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A. Supplementary Materials
In this section we provide the proofs of the results stated
in the main paper. Throughout the section, we denote the
objective function of `2 and `1 regularized problems with
Jλ(M) and Jµ(M) respectively, where

Jµ(M) := −E[x>Mx] + µTr (M) ,

Jλ(M) := −E[x>Mx] +
λ

2
‖M‖2F .

Recall that the eigendecomposition of C is given by C =∑d
i=1 λiuiu

>
i .

A.1. Proofs of Section 2

Proof of Lemma 2.2. Note that the feasible set of Problem 6
is convex, and the objective Jλ is λ-strongly convex. Hence,
the optimum is unique. Since Slater condition is satisfied,
strong duality holds and KKT conditions are necessary and
sufficient for optimality. Let (λi(M), vi), i ∈ [d] denote
the eigenvalues and associated eigenvectors of M. KKT
first-order optimality condition yields

0=−C + λM−
d∑
i=1

γiviv>i +

d∑
i=1

ωiviv>i + βI,

where γi, ωi, β ≥ 0 are Lagrange multipliers for the con-
straints M � 0, M � I, and Tr (M) ≤ k respectively. Note
that except for C, every other term in the above equation has
the same set of eigenvectors as M. We conclude that C and
M have the same set of eigenvectors, i.e. ui = vi, i ∈ [d].
Rearranging, we get:

C =

d∑
i=1

(λλi(M)− γi + ωi + β)uiu>i

Complementary slackness implies that γiλi(M),
ωi(λi(M) − 1), and β(Tr (M) − k) all vanish. Now,
for an admissible λ, we can verify that the following satisfy
the KKT conditions:

M = Πk(C)

ωi = (λi − λk)1i≤k
γi = (λk − λ− λj)1i>k
β = λk − λ,

where Πk(C) returns the projection matrix corresponding to
top-k eigenspace of C and 1i∈A is the indicator of set A. In
particular, γi = λi−λk ≥ 0 for i ∈ [k]. Also, since λ < gk,
for i ∈ {k + 1, . . . , d} it holds that γi = λk − λ − λj ≥
0. It is easy to verify that the complementary slackness
conditions are also satisfied for the above assignments of
the primal and dual variables.

Proof of Lemma 2.3. As discussed in the proof of
Lemma 2.2, since the feasible set is convex and the
objective is strongly convex, the optimum is unique.
Furthermore, Salter condition is satisfied. Therefore,
strong duality holds and KKT conditions are necessary
and sufficient for optimality. Following Lemma 2.2, KKT
first-order optimality condition yields:

C =

d∑
i=1

(λλi(M)− γi + ωi + β)uiu>i

One can assert that the following set of primal and dual
variables satisfy the KKT conditions:

M =

p∑
i=1

uiu>i +
k − p
q − p

q∑
j=p+1

uju>j

ωi = (λi − λp+1 +
k − q
q − p

λ)1i≤p

γi = (λp+1 − λi −
k − p
q − p

λ)1i>q

β = λp+1 −
k − p
q − p

λ,

where 1i∈A is the indicator of set A.

Proof of Theorem 2.4. Let’s denote the stochastic gradient
at time t by ĝt := −xtx>t + λMt. Note that

‖ĝt‖F = ‖−xtx>t +λMt‖F ≤ ‖xt‖2+λ‖Mt‖F ≤ 1+λ
√
k.

Hence, G2 := (1 + λ
√
k)2 ≥ E[‖ĝt‖2] for all t ∈

{1, . . . , T}. Let M∗ be the global optimum of Problem 6.
Since λ is admissible, it follows from Lemmas 2.2 and 2.3
that M∗ is also an optimum for Problem 4. Using the fol-
lowing Lemma from (Rakhlin et al., 2012), we bound the
distance between MT and M∗.

Lemma A.1 (Lemma 1 of (Rakhlin et al., 2012) ). Sup-
pose J is λ-strongly convex over a convex set M, and that
E[‖ĝt‖2F ] ≤ G2. Then if we pick ηt = 1

λt , it holds for any
T that

E[‖MT −M∗‖2F ] ≤ 4G2

λ2T
. (14)

Now, we note that

‖M∗ − M̃‖F = ‖M∗ −MT + MT − M̃‖F
≤ ‖M∗ −MT ‖F + ‖MT − M̃‖F
≤ 2‖M∗ −MT ‖F

where the second inequality holds because by definition of
M̃, ‖MT −M̃‖F ≤ ‖M∗−MT ‖F . Plugging back the above
into Equation (14) completes the proof.
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Proof of Theorem 2.5. Let M∗ =
∑k
i=1 uiu>i and M̃ =∑k

i=1 ũiũ>i be the eigendecompositions of M∗ and M̃
respectively. Denote the suboptimality gap by ε :=
E[x>M∗x− x>M̃x], we have

ε =

k∑
i=1

u>i E[xx>]ui − E[

k∑
i=1

ũ>i E[xx>]ũi]

=

k∑
i=1

λi − E[

k∑
j=1

ũ>j
d∑
i=1

λiuiu>i ũj ]

=

k∑
i=1

λi −
k∑
j=1

d∑
i=1

λiE[(u>i ũj)2]

Noting that E[(u>i ũj)2] ≥ 0, we get

ε ≤
k∑
i=1

λi −
k∑
j=1

k∑
i=1

λiE[(u>i ũj)2]

=

k∑
i=1

λi(1−
k∑
j=1

E[(u>i ũj)2])

Since λ1 ≥ λ2 ≥ . . . ≥ λd and 1−
∑k
j=1 E[(u>i ũj)2] ≥ 0,

we get that

ε ≤ λ1
k∑
i=1

(1− E[

k∑
j=1

(u>i ũj)2]) = λ1(k − E[‖U>Ũ‖2F ])

(15)
Now, we show that k−E[‖Ũ>U∗‖2F ] = 1

2E[‖M∗ − M̃‖2F ].

‖M∗ − M̃‖2F = ‖M∗‖2F + ‖M̃‖2F − 2〈M∗, M̃〉

= 2k − 2〈UU>, ŨŨ
>〉

= 2
(
k − ‖Ũ>U∗‖2F

)
.

Plugging back this result in Equation (15), we get

ε ≤ λ1
2
E[‖M∗ − M̃‖2F ] ≤ 8λ1(1 + λ

√
k)2

λ2T

where the last inequality follows from Equation (8).

A.2. Proofs of Section 3

Proof of Lemma 3.1. Since the problem is convex and
Slater condition is satisfied, the KKT conditions are neces-
sary and sufficient for optimality. Let (λi(M), vi), i ∈ [d]
denote the eigenvalues and associated eigenvectors of M.
KKT first-order optimality condition yields

0=−C + µI−
d∑
i=1

γiviv>i +

d∑
i=1

ωiviv>i + βI,

where γi, ωi, β ≥ 0 are Lagrange multipliers for the con-
straints M � 0, M � I, and Tr (M) ≤ k respectively. Note
that except for C, every other term in the above equation has
the same set of eigenvectors as M. We conclude that C and
M have the same set of eigenvectors, i.e. ui = vi, i ∈ [d].
Rearranging, we get:

C =

d∑
i=1

(µ− γi + ωi + β)uiu>i . (16)

Complementary slackness implies that γiλi(M),
ωi(λi(M) − 1), and β(Tr (M) − k) all vanish. Now,
for an admissible µ, we can assert that the following satisfy
the KKT conditions:

M = Πk(C)

ωi = (λi − λk)1i≤k
γi = (λk − λi)1i>k
β = λk − µ,

where Πk(C) returns the projection matrix corresponding
to top-k eigenspace of C and 1i∈A is the indicator of set
A. We shall now prove that M is the unique global opti-
mum. Assume M0 6= M achieves the optimum as well.
Observe that all extreme points of the feasible set are rank-k
projection matrices. Since the objective is linear, it must
be the case that M0 is a convex combination of some ex-
treme points of the feasible set, i.e. M0 =

∑r
i=1 αiMi

where M1, . . . ,Mr are all rank-k projection matrices and∑r
i=1 αi = 1 and αi ≥ 0,∀i ∈ 1, . . . , r. Hence, Tr (M0) =∑r
i=1 αiTr (Mi) = k. Since −Ex[x>Mx] + µTr (M) =

−Ex[x>M0x] + µTr (M0) and Tr (M) = Tr (M0) = k, it
should be the case that−Ex[x>Mx] = −Ex[x>M0x], which
contradicts with the eigengap assumption (gk > 0).

Key insights on the admissibility condition (µ ≤ λk):
The stationary condition in Equation (16) gives a system of
linear equations with d equations:

λi = µ− γi + ωi + β, ∀i ∈ [d]. (17)

If µ > λk, since β ≥ 0, it should hold for all j ∈ {k, . . . , d}
that −γj + ωj < 0. Since ωj ≥ 0, we should have γj > 0.
By complementary slackness, we conclude that λj(M∗) =
0. This implies that Tr(M∗) < k, because at least d −
k + 1 eigenvalues of M∗ are equal to zero, and the rest
are at most one. In this case, M∗ cannot be a solution
of Problem 4. Hence, the admissibility condition in the
statement of Lemma 3.1.

Proof of Theorem 3.2. Lets denote the stochastic gradient
at time t by ĝt := −xtx>t + µI. Note that

‖ĝt‖F = ‖− xtx>t + µI‖F ≤ ‖xt‖2 + µ‖I‖F ≤ 1 + µ
√
d.
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Hence, E[‖ĝt‖2] ≤ (1 +µ
√
d)2 =: G2 for all iterates. Also

note that the diameter of the feasible set is at most 2
√
k,

that is, ‖M − M′‖F ≤ 2
√
k =: D for all M and M′ in

the feasible set. By analysis of SGD for convex smooth
problems (see Theorem 2 of (Shamir & Zhang, 2013)), we
get that for ηt = c√

t
,

E[Jµ(MT )]− Jµ(M∗) ≤ (
D2

c
+ cG2)

2 + log T√
T

≤ (
4k

c
+ c(1 + µ

√
d)2)

2 + log T√
T

For T > 1, we have 2 + log T ≤ 4 log T . Choosing c =√
4k

1+µ
√
d

gives

E[Jµ(MT )]− Jµ(M∗) ≤
16
√
k(1 + µ

√
d) log T√

T
. (18)

To prove the claim of the theorem, we start from its left hand
side where we have for any T > 1:

E[x>M∗x]− E[x>MT x] = E[Jµ(MT )]− Jµ(M∗)
+ µTr (M∗ − E[MT ])

(19)

We first bound the quantity Tr
(
M∗ −M′

)
in terms of the dif-

ference in objectives achieved by M∗ and M′. Eigendecom-
position of C−µI is given by C−µI =

∑d
i=1(λi−µ)uiu>i .

By definition of the principal subspace we have M∗ =∑k
i=1 uiu>i . Since u1, . . . , ud form an orthogonal basis for

Rd, we have the following equalities for the trace of the
difference:

Tr
(
M∗ −M′

)
=

d∑
i=1

u>i (M∗ −M′)ui

=

k∑
i=1

u>i (M∗ −M′)ui︸ ︷︷ ︸
≥0

+

d∑
i=k+1

u>i (M∗ −M′)ui︸ ︷︷ ︸
≤0

Note that by definition of M∗, and the fact that ‖M′‖2 ≤ 1,
we get that u>i (M∗ −M′)ui ≥ 0 for all i ∈ {1, . . . , k}. On
the other hand, since λiM∗ = 0 for i ∈ {k + 1, . . . , d},
we have that u>i (M∗ −M′)ui ≤ 0. We use this property to
upper bound the trace by scaling up the≥ 0 part and scaling

down the ≤ 0 part:

Tr
(
M∗ −M′

)
≤

k∑
i=1

λi − µ
λk − µ

u>i (M∗ −M′)ui

+

d∑
i=k+1

λi − µ
λk − µ

u>i (M∗ −M′)ui

=
1

λk − µ

d∑
i=1

(λi − µ)u>i (M∗ −M′)ui

=
1

λk − µ
〈C− µI,M∗ −M′〉

=
1

λk − µ
(Jµ(M′)− Jµ(M∗))

where the first inequality holds because for i ∈ {1, . . . , k},
0 < λk−µ ≤ λi−µ so that λi−µ

λk−µ ≥ 1. Furthermore, for i ∈
{k+1, . . . , d}, 0 < λk−µ ≥ λi−µ so that λi−µ

λk−µ ≤ 1. Ob-
serve that µTr

(
M∗ −M′

)
≤ µ

λk−µ
(
Jµ(M′)− Jµ(M∗)

)
whenever µ is an admissible regularization parameter, which
together with Equation 19 imply

E[x>M∗x]− E[x>MT x] ≤ (E[Jµ(MT )]− Jµ(M∗))

+
µ

λk − µ
(E[Jµ(MT )]− Jµ(M∗))

≤ λk
λk − µ

(E[Jµ(MT )]− Jµ(M∗))

Plugging back the above in Equaition (18), we get

E[x>M∗x]− E[x>MT x] ≤ 16λk
√
k(1 + µ

√
d) log T

(λk − µ)
√
T

.

When µ ≤ min{λk

2 ,
1√
d
}, it is easy to see that the right

hand side above is bounded by 64
√
k log T√
T

, which completes
the proof.

Proof of Lemma 3.3. Let denote the tail at t-th iterate by
δt =

∑d
i=k+1 λi(Mt). Expand the right hand side to get

〈C− µI,M∗ −Mt〉 =

k∑
i=1

λi − 〈C,Mt〉

− µ(Tr (M∗)− Tr (Mt))

By Von Neumann’s trace inequality, we know 〈C,Mt〉 ≤∑d
i=1 λiλi(Mt). Substituting in the above equality and
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expanding, we get

〈C− µI,M∗ −Mt〉

≥
k∑
i=1

λi −
d∑
i=1

λiλi(Mt)− µ(

k∑
i=1

1−
d∑
i=1

λi(Mt))

=

k∑
i=1

λi(1− λi(Mt))−
d∑

i=k+1

λiλi(Mt)

− µ
k∑
i=1

(1− λi(Mt)) + µ

d∑
i=k+1

λi(Mt)

≥ λk
k∑
i=1

(1− λi(Mt))− λk+1

d∑
i=k+1

λi(Mt)

− µ
k∑
i=1

(1− λi(Mt)) + µ

d∑
i=k+1

λi(Mt)

= (λk − µ)

k∑
i=1

(1− λi(Mt))− (λk+1 − µ)

d∑
i=k+1

λi(Mt)

= (λk − µ)

(
k −

k∑
i=1

λi(Mt)

)
− (λk+1 − µ)δt

≥ (λk − µ)δt − (λk+1 − µ)δt = (λk − λk+1)δt

where the second inequality holds because λi’s are sorted
in descending order.

Proof of Lemma 3.4. Simply follows from the following in-
equalities:

d∑
i=k+1

λi(Mt + ηtxtx>t ) ≤
d∑

i=k+1

λi(Mt) +

d−k∑
i=1

λi(ηtxtx>t )

=

d∑
i=k+1

λi(Mt) + ηt‖xt‖2

where the first inequality is due to Lidskii’s (see, e.g. (Tao,
2012)). Taking expectation of both sides

E[

d∑
i=k+1

λi(Mt + ηtxtx>t )] ≤ E[

d∑
i=k+1

λi(Mt) + ηt‖xt‖2]

≤
d∑

i=k+1

λi(Mt) + ηt

where the last inequality holds because E[‖xt‖2] ≤ 1 by
assumptions of Theorem 3.2.

Proof of Theorem 3.5. As a consequence of Lemma 3.3 and

Lemma 3.4, we have that

δ̃t :=

d∑
i=k+1

λi(Mt + ηtxtx>t ) ≤
d∑

i=k+1

λi(Mt) + ηt

≤ 1

gk
〈C− µI,M∗ −Mt〉+ ηt

≤ 16
√
k(1 + µ

√
d) log t

gk
√
t

+
4
√
k

(1 + µ
√
d)
√
t

where the last inequality follows from Equation (18). After
shrinking the spectrum by −ηtµI, at most δ̃t

µηt
eigenvalues

in the tail will not be eliminated.

δ̃t
µηt

=

16
√
k(1+µ

√
d) log t

gk
√
t

+ 4
√
k

(1+µ
√
d)
√
t

µ 2
1+µ
√
d

√
k
t

≤ 8 log t(1 + µ
√
d)2

µgk
+

2

µ
≤ 33 log t

µgk
.

where the last inequality holds since µ ≤ 1/
√
d.

A.3. Proofs of Section 4

Proof of Lemma 4.1. Note that the feasible set of Prob-
lem 12 is convex, and the objective function is λ-strongly
convex. Hence, the optimum is unique. Since Slater
condition is satisfied, strong duality holds and KKT con-
ditions are necessary and sufficient for optimality. Let
(λi(M), vi), i ∈ [d] denote the eigenvalues and associated
eigenvectors of M. KKT first-order optimality condition
yields

0=−C + µI + λM−
d∑
i=1

γiviv>i +

d∑
i=1

ωiviv>i + βI,

where γi, ωi, β ≥ 0 are Lagrange multipliers for the con-
straints M � 0, M � I, and Tr (M) ≤ k respectively. Note
that except for C, every other term in the above equation has
the same set of eigenvectors as M. We conclude that C and
M have the same set of eigenvectors, i.e. ui = vi, i ∈ [d].
Rearranging, we get:

C =

d∑
i=1

(µ+ λλi(M)− γi + ωi + β)uiu>i

Complementary slackness implies that γiλi(M),
ωi(λi(M) − 1), and β(Tr (M) − k) all vanish. Now,
If (λ, µ) is an admissible regularization pair, we can verify
that the following satisfy the KKT conditions:

M = Πk(C)

ωi = (λi − λk)1i≤k
γi = (λk − λ− λi)1i>k
β = λk − µ− λ,
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where Πk(C) returns the projection matrix corresponding to
top-k eigenspace of C and 1i∈A is the indicator of set A. In
particular, γi = λi−λk ≥ 0 for i ∈ [k]. Also, since λ < gk,
for i ∈ {k + 1, . . . , d} it holds that γi = λk − λ − λj ≥
0. It is easy to verify that the complementary slackness
conditions are also satisfied for the above assignments of
the primal and dual variables.


