli-
cies are very different even if those states are rarely visited
according to dP,πµ . In the context of policy learning, a lower

bound employing the same dissimilarity index Dπ′,π
E in the

penalization term has been previously proposed in (Achiam
et al., 2017).

3.2. Bound on the Performance Improvement

In this section, we exploit the previous results to obtain a
lower bound on the performance improvement as an effect
of the policy and model updates. We start introducing the
coupled relative advantage function:

AP
′,π′

P,π (s) =

∫
S

∫
A
π′(a|s)P ′(s′|s, a)ÃP,π(s, a, s′)ds′da,

where ÃP,π(s, a, s′) = UP,π(s, a, s′) − V P,π(s). AP
′,π′

P,π

represents the one-step improvement attained by the new
model-policy pair (P ′, π′) over the current one (P, π), i.e.,
the local gain in performance yielded by selecting an action
with π′ and the next state with P ′. The corresponding
expectation under the γ-discounted distribution is given by:
A
P ′,π′

P,π,µ =
∫
S d

P,π
µ (s)AP

′,π′

P,π (s)ds. Now, we have all the
elements to express the performance improvement in terms
of the relative advantage functions and the γ-discounted
distributions.
Theorem 3.1. The performance improvement of model-
policy pair (P ′, π′) over (P, π) is given by:

JP
′,π′

µ − JP,πµ =
1

1− γ

∫
S
dP
′,π′

µ (s)AP
′,π′

P,π (s)ds.

This theorem is the natural extension of the result proposed
by Kakade & Langford (2002), but, unfortunately, it cannot
be directly exploited in an algorithm as the dependence of
dP
′,π′

µ on the candidate model-policy pair (P ′, π′) is highly
nonlinear and difficult to treat. We aim to obtain, from this
result, a lower bound on JP

′,π′
µ −JP,πµ that can be efficiently

computed using information on the current pair (P, π).
Theorem 3.2 (Coupled Bound). The performance improve-
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ment of model-policy pair (P ′, π′) over (P, π) can be lower
bounded as:

JP
′,π′

µ − JP,πµ︸ ︷︷ ︸
performance
improvement

≥
A
P ′,π′

P,π,µ

1− γ︸ ︷︷ ︸
advantage

−
γ∆AP

′,π′

P,π DP ′π
′
,Pπ

E

2(1− γ)2︸ ︷︷ ︸
dissimilarity penalization

,

where ∆AP
′,π′

P,π = sups,s′∈S
∣∣AP ′,π′P,π (s′)−AP

′,π′

P,π (s)
∣∣.

The bound is composed of two terms, like in (Kakade &
Langford, 2002; Pirotta et al., 2013b): the first term, ad-
vantage, represents how much gain in performance can be
locally obtained by moving from (P, π) to (P ′, π′), whereas
the second term, dissimilarity penalization, discourages up-
dates towards model-policy pairs that are too far away.

The coupled bound, however, is not suitable to be used in
an algorithm as it does not separate the contribution of the
policy and that of the model. In practice, an agent cannot
directly update the kernel functionPπ since the environment
model can only partially be controlled, whereas, in many
cases, we can assume a full control on the policy. For this
reason, it is convenient to derive a bound in which the policy
and model effects are decoupled.

Theorem 3.3 (Decoupled Bound). The performance im-
provement of model-policy pair (P ′, π′) over (P, π) can be
lower bounded as:

JP
′,π′

µ − JP,πµ︸ ︷︷ ︸
performance
improvement

≥ B(P ′, π′) =

=
A
P ′,π
P,π,µ +AP,π

′

P,π,µ

1− γ︸ ︷︷ ︸
advantage

− γ∆QP,πD

2(1− γ)2︸ ︷︷ ︸
dissimilarity
penalization

,

where D is a dissimilarity term defined as:

D = Dπ′,π
E

(
Dπ′,π
∞ +DP ′,P

∞
)

+DP ′,P
E

(
Dπ′,π
∞ + γDP ′,P

∞
)
,

Dπ′,π
∞ = sups∈S

∥∥π′(·|s) − π(·|s)
∥∥

1
, DP ′,P

∞ =

sups∈S,a∈A
∥∥P ′(·|s, a) − P (·|s, a)

∥∥
1

and ∆QP,π =

sups,s′∈S,a,a′∈A
∣∣QP,π(s′, a′)−QP,π(s, a)

∣∣.
4. Safe Policy Model Iteration
To deal with the learning problem in the Conf-MDP frame-
work we could, in principle, learn the optimal policy by
using a classical RL algorithm and adapt it to learn the op-
timal model, sequentially or in parallel. Alternatively, we
could resort to general-purpose global optimization tools,
like CEM (Rubinstein, 1999) or genetic algorithms (Holland
& Goldberg, 1989), using as objective function the perfor-
mance of the policy learned by a standard RL algorithm.
Nonetheless, they may not correspond to the preferable, nor
the safest, choices in this context as there exists an inherent
connection between policy and model we could not over-
look during the learning process. Indeed, a policy learned
by interacting with a sub-optimal model could result in poor

Algorithm 1 Safe Policy Model Iteration
initialize π0, P0.
for i = 0, 1, 2, ... until ε-convergence do
πi = PolicyChooser(πi)
P i = ModelChooser(Pi)
Vi = {(α∗0,i, 0), (α∗1,i, 1), (0, β∗0,i), (1, β

∗
1,i)}

α∗i , β
∗
i = arg maxα,β{B(α, β) : (α, β) ∈ Vi}

πi+1 = α∗i πi + (1− α∗i )πi
Pi+1 = β∗i P i + (1− β∗i )Pi

end for

performance paired with a different, optimal model. At the
same time, a policy far from the optimum could mislead the
search for the optimal model. The goal of this section is to
present an approach, Safe Policy-Model Iteration (SPMI),
inspired by (Pirotta et al., 2013b), capable of learning the
policy and the model simultaneously,4 possibly taking ad-
vantage of the inter-connection mentioned above.

4.1. The Algorithm

Following the approach proposed in (Pirotta et al., 2013b),
we define the policy and model improvement update rules:

π′ = απ + (1− α)π, P ′ = βP + (1− β)P,

where α, β ∈ [0, 1], π ∈ Π and P ∈ P are the target policy
and the target model respectively. Extending the rationale
of (Pirotta et al., 2013b) to our context, we aim to determine
the values of α and β which jointly maximize the decoupled
bound (Theorem 3.3). In the following we will abbreviate
B(P ′, π′) with B(α, β).

Theorem 4.1. For any π ∈ Π and P ∈ P , the decoupled
bound is optimized for:

α∗, β∗ = arg max
α,β

{B(α, β) : (α, β) ∈ V},

where V = {(α∗0, 0), (α∗1, 1), (0, β∗0), (1, β∗1)} and the val-
ues of α∗0, α∗1, β∗0 and β∗1 are reported in Table 1.

The theorem expresses the fact that the optimal (α, β) pair
lies on the boundary of [0, 1]×[0, 1], i.e., either one between
policy and model is moved and the other is kept unchanged
or one is moved and the other is set to target.

Algorithm 1 reports the basic structure of SPMI. The algo-
rithm stops when both the expected relative advantages fall
below a threshold ε. The procedures PolicyChooser and
ModelChooser are designated for selecting the target policy
and model (see Section 4.3).

4.2. Policy and Model Spaces

The selection of the target policy and model is a rather cru-
cial component of the algorithm since the quality of the

4In the context of Conf-MDPs we believe that knowing the
model of the configurable part of the environment is a reasonable
requirement.
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Table 1. The four possible optimal (α, β) pairs, the optimal pair is the one yielding the maximum bound value (all values are clipped in
[0, 1]). The corresponding guaranteed performance improvements can be found in Appendix A.

β∗ = 0 α∗ = 0 β∗ = 1 α∗ = 1

α∗0 =
(1−γ)A

P,π
P,π,µ

γ∆QP,πD
π,π
∞ D

π,π
E

β∗0 =
(1−γ)A

P,π
P,π,µ

γ2∆QP,πD
P,P
∞ D

P,P
E

α∗1 = α∗0 − 1
2

(
D
P,P
E

D
π,π
E

+
DP,P∞
D
π,π
∞

)
β∗1 = β∗0 − 1

2γ

(
D
π,π
E

D
P,P
E

+
Dπ,π∞
D
P,P
∞

)

updates largely depends on it. To effectively adopt a target
selection strategy we have to know which are the degrees
of freedom on the policy and model spaces. Focusing on
the model space first, it is easy to discriminate two macro-
classes in real-world scenarios. In some cases, there are
almost no constraints on the direction in which to update
the model. In other cases, only a limited model portion,
typically a set of parameters inducing transition probabil-
ities, can be accessed. While we can naturally design the
first scenario as an unconstrained model space, to repre-
sent the second scenario we limit the model space to the
convex hull co(P ), where P is a set of extreme (or vertex)
models. Since only the convex combination coefficients can
be controlled, we refer to the latter as a parametric model
space. It is noteworthy that we can symmetrically extend the
dichotomy to the policy space, although the need to limit the
agent on the direction of policy updates is less significant in
our perspective.

4.3. Target Choice

To deal with unconstrained spaces, it is quite natural to
adopt the target selection strategy presented in (Pirotta et al.,
2013b), by introducing the concept of greedy model as
P+(·|s, a) ∈ arg maxs′∈S U

P,π(s, a, s′), i.e., the model
that maximizes the relative advantage in each state-action
pair. At each step, the greedy policy and model w.r.t. the
QP,π and UP,π are selected as targets. When we are not
free to choose the greedy model, like in the parametric
setting, we select the vertex model that maximizes the ex-
pected relative advantage (greedy choice). The greedy strat-
egy is based on local information and is not guaranteed to
provide a model-policy pair maximizing the bound. How-
ever, testing all the model-policy pairs is highly inefficient
in the presence of large model-policy spaces. A reason-
able compromise is to select, as a target, the model that
yields the maximum bound value between the greedy target
P i ∈ arg maxP∈P A

P,π
Pi,π,µ

and the previous target P i−1

(the same procedure can be employed for the policy). This
procedure, named persistent choice, effectively avoids the
oscillating behavior, common with the greedy choice.

5. Theoretical Analysis
In this section, we outline some relevant theoretical results
related to SPMI. We start by analyzing the scenario in which

the model/policy space is parametric, i.e., is limited to the
convex hull of a set of vertex models/policies, and then we
provide some rationales for the target choices adopted. In
most of the section, we restrict our attention to the transition
model, as for the policy all results apply symmetrically.

5.1. Parametric Model Space

We consider the setting in which the transition model space
is limited to the convex hull of a finite set of vertex models
(e.g., a set of deterministic models): P = co(P ), where
P = {P1, P2, ..., PM}. Each model in co(P ) is defined
by means of a coefficient vector ω belonging to the M -
dimensional fundamental simplex: Pω =

∑M
i=1 ωiPi. For

the sake of brevity, we omit the dependency on π of all
the quantities. Moreover, we define the optimal transition
model Pω∗ as the model that maximizes the expected return,
i.e., JPω∗

µ ≥ JPω
µ for all Pω ∈ co(P ). We start by stating

some results on the expected relative advantage functions.
Lemma 5.1. For any transition model Pω ∈ co(P ) it holds
that:

∑M
i=1 ωiA

Pi
Pω

(s, a) = 0 for all s ∈ S and a ∈ A.

As a consequence, we observe that also the expected relative
advantage functions APiPω,µ

sums up to zero when weighted
by the coefficients ω. An analogous statement holds when
the policy is defined as a convex combination of vertex
policies. The following theorem establishes an essential
property of the optimal transition model.
Theorem 5.1. For any transition model Pω ∈ co(P ) it
holds that APω

Pω∗ ,µ
≤ 0. Moreover, for all Pω ∈ co

(
{Pi ∈

P : ω∗i > 0}
)
, it holds thatAPω

Pω∗ ,µ
= 0.

The theorem provides a necessary condition for a transition
model to be optimal, i.e., all the expected relative advan-
tages must be non-positive and, moreover, those of the ver-
tex transition models associated with non-zero coefficients
must be zero. It is worth noting that the expected relative
advantage APω′

Pω,µ
represents only a local measure of the

performance improvement, as it is defined by taking the
expectation of the relative advantage APω′

Pω
(s, a) w.r.t. the

current δPω
µ . On the other hand, the actual performance

improvement JPω′
µ − JPω

µ is a global measure, being ob-
tained by averaging the relative advantage APω′

Pω
(s, a) over

the new δ
Pω′
µ (Theorem 3.1). This is intimately related to the

measure mismatch claim provided in (Kakade et al., 2003)
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as the model expected relative advantage APω∗
Pω,µ

might be
null even if JPω∗

µ > JPω
µ , making SPMI, like CPI and SPI,

stop into locally optimal models. Furthermore, it is intuitive
to get convinced that asking for a guaranteed performance
improvement may prevent from finding the global optimum,
as this may require visiting a lower performance region
(see Appendix C.1 for an example). Nevertheless, we can
provide a bound for the performance gap between a locally
optimal model and the global optimal model.
Proposition 5.1. Let Pω be a transition model having non-
positive relative advantage functions w.r.t. the target models.
Then:

JPω∗
µ − JPω

µ ≤ 1

1− γ
sup

s∈S,a∈A
max

i=1,2,...,M
APiPω

(s, a).

From this result we notice that a sufficient condition for
a model to be optimal is that APiPω

(s, a) = 0 for all state-
action pairs. This is a stronger requirement than the maxi-
mization of JPω

µ as it asks the model to be optimal in every
state-action pair independently of the initial state distribu-
tion µ;5 such a model might not exist when considering a
model space P that does not include all the possible transi-
tion models (see Appendix C.2 for an example).

5.2. Analogy with Policy Gradient Methods

In this section, we elucidate the relationship between the
relative advantage function and the gradient of the expected
return. Let us start by stating the expression of the gradient
of the expected return w.r.t. a parametric transition model.
This is the equivalent of the Policy Gradient Theorem (Sut-
ton et al., 2000) for the transition model.
Theorem 5.2 (P -Gradient Theorem). Let Pω be a class of
parametric stochastic transition models differentiable in ω,
the gradient of the expected return w.r.t. ω is given by:

∇ωJ
Pω
µ =

∫
S

∫
A
δPω
µ (s, a)

∫
S
∇ωPω(s′|s, a)×

× UPω (s, a, s′)ds′dads.

Let us now show the connection between ∇ωJ
Pω
µ and the

expected relative advantage functions. This result extends
that of Kakade et al. (2003) to multiple parameter updates.
Proposition 5.2. Let P be the current transition model. Let
us consider a target model which is a convex combination
of the models in P: P =

∑M
i=1 ηiPi and the update rule:

P ′ = βP + (1− β)P, β ∈ [0, 1].

Then, the derivative of the expected return of P ′ w.r.t. the β
coefficients evaluated in P is given by:

∂JP
′

µ

∂β

∣∣∣∣
β=0

=

M∑
i=1

ηiA
Pi
P,µ.

5This is the same difference between a policy that maximizes
the value function V π in all states and a policy that maximizes the
expected return Jπ .

The proposition provides an interesting interpretation of
the expected relative advantage function. Suppose that Pω

is the current model and we have to choose which target
model(s) we should move toward. The local performance
improvement, at the first order, is given by JP

′
µ − JPµ '

∂JP
′

µ

∂β

∣∣
β=0

β = β
∑M
i=1 ηiA

Pi
P,µ. Given that β will be deter-

mined later by maximizing the bound, the local performance
improvement is maximized by assigning one to the coeffi-
cient of the model yielding the maximal advantage. There-
fore, the choice of the direction to follow, when considering
the greedy target choice, is based on local information only
(gradient), while the step size β is obtained by maximiz-
ing the bound on the guaranteed performance improvement
(safe), as done in (Pirotta et al., 2013a).

6. Experimental Evaluation
The goal of this section is to show the benefits of config-
uring the environment while the policy learning goes on.
The experiments are conducted on two explicative domains:
the Student-Teacher domain (unconstrained model space)
the Racetrack Simulator (parametric model space). We
compare different target choices (greedy and persistent, see
Section 4.3) and different update strategies. Specifically,
SPMI, that adaptively updates policy and model, is com-
pared with some alternative model learning approaches:
SPMI-alt(ernated) in which model and policy updates are
forced to be alternated, SPMI-sup that uses a looser bound,
obtained from Theorem 3.3 by replacing D?′,?

E with D?′,?
∞ ,6

SPI+SMI7 that optimizes policy and model in sequence and
SMI+SPI that does the opposite.

6.1. Student-Teacher domain

The Student-Teacher domain is a simple model of concept
learning, inspired by (Rafferty et al., 2011). A student
(agent) learns to perform consistent assignments to literals
as a result of the statements (e.g., “A+C=3”) provided by
an automatic teacher (environment, e.g., online platform).
The student has a limited policy space as she/he can only
change the values of the literals by a finite quantity, but
it is possible to configure the difficulty of the teacher’s
statements, selecting the number of literals in the statement,
in order to improve the student’s performance (detailed
description in Appendix D.1).8

We start considering the illustrative example in which there
are two binary literals, and the student can change only one

6When considering only policy updates, this is equivalent to
the bound used in SPI (Pirotta et al., 2013b).

7SMI (Safe Model Iteration) is SPMI without policy updates.
8A problem setting is defined by the 4-tuple number of literals

- maximum literal value - maximum update allowed - maximum
number of literals in the statement (e.g., 2-1-1-2)
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Figure 1. Expected return, α and β coefficients for the Student-Teacher domain 2-1-1-2 for different update strategies.
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Figure 2. Policy dissimilarity for greedy and
persistent target choices in the 2-1-1-2 case.
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Figure 3. Expected return for the Student-Teacher domains 2-1-1-2 (left) and 2-3-1-2
(right) for different update strategies.

literal at a time (2-1-1-2). This example aims to illustrate
benefits of SPMI over other update strategies and target
choices. Further scenarios are reported in Appendix E.1. In
Figure 1, we show the behavior of the different update strate-
gies starting from a uniform initialization. We can see that
both SPMI and SPMI-sup perform the policy updates and
the model updates in sequence. This is a consequence of the
fact that, by looking only at the local advantage function, it
is more convenient for the student to learn an almost optimal
policy with no intervention on the teacher and then refining
the teacher model to gain further reward. The joint and
adaptive strategy of SPMI outperforms both SPMI-sup and
SPMI-alt. The alternated model-policy update (SPMI-alt) is
not convenient since, with an initial poor-performing policy,
updating the model does not yield a significant performance
improvement. It is worth noting that all the methods con-
verge in a finite number of steps and the learning rates α
and β exhibit an exponential growth trend.

In Figure 2, we compare the greedy target selection with the
persistent target selection. The former, while being the best
local choice maximizing the advantage, might result in an
unstable behavior that slows down the convergence of the
algorithm. In Figure 3, we can notice that learning both pol-
icy and model is convenient since the performance of SPMI
at convergence is higher than the one of SPI (only policy
learned) and SMI (only model learned), corresponding to
the markers in Figure 3. Although SPMI adopts the tightest
bound, its update strategy is not guaranteed to yield globally
the fastest convergence as it is based on local information,

i.e., expected relative advantage (Figure 3 right).

6.2. Racetrack simulator

The Racetrack simulator is an abstract representation of a
car driving problem. The autonomous driver (agent) has
to optimize a driving policy to run the vehicle on the track,
reaching the finish line as fast as possible. During the pro-
cess, the agent can configure two vehicle settings to improve
her/his driving performance: the vehicle stability and the
engine boost (detailed description in Appendix D.2). We
first present an introductory example on a simple track (T1)
in which only the vehicle stability can be configured and
then we show a case on a different track (T2) including also
engine boost configuration. These examples show that the
optimal model is not necessarily one of the vertex models.
Results on other tracks are reported in Appendix E.2.

In Figure 4 left, we highlight the effectiveness of SPMI
updates over SPMI-sup and SPMI-alt and sequential ex-
ecutions of SMI and SPI on track T1. Furthermore, the
SPMI-greedy, which selects the target greedily in each itera-
tion, results in lower performance w.r.t. SPMI. Comparing
SPMI with the sequential approaches, we can easily deduce
that is not valuable to configure the vehicle stability, i.e.,
updating the model, while the driving policy is still really
rough. Although in the showed example the difference be-
tween SPMI and SPI+SMI is way less significant in terms
of expected return, their learning paths are quite peculiar. In
Figure 4 right, we show the trend of the model coefficient
related to high-speed stability. While the optimal configu-
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Figure 4. Expected return and coefficient of the high speed stabiliy vertex model for
different update strategies in track T1.
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Figure 5. Expected return in track T2 with 4
vertex models.

ration results in a mixed model for vehicle stability, SPMI
exploits the maximal high-speed stability to learn the driv-
ing policy efficiently in an early stage, SPI+SMI, instead,
executes all the policy updates and then directly leads the
model to the optimal configuration. SPMI-greedy prefers
to avoid the maximal high-speed stability region as well.
It is worthwhile to underline that SPMI could temporar-
ily drive the process aside from the optimum if it leads to
higher performance from a local perspective. We consider
this behavior quite valuable, especially in scenarios where
performance degradations during learning are unacceptable.

Figure 5 shows how the previous considerations generalize
to an example on a morphologically different track (T2), in
which also the engine boost can be configured. The learning
process is characterized by a long exploration phase, both in
the model and the policy space, in which the driver cannot
lead the vehicle to the finish line to collect any reward.
Then, we observe a fast growth in expected return when the
agent has acquired enough information to reach the finish
line consistently. SPMI displays a more efficient exploration
phase compared to other update strategies and target choices,
leading the process to a quicker convergence to the optimal
model that prefers high speed stability and an intermediate
engine boost configuration.

7. Discussion and Conclusions
In this paper, we proposed a novel framework (Conf-MDP)
to model a set of real-world decision-making scenarios that,
from our perspective, have not been covered by the litera-
ture so far. In Conf-MDPs the environment dynamics can
be partially modified to improve the performance of the
learning agent. Conf-MDPs allow modeling many relevant
sequential-decision making problems that we believe cannot
be effectively addressed using traditional frameworks.

Why not a unique agent? Representing the environment
configurability in the agent model when the environment is
under the control of a supervisor is certainly inappropriate.
Even when the environment configuration is carried out by
the agent, this approach would require the inclusion of “con-

figuration actions” in the action space to allow the agent to
configure the environment directly as a part of the policy
optimization. However, in our framework, the environment
configuration is performed just once at the beginning of the
episode. Moreover, with configuration actions the agent is
not really learning a probability distribution on actions, i.e.,
a policy, but a probability distribution on state-state couples,
i.e., a state kernel. This formulation prevents distinguishing,
during the process, the effects of the policy from those of
the model, making it difficult to finely constrain the config-
urations, limit the feasible model space, and recovering, a
posteriori, the optimal model-policy pair.

Why not a multi-agent system? When there is no supervi-
sor, the agent is the only learning entity and the environment
is completely passive. In the presence of a supervisor, it
would be misleading to adopt a cooperative multi-agent ap-
proach. The supervisor acts externally, at a different level
and could be, possibly, totally transparent to the learning
agent. Indeed, the supervisor does not operate inside the
environment but it is in charge of selecting the most suitable
configuration, whereas the agent needs to learn the optimal
policy for the given environment.

The second significant contribution of this paper is the for-
mulation of a safe approach, suitable to manage critical
tasks, to solve a learning problem in the context of the newly
introduced Conf-MDP framework. To this purpose, we pro-
posed a novel tight lower bound on the performance im-
provement and an algorithm (SPMI) optimizing this bound
to learn the policy and the model configuration simulta-
neously. We then presented an empirical study to show
the effectiveness of SPMI in our context and to uphold the
introduction of the Conf-MDP framework.

This is a seminal paper on Conf-MDPs and the proposed
approach represents only a first step in solving these kinds of
problems: many future research directions are open. Clearly,
a first extension could tackle the problem from a sample-
based perspective, removing the requirement of knowing the
full model space. Furthermore, we could consider different
learning approaches, like policy search methods, suitable
for continuous state-action spaces.
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A. Proofs and Derivations
Proposition 3.1. Let (P, π) and (P ′, π′) be two model-policy pairs, the `1-norm of the difference between the γ-discounted
state distributions can be upper bounded as:∥∥∥dP ′,π′µ − dP,πµ

∥∥∥
1
≤ γ

1− γ
DP ′π

′
,Pπ

E ,

where DP ′π
′
,Pπ

E = Es∼dP,πµ
∥∥P ′π′(·|s)− Pπ(·|s)

∥∥
1
.

Proof. Exploiting the recursive equation of the γ-discounted state distribution (2) we can write the distributions difference as follows:

dP
′,π′

µ (s)− dP,πµ (s) = (1− γ)µ(s) + γ

∫
S
dP
′,π′

µ (s′)P ′π
′
(s|s′)ds′ − (1− γ)µ(s)− γ

∫
S
dP,πµ (s′)Pπ(s|s′)ds′ =

= γ

∫
S
dP
′,π′

µ (s′)P ′π
′
(s|s′)ds′ − γ

∫
S
dP,πµ (s′)Pπ(s|s′)ds′ ± γ

∫
S
dP,πµ (s′)P ′π

′
(s|s′)ds′ =

= γ

∫
S

(
dP
′,π′

µ (s′)− dP,πµ (s′)
)
P ′π

′
(s|s′)ds′ + γ

∫
S
dP,πµ (s′)

(
P ′π

′
(s|s′)− Pπ(s|s′)

)
ds′. (5)

Applying the `1-norm to the equation (5) we can state the following:∥∥∥dP ′,π′µ − dP,πµ
∥∥∥

1
≤ γ

∫
S

∣∣∣∣ ∫
S

(
dP
′,π′

µ (s′)− dP,πµ (s′)
)
P ′π

′
(s|s′)ds′

∣∣∣∣ds+ γ

∫
S

∣∣∣∣ ∫
S
dP,πµ (s′)

(
P ′π

′
(s|s′)− Pπ(s|s′)

)
ds′
∣∣∣∣ds ≤

(6)

≤ γ
∫
S

∣∣∣dP ′,π′µ (s′)− dP,πµ (s′)
∣∣∣ ∫
S
P ′π

′
(s|s′)dsds′ + γ

∫
S
dP,πµ (s′)

∫
S

∣∣∣P ′π′(s|s′)− Pπ(s|s′)
∣∣∣dsds′ ≤ (7)

≤ γ
∥∥∥dP ′,π′µ − dP,πµ

∥∥∥
1

+ γ E
s∼dP,πµ

∥∥∥P ′π′(·|s)− Pπ(·|s)
∥∥∥

1
≤ (8)

≤ γ

1− γ E
s∼dP,πµ

∥∥∥P ′π′(·|s)− Pπ(·|s)
∥∥∥

1
= DP ′π

′
,Pπ

E .

In (6) we exploited the subadditivity of the norm ‖x+ y‖ ≤ ‖x‖+ ‖y‖ and (8) derives from (7) by observing that
∫
S P
′π′(s|s′)ds = 1.

Corollary 3.1. Let (P, π) and (P ′, π′) be two model-policy pairs, the `1-norm of the difference between the γ-discounted
state distributions can be upper bounded as:∥∥∥dP ′,π′µ − dP,πµ

∥∥∥
1
≤ γ

1− γ

(
Dπ′,π
E +DP ′,P

E

)
,

where Dπ′,π
E = Es∼dP,πµ

∥∥π′(·|s)− π(·|s)
∥∥

1
and DP ′,P

E = E(s,a)∼δP,πµ

∥∥P ′(·|s, a)− P (·|s, a)
∥∥

1
.

Proof. We prove this corollary by decomposing the expression Es∼dP,πµ

∥∥∥P ′π′(·|s)− Pπ(·|s)
∥∥∥

1
:∥∥∥P ′π′(·|s)− Pπ(·|s)

∥∥∥
1

=

∫
S

∣∣∣P ′π′(s′|s)− Pπ(s′|s)
∣∣∣ds′ =

=

∫
S

∣∣∣ ∫
A

(
P ′(s′|s, a)π′(a|s)− P (s′|s, a)π(a|s)

)
da
∣∣∣ds′ =

=

∫
S

∣∣∣ ∫
A

(
P ′(s′|s, a)π′(a|s)− P (s′|s, a)π(a|s)± P ′(s′|s, a)π(a|s)

)
da
∣∣∣ds′ =

=

∫
S

∣∣∣ ∫
A

((
π′(a|s)− π(a|s)

)
P ′(s′|s, a) + π(a|s′)

(
P ′(s′|s, a)− P (s′|s, a)

))
da
∣∣∣ds′ ≤

≤
∫
S

∫
A

∣∣∣π′(a|s)− π(a|s)
∣∣∣P ′(s′|s, a)dads′ +

∫
S

∫
A
π(a|s)

∣∣∣P ′(s′|s, a)− P (s′|s, a)
∣∣∣dads′.

We now take the expectation w.r.t. dP,πµ and exploit the monotonicity property:

E
s∼dP,πµ

∥∥∥P ′π′(·|s)− Pπ(·|s)
∥∥∥

1
≤
∫
S
dP,πµ (s)

∫
S

∫
A

∣∣∣π′(a|s)− π(a|s)
∣∣∣P ′(s′|s, a)dadsds′+

+

∫
S
dP,πµ (s)

∫
S

∫
A
π(a|s)

∣∣∣P ′(s′|s, a)− P (s′|s, a)
∣∣∣dadsds′ ≤ (9)
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≤
∫
S
dP,πµ (s)

∫
A

∣∣∣π′(a|s)− π(a|s)
∣∣∣dads′+

+

∫
S

∫
A
δP,πµ (s, a)

∫
S

∣∣∣P ′(s′|s, a)− P (s′|s, a)
∣∣∣dsdads′ = (10)

= E
s∼dP,πµ

∥∥∥π′(·|s)− π(·|s)
∥∥∥

1
+ E

(s,a)∼δP,πµ

∥∥P ′(·|s, a)− P (·|s, a)
∥∥

1
= Dπ′,π

E +DP ′,P
E ,

where (10) follows from (9) by observing that dP,πµ (s)π(a|s′) = δP,πµ (s, a).

Theorem 3.1. The performance improvement of model-policy pair (P ′, π′) over (P, π) is given by:

JP
′,π′

µ − JP,πµ =
1

1− γ

∫
S
dP
′,π′

µ (s)AP
′,π′

P,π (s)ds.

Proof. Let us start from the definition of JP
′,π′

µ :

(1− γ)JP
′,π′

µ =

∫
S

∫
A
dP
′,π′

µ (s)π′(a|s)R(s, a)dads =

=

∫
S
dP
′,π′

µ (s)

∫
A
π′(a|s)R(s, a)dads±

∫
S
dP
′,π′

µ (s)V P,π(s)ds = (11)

=

∫
S
dP
′,π′

µ (s)

∫
A
π′(a|s)R(s, a)dads+ (12)

+

∫
S

(
(1− γ)µ(s′) + γ

∫
S

∫
A
dP
′,π′

µ (s)π′(a|s)P ′(s′|s, a)dads

)
V P,π(s′)ds′ −

∫
S
dP
′,π′

µ (s)V P,π(s)ds =

=

∫
S
dP
′,π′

µ (s)

(∫
A
π′(a|s)

∫
S
P ′(s′|s, a)

(
R(s, a) + γV P,π(s′)

)
ds′da− V P,π(s)

)
ds+ (13)

+ (1− γ)

∫
S
µ(s′)V P,π(s′)ds′ =

=

∫
S
dP
′,π′

µ (s)AP
′,π′

P,π (s)ds+ (1− γ)JP,πµ , (14)

where we have exploited the recursive formulation of dP
′,π′

µ (2) to rewrite (11) into (12) and (14) follows from (13) by observing that∫
S µ(s′)V P,π(s′)ds′ = JP,πµ and using the definition UP,π(s, a, s′) = R(s, a) + γV P,π(s′).

Theorem 3.2 (Coupled Bound). The performance improvement of model-policy pair (P ′, π′) over (P, π) can be lower
bounded as:

JP
′,π′

µ − JP,πµ︸ ︷︷ ︸
performance
improvement

≥
A
P ′,π′

P,π,µ

1− γ︸ ︷︷ ︸
advantage

−
γ∆AP

′,π′

P,π DP ′π
′
,Pπ

E

2(1− γ)2︸ ︷︷ ︸
dissimilarity penalization

,

where ∆AP
′,π′

P,π = sups,s′∈S
∣∣AP ′,π′P,π (s′)−AP

′,π′

P,π (s)
∣∣.

Proof. Exploiting the bounds on the γ-discounted state distributions difference (Proposition 3.1) we can easily attain the performance
improvement bound:

JP
′,π′

µ − JP,πµ =
1

1− γ

∫
S
dP
′,π′

µ (s)AP
′,π′

P,π (s)ds =

=
1

1− γ

∫
S
dP,πµ (s)AP

′,π′
P,π (s)ds+

1

1− γ

∫
S

(
dP
′,π′

µ (s)− dP,πµ (s)
)
AP
′,π′

P,π (s)ds ≥ (15)

≥
A
P ′,π′
P,π,µ

1− γ −
1

1− γ

∣∣∣∣ ∫
S

(
dP
′,π′

µ (s)− dP,πµ (s)
)
AP
′,π′

P,π (s)ds

∣∣∣∣ ≥ (16)

≥
A
P ′,π′
P,π,µ

1− γ −
1

1− γ
∥∥dP ′,π′µ − dP,πµ

∥∥
1

∆AP
′,π′

P,π

2
≥ (17)

≥
A
P ′,π′
P,π,µ

1− γ −
γ

(1− γ)2 E
s∼dP,πµ

∥∥P ′π′ − Pπ∥∥
1

∆AP
′,π′

P,π

2
, (18)
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where (16) follows from (15) by observing that b ≥ −|b|, line (17) follows from (16) by applying Corollary 2.4 of (Haviv & Van der
Heyden, 1984) and (18) is obtained by using Corollary 3.1.

Lemma A.1. The following equality relates the joint relative advantage function and the relative advantage functions:

AP
′,π′

P,π (s) = AP,π
′

P,π (s) +

∫
A
π′(a|s)AP

′,π
P,π (s, a)da.

Proof.

AP
′,π′

P,π (s) =

∫
A

∫
S
π′(a|s)P ′(s′|s, a)UP,π(s, a, s′)ds′da− V P,π(s) =

=

∫
A

∫
S
π′(a|s)P ′(s′|s, a)UP,π(s, a, s′)ds′da− V P,π(s)±

∫
A

∫
S
π′(a|s)P (s′|s, a)UP,π(s, a, s′)ds′da =

=

∫
A

∫
S
π′(a|s)P (s′|s, a)UP,π(s, a, s′)ds′da− V P,π(s)+

+

∫
A

∫
S
π′(a|s)

(
P ′(s′|s, a)− P (s′|s, a)

)
UP,π(s, a, s′)ds′da =

=

∫
A
π′(a|s)QP,π(s, a)da− V P,π(s) +

∫
A
π′(a|s)

∫
S

(
P ′(s′|s, a)− P (s′|s, a)

)
UP,π(s, a, s′)ds′da = (19)

= AP,π
′

P,π (s) +

∫
A
π′(a|s)AP

′,π
P,π (s, a)da, (20)

where we have applied in the first addendum (19) the definition of AP,π
′

P,π (s) observing that AP,π
′

P,π (s) =
∫
A π
′(a|s)AP,π(s, a)da =∫

A π
′(a|s)

(
QP,π(s, a) − V P,π(s)

)
to get (20); and similarly for the second addendum of (19) the fact that AP

′,π
P,π (s, a) =∫

S P
′(s′|s, a)AP,π(s, a, s′)ds′ =

∫
S P
′(s′|s, a)

(
UP,π(s, a, s′)−QP,π(s, a)

)
ds′.

Lemma A.2. The following bound relates the joint relative advantage function and the relative advantage functions:∣∣∣∣AP ′,π′P,π,µ −
(
A
P ′,π
P,π,µ +AP,π

′

P,π,µ

)∣∣∣∣ ≤ γDπ′,π
E DP ′,P

∞
∆QP,π

2
,

where DP ′,P
∞ = sups∈S,a∈A

∥∥P ′(·|s, a)− P (·|s, a)
∥∥

1
and ∆QP,π = sups,s′∈S,a,a′∈A

∣∣QP,π(s′, a′)−QP,π(s, a)
∣∣.

Proof. We can rewrite the expected relative advantageAP
′,π′

P,π,µ exploiting the definition:

A
P ′,π′
P,π,µ =

∫
S
dP,πµ AP

′,π′
P,π (s)ds =

=

∫
S
dP,πµ (s)

(
AP,π

′
P,π (s) +

∫
A
π′(a|s)AP

′,π
P,π (s, a)da

)
ds =

=

∫
S
dP,πµ (s)AP,π

′
P,π (s)ds+

∫
S

∫
A
dP,πµ π(a|s)AP

′,π
P,π (s, a)dads+

+

∫
S
dP,πµ (s)

∫
A

(
π′(a|s)− π(a|s)

)
AP
′,π

P,π (s, a)dads =

= AP,π
′

P,π,µ +AP
′,π

P,π,µ +

∫
S
dP,πµ (s)

∫
A

(
π′(a|s)− π(a|s)

)
AP
′,π

P,π (s, a)dads. (21)

From equation (21) we can straightforwardly state the following inequalities:

A
P ′,π′
P,π,µ ≥ A

P,π′
P,π,µ +AP

′,π
P,π,µ −

∣∣∣∣ ∫
S
dP,πµ (s)

∫
A

(
π′(a|s)− π(a|s)

)
AP
′,π

P,π (s, a)dads

∣∣∣∣,
A
P ′,π′
P,π,µ ≤ A

P,π′
P,π,µ +AP

′,π
P,π,µ +

∣∣∣∣ ∫
S
dP,πµ (s)

∫
A

(
π′(a|s)− π(a|s)

)
AP
′,π

P,π (s, a)dads

∣∣∣∣,
then we bound the right hand side:

∣∣∣AP ′,π′P,π,µ − (AP,π
′

P,π,µ +AP
′,π

P,π,µ)
∣∣∣ ≤ ∣∣∣∣ ∫

S
dP,πµ (s)

∫
A

(
π′(a|s)− π(a|s)

)
AP
′,π

P,π (s, a)dads

∣∣∣∣ ≤
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≤
∫
S

∫
A
dP,πµ (s)

∣∣∣(π′(a|s)− π(a|s)
)
AP
′,π

P,π (s, a)
∣∣∣dads ≤

≤
∫
S
dP,πµ (s)

∫
A

∣∣∣π′(a|s)− π(a|s)
∣∣∣dads

∆AP
′,π

P,π

2
≤

≤ E
s∼dP,πµ

∥∥π′(·|s)− π(·|s)
∥∥

1

∆AP
′,π

P,π

2
≤

≤ Dπ′,π
E

∆AP
′,π

P,π

2
.

We conclude by bounding the term
∆A

P ′,π
P,π

2
:

∆AP
′,π

P,π

2
≤
∥∥∥∆AP

′,π
P,π

∥∥∥
∞
≤

≤ sup
s∈S,a∈A

∫
S

(
P ′(s′|s, a)− P (s′|s, a)

)
UP,π(s, a, s′)ds′ ≤ (22)

≤ γ sup
s∈S,a∈A

∫
S

(
P ′(s′|s, a)− P (s′|s, a)

)
V P,π(s′)ds′ ≤ (23)

≤ γ sup
s∈S,a∈A

∥∥P ′(·|s, a)− P (·|s, a)
∥∥

1

∆V P,π

2
≤ (24)

≤ γDP ′,P
∞

∆QP,π

2
,

where (23) follows from (22) by observing that
∫
S

(
P ′(s′|s, a)−P (s′|s, a)

)
UP,π(s, a, s′)ds′ =

∫
S

(
P ′(s′|s, a)−P (s′|s, a)

)(
R(s, a)+

γV P,π(s′)
)
ds′ and (24) is obtained by observing that ∆V P,π ≤ ∆QP,π . Putting all together we get the lemma.

Lemma A.3. Let (P, π) and (P ′, π′) be two model-policy pairs, it holds that:

∆AP
′,π′

P,π

2
≤ (Dπ′,π

∞ + γDP ′,P
∞ )

∆QP,π

2
,

where DP ′,P
∞ = sups∈S,a∈A

∥∥P ′(·|s, a) − P (·|s, a)
∥∥

1
, Dπ′,π

∞ = sups∈S
∥∥π′(·|s) − π(·|s)

∥∥
1

and ∆QP,π =

sups,s′∈S,a,a′∈A
∣∣QP,π(s′, a′)−QP,π(s, a)

∣∣.
Proof. Let us start rewriting the expression of the relative advantage AP

′,π′
P,π :

AP
′,π′

P,π (s) =

∫
A
π′(a|s)

(
R(s, a) + γ

∫
S
P ′(s′|s, a)V P,π(s′)ds′

)
da− V P,π(s) =

=

∫
A
π′(a|s)

(
R(s, a) + γ

∫
S
P ′(s′|s, a)V P,π(s′)ds′

)
da−

∫
A
π(a|s)

(
R(s, a) + γ

∫
S
P (s′|s, a)V P,π(s′)ds′

)
da =

=

∫
A

(
π′(a|s)− π(a|s)

)
R(s, a)da+ γ

∫
A

∫
S

(
π′(a|s)P ′(s′|s, a)− π(a|s)P (s′|s, a)

)
V P,π(s′)dsda =

=

∫
A

(
π′(a|s)− π(a|s)

)
R(s, a)da+ γ

∫
A

∫
S

(
π′(a|s)− π(a|s)

)
P (s′|s, a)V P,π(s′)dsda+

+ γ

∫
A

∫
S
π′(a|s)

(
P ′(s′|s, a)− P (s′|s, a)

)
V P,π(s′)dsda =

=

∫
A

(
π′(a|s)− π(a|s)

)(
R(s, a) + γ

∫
S
P (s′|s, a)V P,π(s′)ds

)
da+

+ γ

∫
A

∫
S
π′(a|s)

(
P ′(s′|s, a)− P (s′|s, a)

)
V P,π(s′)dsda =

=

∫
A

(
π′(a|s)− π(a|s)

)
QP,π(s, a)da+ γ

∫
A

∫
S
π′(a|s)

(
P ′(s′|s, a)− P (s′|s, a)

)
V P,π(s′)dsda,

then we can obtain the proof straightforwardly, noticing that sups∈S ∆QP,π(s, ·) ≤ ∆QP,π and recalling that ∆V P,π ≤ ∆QP,π:

∆AP
′,π′

P,π

2
≤
∥∥∥AP ′,π′P,π

∥∥∥
∞
≤ Dπ′,π

∞
sups∈S ∆QP,π(s, ·)

2
+ γDP ′,P

∞
∆V P,π

2
≤ (Dπ′,π

∞ + γDP ′,P
∞ )

∆QP,π

2
.
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Theorem 3.3 (Decoupled Bound). The performance improvement of model-policy pair (P ′, π′) over (P, π) can be lower
bounded as:

JP
′,π′

µ − JP,πµ︸ ︷︷ ︸
performance
improvement

≥ B(P ′, π′) =

=
A
P ′,π
P,π,µ +AP,π

′

P,π,µ

1− γ︸ ︷︷ ︸
advantage

− γ∆QP,πD

2(1− γ)2︸ ︷︷ ︸
dissimilarity
penalization

,

where D is a dissimilarity term defined as:

D = Dπ′,π
E

(
Dπ′,π
∞ +DP ′,P

∞
)

+DP ′,P
E

(
Dπ′,π
∞ + γDP ′,P

∞
)
,

Dπ′,π
∞ = sups∈S

∥∥π′(·|s) − π(·|s)
∥∥

1
, DP ′,P

∞ = sups∈S,a∈A
∥∥P ′(·|s, a) − P (·|s, a)

∥∥
1

and ∆QP,π =

sups,s′∈S,a,a′∈A
∣∣QP,π(s′, a′)−QP,π(s, a)

∣∣.
Proof. Exploiting the bounds on the coupled expected relative advantageAP

′,π′
P,π,µ (Lemma A.2), on the γ-discounted state distributions

difference (Corollary 3.1) and on ∆AP
′,π

P,π (Lemma A.3), we can state the following:

JP
′,π′

µ − JP,πµ ≥
A
P ′,π′
P,π,µ

1− γ −
∥∥dP ′,π′µ − dP,πµ

∥∥
1

1− γ
∆AP

′,π′
P,π

2
≥

≥
A
P,π′
P,π,µ +AP

′,π
P,π,µ

1− γ − γ

(1− γ)2
(Dπ′,π

E +DP ′,P
E )(Dπ′,π

∞ + γDP ′,P
∞ )

∆QP,π

2
− γ

1− γD
π′,π
E DP ′,P

∞
∆QP,π

2
≥

≥
A
P,π′
P,π,µ +AP

′,π
P,π,µ

1− γ − γ

(1− γ)2

(
Dπ′,π
E Dπ′,π

∞ +Dπ′,π
E DP ′,P

∞ +Dπ′,π
∞ DP ′,P

E + γDP ′,P
∞ DP ′,P

E

)∆QP,π

2
.

With a factorization of the last expression we get the result.

Theorem 4.1. For any π ∈ Π and P ∈ P , the decoupled bound is optimized for:
α∗, β∗ = arg max

α,β
{B(α, β) : (α, β) ∈ V},

where V = {(α∗0, 0), (α∗1, 1), (0, β∗0), (1, β∗1)} and the values of α∗0, α∗1, β∗0 and β∗1 are reported in Table 1.

Proof. Let us write explicitly the update coefficients in the decoupled bound (3.3):

JP
′,π′

µ − JP,πµ ≥
αAP,πP,π,µ + βAP,πP,π,µ

1− γ − γ

(1− γ)2

(
α2Dπ,π

E Dπ,π
∞ + αβDπ,π

E DP,P
∞ + αβDπ,π

∞ DP,P
E + γβ2DP,P

∞ DP,P
E

)∆QP,π

2
,

we now take the derivatives w.r.t. α and β to find the stationary points:

∂B

∂α
=
A
P,π
P,π,µ

1− γ −
γ

(1− γ)2

(
2αDπ,π

E Dπ,π
∞ + βDπ,π

E DP,P
∞ + βDπ,π

∞ DP,P
E

)∆QP,π

2
,

∂B

∂β
=
A
P,π
P,π,µ

1− γ −
γ

(1− γ)2

(
αDπ,π

E DP,P
∞ + αDπ,π

∞ DP,P
E + 2γβDP,P

∞ DP,P
E

)∆QP,π

2
.

When the target policy is different from the current one and, symmetrically, the target model is different from the current model the linear
system of the derivatives admits a unique solution. We compute the second order derivative to discover the nature of such point:

∂B2

∂2α
= − γ

(1− γ)2
Dπ,π
E Dπ,π

∞ ∆QP,π,

∂B2

∂α∂β
=

∂B2

∂β∂α
= − γ

(1− γ)2

(
Dπ,π
E DP,P

∞ +Dπ,π
∞ DP,P

E

)∆QP,π

2
,

∂B2

∂2β
= − γ2

(1− γ)2
DP,P
∞ DP,P

E ∆QP,π,

from the second order derivatives we can write the Hessian matrix:

H(α, β) = −γ∆QP,π

(1− γ)2

(
2Dπ,π

E Dπ,π
∞ Dπ,π

E DP,P
∞ +Dπ,π

∞ DP,P
E

Dπ,π
E DP,P

∞ +Dπ,π
∞ DP,P

E 2γDP,P
∞ DP,P

E

)
,
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having trace and determinant:

tr(H(α, β)) = −γ∆QP
′,π

(1− γ)2

(
2Dπ,π

E Dπ,π
∞ + 2γDP,P

∞ DP,P
E

)
≤ 0

det(H(α, β)) =
γ2∆QP

′,π
P,π

2

(1− γ)4

(
(4γ − 2)Dπ,π

E Dπ,π
∞ DP,P

∞ DP,P
E − (Dπ,π

E DP,P
∞ )2 − (Dπ,π

∞ DP,P
E )2

)
≤

≤
γ2∆QP

′,π
P,π

2

(1− γ)4

(
2Dπ,π

E Dπ,π
∞ DP,P

∞ DP,P
E − (Dπ,π

E DP,P
∞ )2 − (Dπ,π

∞ DP,P
E )2

)
≤

≤ −
γ2∆QP

′,π
P,π

2

(1− γ)4

(
Dπ,π
E DP,P

∞ −Dπ,π
∞ DP,P

E

)2

≤ 0.

When P 6= P and π 6= π we observe that the Hessian matrix is indefinite since both the trace and the determinant are negative. This
means that the unique stationary point is a saddle point which is uninteresting for optimization purposes. By the way, B(α, β) is a
quadratic function, therefore it is continuous on the compact set [0, 1]2 and therefore, from Weierstrass theorem, it admits a global
maximum (and minimum). Since such point is not a stationary point it must lie on the boundary of [0, 1]2.

Then, by setting to zero the equations ∂B
∂α

∣∣
β=0

, ∂B
∂α

∣∣
β=1

, ∂B
∂β

∣∣
α=0

, ∂B
∂β

∣∣
α=1

we can obtain the following optimal values (which are clipped
to lie in the interval [0, 1]):

α∗0 =
(1− γ)

γ∆QP,π
A
P,π
P,π,µ

Dπ,π
∞ Dπ,π

E

α∗1 =
(1− γ)

γ∆QP,π
A
P,π
P,π,µ

Dπ,π
∞ Dπ,π

E

− 1

2

(
DP,P
E

Dπ,π
E

+
DP,P
∞

Dπ,π
∞

)

β∗0 =
(1− γ)

γ2∆QP,π
A
P,π
P,π,µ

DP,P
∞ DP,P

E

β∗1 =
(1− γ)

γ2∆QP,π
A
P,π
P,π,µ

DP,P
∞ DP,P

E

− 1

2γ

(
Dπ,π
E

DP,P
E

+
Dπ,π
∞

DP,P
∞

)
Instead, for γ ∈ (0, 1), the Hessian is singular when either the target policy or the target model are equal to the current one. Those cases
can be treated separately and clearly yield maxima points. When P = P then we have α∗ = α∗0, when π = π we have β∗ = β∗0 .

We report the values of the decoupled bound B(α, β) (Theorem 3.1) in correspondence of the optimal coefficients:

B(α∗0, 0) =
(1− γ)AP,πP,π,µ

2

2γ∆QP,πDπ,π
∞ Dπ,π

E

,

B(0, β∗0 ) =
(1− γ)AP,πP,π,µ

2

2γ2∆QP,πDP,P
∞ DP,P

E

,

B(1, β∗1 ) = AP,πP,π,µ +
(1− γ)AP,πP,π,µ

2

2γ2∆QP,πDP,P
∞ DP,P

E

−
A
P,π
P,π,µ

2γ

(
Dπ,π
E

DP,P
∞

+
Dπ,π
∞

DP,P
E

)
+

+
∆QP,π

2(1− γ)

(
1

2
DP,P
E Dπ,π

E D1 +
1

2
DP,P
∞ Dπ,π

E D1 −
1

4
DP,P
∞ DP,P

E D2
1 − γDπ,π

E Dπ,π
∞

)
,

B(α∗1, 1) = AP,πP,π,µ +
(1− γ)AP,πP,π,µ

2

2γ∆QP,πDπ,π
∞ Dπ,π

E

−
A
P,π
P,π,µ

2

(
DP,P
E

Dπ,π
∞

+
DP,P
∞

Dπ,π
E

)
+

+
γ∆QP,π

2(1− γ)

(
1

2
Dπ,π
E DP,P

E D2 +
1

2
Dπ,π
∞ DP,P

E D2 −
1

4
Dπ,π
∞ Dπ,π

E D2
2 − γDP,P

E DP,P
∞

)
,

where

D1 =
Dπ,π
E

DP,P
E

+
Dπ,π
∞

DP,P
∞

,

D2 =
DP,P
E

Dπ,π
E

+
DP,P
∞

Dπ,π
∞

.
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Lemma 5.1. For any transition model Pω ∈ co(P ) it holds that:
∑M
i=1 ωiA

Pi
Pω

(s, a) = 0 for all s ∈ S and a ∈ A.

Proof. Let us rewrite the expected relative advantage by decomposing Pω:

APiPω
(s, a) =

∫
S

(
Pi(s

′|s, a)− Pω(s′|s, a)
)
UPω (s, a, s′)ds′ =

=

∫
S

(
Pi(s

′|s, a)−
M∑
j=1

ωjPj(s
′|s, a)

)
UPω (s, a, s′)ds′.

Now we take the weighted sum of the previous equation:
M∑
i=1

ωiA
Pi
Pω

(s, a) =

M∑
i=1

ωi

∫
S

(
Pi(s

′|s, a)−
M∑
j=1

ωjPj(s
′|s, a)

)
UPω (s, a, s′)ds′ =

=

∫
S

( M∑
i=1

ωiPi(s
′|s, a)−

M∑
j=1

ωjPj(s
′|s, a)

)
UPω (s, a, s′)ds′ = 0,

where we just observed that
∑M
i=1 ωiPi(s

′|s, a)−
∑M
j=1 ωjPj(s

′|s, a) = 0.

Theorem 5.1. For any transition model Pω ∈ co(P ) it holds that APω

Pω∗ ,µ
≤ 0. Moreover, for all Pω ∈ co

(
{Pi ∈ P :

ω∗i > 0}
)
, it holds thatAPω

Pω∗ ,µ
= 0.

Proof. We first prove that the expected relative advantage w.r.t. the vertex models is non-positive and then we extend it to all the models.
By contradiction, suppose there exists a vertex model Pi ∈ P having positive expected relative advantage. Then, we can perform a step
of model update with SPMI starting from Pω∗ and getting the new model Pω with a performance improvement of:

JPω − JPω∗ ≥
(1− γ)APiPω∗ ,µ

2

2γ2∆QP,πD
Pi,Pω∗
∞ D

PPi,ω
∗

E

> 0,

which is impossible as Pω∗ is the optimal model. Let us consider a generic model Pω , its advantage decomposes linearly in the vertex
models:

A
Pω
Pω∗ ,µ

=

M∑
i=1

ωiA
Pi
Pω∗ ,µ

≤ 0.

Let us now consider the subset of vertex models having non-zero coefficient for the optimal model {Pi ∈ P : ω∗i > 0}. From Lemma 5.1
we have:

M∑
i=1

ω∗iA
Pi
Pω∗ ,µ

=
∑

i:ω∗i>0

ω∗iA
Pi
Pω∗ ,µ

= 0. (25)

SinceAPiPω∗ ,µ
≤ 0 from the first part of the theorem, it must be that allAPiPω∗ ,µ

= 0. As an immediate consequence, all transition models
in co

(
{Pi ∈ P : ω∗i > 0}

)
must have zero expected relative advantage, due to the linear decomposition of the advantage.

Proposition 5.1. Let Pω be a transition model having non-positive relative advantage functions w.r.t. the target models.
Then:

JPω∗
µ − JPω

µ ≤ 1

1− γ
sup

s∈S,a∈A
max

i=1,2,...,M
APiPω

(s, a).

Proof. Using Theorem 3.1 and Lemma A.1 we can write:

JPω∗
µ − JPω

µ =
1

1− γ

∫
S
dPω∗
µ (s)

∫
A
π(a|s)APω∗

Pω
(s, a)dsda ≤

≤ 1

1− γ

∫
S

∫
A
δPω∗
µ (s, a)dsda sup

s∈S,a∈A
A
Pω∗
Pω

(s, a) ≤

≤ 1

1− γ sup
s∈S,a∈A

A
Pω∗
Pω

(s, a),

Now we observe that the relative advantage decomposes linearly in the target models:

A
Pω∗
Pω

(s, a) =

M∑
i=1

ω∗iA
Pi
Pω

(s, a) ≤ max
i=1,2,...,M

APiPω
(s, a),

from which the theorem follows.
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Theorem 5.2 (P -Gradient Theorem). Let Pω be a class of parametric stochastic transition models differentiable in ω, the
gradient of the expected return w.r.t. ω is given by:

∇ωJ
Pω
µ =

∫
S

∫
A
δPω
µ (s, a)

∫
S
∇ωPω(s′|s, a)×

× UPω (s, a, s′)ds′dads.

Proof. We just rephrase the proof of the Policy Gradient Theorem (Sutton et al., 2000). Let us compute the gradient of the Q-function:

∇ωQ
Pω (s, a) = ∇ω

∫
S
Pω(s′|s, a)UPω (s, a, s′)ds′ =

=

∫
S

(
∇ωPω(s′|s, a)UPω (s, a, s′) + Pω(s′|s, a)∇ωU

Pω (s, a, s′)

)
ds′ = (26)

=

∫
S

(
∇ωPω(s′|s, a)UPω (s, a, s′) + Pω(s′|s, a)∇ω

(
R(s, a) + γ

∫
A
π(a′|s′)QPω (s′, a′)da

))
ds′ = (27)

=

∫
S
∇ωPω(s′|s, a)UPω (s, a, s′)ds′ + γ

∫
S
Pω(s′|s, a)

∫
A
π(a′|s′)∇ωQ

Pω (s′, a′)dads′, (28)

where (27) follows from (26) by expressing the U-function with the Bellman equation. After unfolding (28) we get:

∇ωQ
Pω (s, a) =

∫
S

∫
A
δPω
(s,a)(s

′′, a′′)

∫
S
∇ωPω(s′|s′′, a′′)UPω (s′′, a′′, s′)ds′′da′′ds′,

where δPω
(s,a)(s

′′, a′′) is the γ-discounted state-action distribution when forcing the first state to be s and the first action to be a. We obtain
the gradient of the expected return by observing that JPω

µ =
∫
S

∫
A µ(s)π(a|s)QPω (s, a)dsda and therefore:

∇ωJ
Pω
µ =

∫
S

∫
A
µ(s)π(a|s)∇ωQ

Pω (s, a)dsda =

∫
S

∫
A
δPω
µ (s′′, a′′)

∫
S
∇ωPω(s′|s′′, a′′)UPω (s′′, a′′, s′)ds′′da′′ds′,

by observing that
∫
S

∫
A µ(s)π(a|s)δPω

(s,a)(s
′′, a′′)dsda = δPω

µ (s′′, a′′).

Proposition 5.2. Let P be the current transition model. Let us consider a target model which is a convex combination of
the models in P: P =

∑M
i=1 ηiPi and the update rule:

P ′ = βP + (1− β)P, β ∈ [0, 1].

Then, the derivative of the expected return of P ′ w.r.t. the β coefficients evaluated in P is given by:

∂JP
′

µ

∂β

∣∣∣∣
β=0

=

M∑
i=1

ηiA
Pi
P,µ.

Proof. Exploiting theorem (5.2) and the definition of P ′ we can write the expression of the gradient:

∂JP
′

µ

∂β
=

∫
S

∫
A
δP
′

µ (s, a)

∫
S

∂

∂β
P ′(s′|s, a)UP

′
(s, a, s′)ds′dads =

=

∫
S

∫
A
δP
′

µ (s, a)

∫
S

(
P (s′|s, a)− P (s′|s, a)

)
UP
′
(s, a, s′)ds′dads =

=

M∑
i=1

ηi

∫
S

∫
A
δP
′

µ (s, a)

∫
S

(
Pi(s

′|s, a)− P (s′|s, a)
)
UP
′
(s, a, s′)ds′dads.

For β = 0 we have that P ′ = P therefore:

∂JP
′

µ

∂β

∣∣∣∣
β=0

=

M∑
i=1

ηi

∫
S

∫
A
δPµ (s, a)

∫
S

(
Pi(s

′|s, a)− P (s′|s, a)
)
UP (s, a, s′)ds′dads =

M∑
i=1

ηiA
Pi
P,µ.

B. Dissimilarity functions for policies and models
Given a set X a premetric (or prametric, quasi-distance or divergence) (Deza & Deza, 2009) is a function f : X × X → R

that satisfies the axioms:

• f(x, y) ≥ 0, ∀x, y ∈ X (non-negativity);

• f(x, x) = 0, ∀x ∈ X (reflexivity).
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If f satisfies also:

• f(x, y) = 0 ⇐⇒ x = y, ∀x, y ∈ X (identity of indiscernables);

• f(x, y) = f(y, x), ∀x, y ∈ X (symmetry);

• f(x, y) ≤ f(x, z) + f(z, y), ∀x, y, z ∈ X (triangular inequality).

then f is a metric.

The bounds presented in the paper make use of the new dissimilarity functions between policies and models defined as:

Dπ′,π
E = E

s∼dP,πµ

∥∥π′(·|s)− π(·|s)
∥∥

1
, DP ′,P

E = E
(s,a)∼δP,πµ

∥∥P ′(·|s, a)− P (·|s, a)
∥∥

1
,

in addition to the well-known ones:
Dπ′,π
∞ = sup

s∈S

∥∥π′(·|s)− π(·|s)
∥∥

1
, DP ′,P

∞ = sup
s∈S,a∈A

∥∥P ′(·|s, a)− P (·|s, a)
∥∥

1
.

The latter are clearly metric on the space of policies and models respectively, while the former are just premetric since, in
general, they are not symmetric (since the expected value is computed under the γ-discounted distribution of π or P ) and
they do not satisfy the triangular inequality. However the following result hold:

Proposition B.1. Let (P, π) and (P ′, π′) two model-policy pairs. If DP ′,P
E = Dπ′,π

E = 0 then JP
′,π′

µ = JP,πµ .

Proof. If DP ′,P
E = Dπ′,π

E = 0 , from Proposition 3.1 we have that
∥∥dP ′,π′µ − dP,πµ

∥∥
1

= 0 and therefore dP
′,π′

µ (s) = dP,πµ (s) for all
s ∈ S being

∥∥ · − · ∥∥
1

a metric. Let us consider the difference in the γ-discounted state-action distributions:

δP
′,π′

µ (s, a)− δP,πµ (s, a) = π′(a|s)dP
′,π′

µ (s)− π(a|s)dP,πµ (s) =
(
π′(sa|s)− π(a|s)

)
dP,πµ (s),

and the `1-norm becomes: ∥∥δP ′,π′µ − δP,πµ

∥∥
1

=

∫
S
dP,πµ (s)

∫
A

∣∣∣π′(a|s)− π(a|s)
∣∣∣dads =

= E
s∼dP,πµ

∥∥π′(·|s)− π(·|s)
∥∥

1
= Dπ′,π

E = 0.

Therefore δP
′,π′

µ (s, a) = δP,πµ (s, a) for all s ∈ S and all a ∈ A being
∥∥ · − · ∥∥

1
a metric. Thus:

JP
′,π′

µ =
1

1− γ

∫
S

∫
A
δP
′,π′

µ (s, a)R(s, a)dads =
1

1− γ

∫
S

∫
A
δP,πµ (s, a)R(s, a)dads = JP,πµ .

C. Examples of Conf-MDPs
In this section we report two examples of Conf-MDPs having some interesting behaviors. In all figures, the transition
probabilities are reported on the edges and the reward is written below the state name.

C.1. An example of Conf-MDP with local optima

Let us consider the Conf-MDP represented in Figure 6 where ω ∈ [0, 1] is the parameter, p ∈ [0, 1] is a small fixed
probability (say 0.1) and M is a large positive number. In each state there is only one action available (i.e., all policies
are optimal). The vertex models are obtained for ω ∈ {0, 1}. For both target models there is a small probability to get the
punishment −M since for ω = 0 the probability to reach state C from B is p and for ω = 1 state B is reachable from A
with probability p. We expect that by mixing the two target models we can only worsen the performance. It is simple to
realize that the expected return is a cubic function of ω. We report the expression for p = 0.1 and γ = 1:

JPωµ =
1

2

(
0.512ω3 + (0.64M − 1.088)ω2 − (0.64M + 0.296)ω + 1.981− 0.09M

)
.

We can find the stationary points by looking at the derivative:
∂JPωµ
∂ω

= 0.768ω2 + (0.64M − 1.088)ω − 0.32M − 0.148.

For M sufficiently large the derivative has one sign variation thus it has two solutions of opposite sign, having expression:

ω1,2 =
1

24

(
17− 10M ± 10

√
M2 −M − 4

)
.
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Figure 6. An example ofsome additional plots. Conf-MDP with local maxima.
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1

Figure 7. An example of Conf-MDP with mixed optimal model.

Clearly, we are interested only in the solutions within [0, 1] thus we discard the negative one. It is simple to see that the
positive solution is approximately 1

2 for M sufficiently large, as:

lim
M→+∞

1

24

(
17− 10M + 10

√
M2 −M − 4

)
=

1

2
.

However, having a look at the second derivative we realize that this is a point of minimum, since
∂2JPωµ
∂ω2

= 1.536ω + 0.64M − 1.088
∣∣
ω= 1

2

> 0.

Notice that in the unfortunate case in which SPMI is initialized at this value of ω the expected relative advantage (which
is the same as the gradient) is zero for both the vertex models and therefore there would be no update. Therefore, the
maximum must lie on the border, specifically either for ω = 0 or ω = 1. It is simple to see that JP1

µ > JP0
µ . Moreover, if we

compute the value of the gradient for ω = 0 and ω = 1 we realize that in both cases the value is negative. Having a negative
advantage, SPMI would never make any step even when the model is initialized at the lower performance vertex ω = 0.

C.2. An example of Conf-MDP with mixed optimal model

We consider the Conf-MDP as represented in Figure 7. As in the previous case, the parameter is ω ∈ [0, 1] and p ∈ [0, 1] is
a fixed probability. We want to show that there exists no value of ω such that Pω maximizes the value function in all states,
while there exist one value of ω maximizing the expected return. It is simple to compute the value function in each state:

V Pω (A) = γ2
(
ωp+ (1− ω)(1− p)

)(
ω(1− p) + (1− ω)p

)
,

V Pω (B) = γ
(
ω(1− p) + (1− ω)p

)
,

V Pω (C) = 1,

V Pω (D) = 0.

Since the initial state is A we have that JPωµ = V Pω (A) which is maximized for ω = 1/2. However, there is no value of
ω for which the value function of each state is maximized. As shown in Figure 8, while V Pω (A) is maximal in ω = 1/2,
V Pω (B) is maximal for ω = 1. All values of ω ∈ [1/2, 1] are indeed Pareto optimal (Figure 9).
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With some boring calculation we can determine the expression of the expected relative advantage functions:
AP1

Pω,µ
= γ2(1− ω)(1− 2ω)(1− 2p)2

AP2

Pω,µ
= −γ2ω(1− 2ω)(1− 2p)2.

We clearly see that they both vanish for ω = 1/2.
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V Pω (C) V Pω (D)

Figure 8. The state value function of the Conf-MDP in Figure 7
as a function of the parameter.
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Figure 9. The state value function of states A and B (the only
ones varying with the parameter) of the Conf-MDP in Figure 7.
The green continuous line is the Pareto frontier.

D. Environment description
In this appendix we provide a more detailed description of the environments used in the experimental evaluation.

D.1. Student-Teacher domain

The teaching/learning process involves two entities: the teacher and the student (learner) that interact. We assume both
entities share the same goal, i.e., maximizing the learning. The teaching model, however, should be suited for the specific
learning policy of the student. For instance, not all students have the same skills and are able to capture the information
provided by the teacher with the same speed and effectiveness. Thus, the teaching model should be tailored in order to meet
the student’s needs. Given the goal of maximizing learning, a teaching model induces an optimal learning policy (within
the space of the policies that a certain student can play). Symmetrically, a learning policy determines an optimal teaching
model (within the space of models available to the teacher). The question we want to answer in this experiment is: can we
dynamically adapt the teaching model to the learning policy and the learning policy to the teaching model, so to maximize
the learning?

We take inspiration from (Rafferty et al., 2011) and we formalize the teaching/learning process as an MDP in which the
student is the agent and the teacher is the environment. To fit our framework to this context, we can think to the teacher as an
online learning platform that can be configured by the student in order to improve the learning experience. As in (Rafferty
et al., 2011) we test the model on the “alphabet arithmetic” a concept-learning task in which literals are mapped to numbers.

We consider n literals L1, ..., Ln, to which the student can assign the values {0, ...,m}. The teacher, at each time step,
provides an “example”, i.e., an equation where a number of distinct literals (from 2 to p ≤ n) sum to a numerical answer.
The set of all possible examples is given by:

E =
{∑
i∈I

Li = l : I ⊆ {1, ..., n}, 2 ≤ |I| ≤ p, l ∈ {0, ..., |I|m}
}
.

The student reacts to an example by performing an action, i.e., an assignment of literals. The set of all assignments, i.e.,
actions, is given by:

A =
{
L1 = l1, L2 = l2, . . . , Ln = ln : li ∈ {0, ...,m}, i = 1, . . . , n

}
,

thus |A| = (m+ 1)n. In order to model the student policy space we assume that a student can modify an arbitrary number
of literals under the assumption that two consecutive assignments satisfy

∑n
i=1 |l′i − li| ≤ k. This models the learning

limitations of the student, in particular how hard is for the student to capture the teacher information. We assume that the
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teacher can provide any example. The set of states is the combination of an assignment and an example, i.e., S = E × A.

The goal of the student is to perform assignments that are consistent with the teacher’s examples (within its limitations on
the possible assignments). So, while the student is learning the optimal policy it can configure the teacher to provide more
suitable examples. The reward is 1 when the assignment is consistent, 0, when it is not and the horizon H is finite. Notice
that we don’t have goal state, differently from (Rafferty et al., 2011) so the problem becomes fully observable. We assume
that, at the beginning, both policy and model are uniform distribution on the allowed actions/states.

D.2. Racetrack Simulator

The Racetrack Simulator aims to represent a basic abstraction of an autonomous car driving problem. In this context the
autonomous driver, the learning agent, has to optimize a driving policy in order to run the vehicle to the track finish line
as fast as possible. The vehicle and the track naturally compose the model of the learning process, however there is the
possibility to tune a set of vehicle parameters, s.t. aerodynamic profile (to affect the vehicle stability) and engine setting.
Therefore, to maximize the performance, the driving policy of the agent and the model configuration has to be jointly
considered. It is noteworthy that a specific model parametrization (vehicle setting) induces an optimal driving policy and, in
the other hand, a driving policy determines an optimal model parametrization. Moreover a model-policy pair that results to
be optimal for a specific track may not be optimal for a (morphologically) different track. Then, the question we aim to
answer with this experiment is the following: can we learn the optimal model-policy pair for a given track by dynamically
adapt the vehicle parametrization to the driving policy and, conversely, the driving policy to the vehicle parametrization
during the learning process?

We formalize the learning process as an MDP in which the driver is the agent and the environment is composed by the
track and the vehicle. The track is represented by a grid of positions, each grid point is either of type roadway, wall,
initial position, goal position. A state in the learning process belongs to the set:

S =
{

(x, y, vx, vy) : x ∈ {0, ..., xmax}, y ∈ {0, ..., ymax}, vx ∈ {vmin, ..., vmax}, vy ∈ {vmin, ..., vmax}
}
,

where (x, y) corresponds to a grid position and (vx, vy) are the speed along the coordinate axes. At each step the agent can
increment the speed along a coordinate direction or do nothing, then the action space is represented by the following:

A =
{
keep, increment vx, increment vy, decrement vx, decrement vy

}
.

The learning process starts at the state corresponding to the initial position with zero velocities; the agent collects reward 1
when it reaches a state corresponding to the goal position within the finite horizon H , he collects 0 reward in any other case.

The transition model induces a success probability to any action, a failed action causes a random action to occur instead of
the one selected by the agent. This probability aims to model the stability of the vehicle, the more the vehicle is unstable,
the more is hard for the agent to drive it (or select an action). The model also induces a failure probability to every action: a
failure represent a break of the vehicle, thus it directly cause the end of the episode. This feature represents the pressure
on the vehicle engine, the more performance the driver asks for, the more it may break down. We formalize the transition
model as a convex combination between a set of vertex models: these correspond to vehicle configuration pushed towards
the limit in terms of the aspects described above. For our purpose we define a model dichotomy related to vehicle stability:
P highspeed (P hs) trades stability at lower speed to have more stability (or high action success probability) in high speed
situations, P lowspeed (P ls), instead, provides more stability in low speed situation and poor stability at higher speed.
We define also a model dichotomy related to engine boost: P boost (P b) guarantees higher engine performance and a
lower reliability (or higher failure probability), at the opposite P noboost (P nb) provides higher reliability but poor engine
performance. In Figure 10 we propose a graphical representation of the features of these extreme models.

Considering any possible combination of stability and engine setting, we define the model set (set of vertex models)
P = {P hs b, P hs nb, P ls b, P ls nb}. Each model in this set is obtained by taking, for each state-action pair, the
product of the transition probabilities of the components (e.g., P hs b(s, a) = P hs(s, a)× P b(s, a)). Then, we derive
the model space as the convex hull of the vertices in the model set:

Pω =
{
Pω = ω0P hs b+ ω1P hs nb+ ω2P ls b+ ω3P ls nb

}
.

While the agent is learning the optimal driving policy, the model parametrization can be configured (selecting a vector
(ω0, ω1, ω2, ω3)) trying to fit the vehicle settings to the driving policy and simultaneously trying to fit the policy-settings pair
to the morphology of the track. At the beginning of the learning process, we assume the policy to be a uniform distribution
on the action space and the model to be (0, 0.5, 0, 0.5), that we can consider the most conservative parametrization in our
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Figure 10. Graphical representation of the racetrack extreme models.

context. We also report in Figure 11 an illustrative representation of the tracks used in the experiments.
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Figure 11. Basic representation of the tracks used in the Racetrack Simulator. From left to right: T1, T3, T4 and T2 just below. Each
position have a type label: 1 for initial states, 2 for goal states, 3 for walls, 4 for roadtracks.

E. Experiments details
In this appendix, we report the hyper-parameters used for each experiment and some additional plots.

E.1. Student-Teacher domain

In Table 2 we report the number of iterations to convergence for the different problem settings we considered. We can see
that SPMI is the first or the second to converge in most of the cases. In Table 3 we report the hyper-parameters we used for
the runs in the different problem settings. In Figures 12, 13, 14 we provide numerous plots showing different interesting
metrics for the problem settings we considered in the experimental evaluation.
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Table 2. Number of steps to convergence for the update strategies in different problem settings of the Student-Teacher domain. In bold the
best algorithm and underlined the second best. The run has been stopped after 50000 iterations.

Problem SPMI SPMI-sup SPMI-alt SPI+SMI SPI+SMI

2-1-1-2 16234 18054 30923 22130 7705
2-1-2-2 2839 3194 5678 2839 12973
2-2-1-2 20345 18287 >50000 39722 10904
2-2-2-2 12025 14315 >50000 >50000 15257
2-3-1-2 14187 13391 11772 >50000 12183
3-1-1-2 15410 17929 22707 31122 14257
3-1-2-2 3313 3313 8434 3313 22846
3-1-3-2 2945 3435 5891 2945 18090

Table 3. Additional information and hyper-parameters used for the different problem settings of the Student-Teacher domain.

Problem |S| |A| horizon ∆QP,π γ ε

2-1-1-2 12 4 10 1−γ10
1−γ ' 9.56 0.99 0

2-1-2-2 12 4 10 9.56 0.99 0
2-2-1-2 45 8 10 9.56 0.99 0
2-2-2-2 45 8 10 9.56 0.99 0
2-3-1-2 112 16 10 9.56 0.99 0
3-1-1-2 72 9 10 9.56 0.99 0
3-1-2-2 72 9 10 9.56 0.99 0
3-1-3-2 72 9 10 9.56 0.99 0
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Figure 12. Several statistics of the persistent target choice for different update strategies in the case of Student-Teacher domain 2-1-1-2.
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Figure 13. Several statistics of the greedy target choice for different update strategies in the case of Student-Teacher domain 2-1-1-2.
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Figure 14. Several statistics of the persistent target choice for different update strategies in the case of Student-Teacher domain 2-3-1-2.
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E.2. Racetrack Simulator

In this section, we provide additional information about the experiments in the Racetrack Simulator environment (Table 4)
along with a more detailed presentation of the results reported in the Experimental Evaluation section of the paper (Figure 15
and Figure 16). Moreover, we present the performance obtained in some cases not mentioned in the paper (Figure 17).

Table 4. Additional information and hyper-parameters used for the different problem settings of the Racetrack Simulator. In the cases with
two vertices only stability vehicle configurations are considered.

Track vertices |S| |A| horizon ∆QP,π γ ε

T1 2 675 5 20 1 0.9 0
T3 2 450 5 20 1 0.9 0
T4 2 675 5 20 1 0.9 0
T2 2 450 5 20 1 0.9 0
T2 4 451 5 20 1 0.9 0
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Figure 15. Several statistics of different update strategies and target choices in the case of Racetrack Simulator in the T1 considering
vehicle stability only.
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Figure 16. Several statistics of different update strategies in the case of Racetrack Simulator in the T2 considering vehicle stability and
engine setting.
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Figure 17. Expected return of the Racetrack Simulator in the T2, T3, T4 for different update strategies and considering vehicle stability
configuration only.


