
On the Implicit Bias of Dropout

A. Auxiliary Lemmas
In this section, we prove Lemma A.1 and a few auxiliary
lemmas that we will need for the proofs of Theorem 2.4 and
Theorem 3.6.
Lemma A.1. Let x ∈ Rd2 be distributed according to distri-
bution D with Ex[xx>] = I. Then, for `(U,V) := Ex[‖y−
UV>x‖2] and f(U,V) := Eb,x[‖y− 1

θU diag(b)V>x‖2], it
holds that

f(U,V) = `(U,V) + λ

r∑
i=1

‖ui‖2‖vi‖2. (8)

Furthermore, `(U,V) = ‖M− UV>‖2F .

Proof of Lemma A.1. The proof closely follows (Cavazza
et al., 2018). Recall that y = Mx, for some unknown
M ∈ Rd2×d1 . Observe that

f(U,V) = Ex[‖y‖2] +
1

θ2
Eb,x[‖U diag(b)V>x‖2]

− 2

θ
Ex[〈Mx,Eb[U diag(b)V>]x〉] (9)

where we used the fact that y = Mx. We have the following
set of equalities for the second term on the right hand side
of Equation (9):

Eb,x[‖U diag(b)V>x‖2] = Ex

d2∑
i=1

Eb

 r∑
j=1

uijbjv>j x

2

= Ex

d2∑
i=1

Eb[

r∑
j,k=1

uijuikbjbk(v>j x)(v>k x)]

= Ex

d2∑
i=1

r∑
j,k=1

uijuik(θ21j 6=k + θ1j=k)(v>j x)(v>k x)

= θ2Ex[‖UV>x‖2] + (θ − θ2)Ex

d2∑
i=1

r∑
j=1

u2
ij(v>j x)2

= θ2Ex[‖UV>x‖2] + (θ − θ2)

r∑
j=1

‖vj‖2
d2∑
i=1

u2
ij

= θ2Ex[‖UV>x‖2] + (θ − θ2)

r∑
j=1

‖vj‖2‖uj‖2, (10)

where the second to last equality follows because
Ex[(v>j x)2] = v>j Ex[xx>]vj = ‖vj‖2. For the third term in
Equation (9) we have:

〈Mx,Eb[U diag(b)V>]x〉 = θ〈Mx,UV>x〉 (11)

Plugging Equations (10) and (11) into (9), we get

f(U,V) = Ex[‖y‖2] + Ex[‖UV>x‖2]− 2Ex〈Mx,UV>x〉

+
1− θ
θ

r∑
i=1

‖ui‖2‖vi‖2 (12)

It is easy to check that the first three terms in Equation (12)
sum to `(U,V). Furthermore, since for any A ∈ Rd2×d1
it holds that ‖Ax‖2 = ‖A‖2F , we should have `(U,V) =
‖M− UV>‖2F .

Lemma A.2. For any pair of integers ρ and r, and for any
λ ∈ R+, it holds that

(Iρ +
λ

r
11>)−1 = Iρ −

λ

r + λρ
11>.

Lemma A.2 is an instance of the Woodbury’s matrix identity.
Here, we include a proof for completeness.

Proof of Lemma A.2. The proof simply follows from the
following set of equations.

(Iρ +
λ

r
11>)(Iρ −

λ

r + λρ
11>)

= Iρ +
λ

r
11> − λ

r + λρ
11> − λ2

r(r + λρ)
11>11>

= Iρ +

(
λ

r
− λ

r + λρ
− ρλ2

r(r + λρ)

)
11> = Iρ

Lemma A.3. Let λ > 0 be a constant. Let a ∈ Rd+ such
that ai ≥ ai+1 for all i ∈ [d−1]. For r ≤ d, let the function
g : [r]→ R be defined as

g(ρ) :=

ρ∑
i=1

(
λ
∑ρ
k=1 ak

r + λρ

)2

+

d∑
i=ρ+1

a2
i

+
λ

r

(
ρ∑
i=1

(
ai −

λ
∑ρ
k=1 ak

r + λρ

))2

.

Then g(ρ) is monotonically non-increasing in ρ.

Proof of Lemma A.3. Let denote the sum of the top τ el-
ements of a by hτ =

∑τ
i=1 ai. Furthermore, let the

sum of squared of τ bottom elements of a be denoted by
tτ =

∑d
i=τ+1 a

2
i . We can simplify g(ρ) and give it in terms

of hρ and tρ as follows:

g(ρ) =ρ

(
λhρ
r + λρ

)2

+ tρ +
λ

r

((
1− λρ

r + λρ

)
hρ

)2

=
ρλ2 + λr

(r + λρ)2
(hρ)

2
+ tρ

=
λh2

ρ

r + λρ
+ tρ
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It suffices to show that g(ρ+ 1) ≤ g(ρ) for all ρ ∈ [r − 1].

g(ρ+ 1) =
λh2

ρ+1

r + λρ+ λ
+ tρ+1

=
λ

r + λρ+ λ

(
h2
ρ + λ2

ρ+1(M) + 2λρ+1(M)hρ
)

− λ2
ρ+1(M) + tρ

=g(ρ)−
λ2h2

ρ

(r + λρ)(r + λρ+ λ)
− λ2

ρ+1(M)

+
λ

r + λρ+ λ

(
λ2
ρ+1(M) + 2λρ+1(M)hρ

)
=g(ρ)−

λ2h2
ρ

(r + λρ)(r + λρ+ λ)
−

(r + λρ)λ2
ρ+1(M)

r + λρ+ λ

+
λ

r + λρ+ λ
(2λρ+1(M)hρ)

=g(ρ)−
(
λhρ − (r + λρ)λ2

ρ+1(M)
)2

(r + λρ)(r + λρ+ λ)
≤ g(ρ).

Hence g(ρ) is monotonically non-increasing in ρ.

B. Proofs of Theorems in Section 2
Proof of Theorem 2.2. Consider the matrix G1 := GU −
Tr GU
r Ir. We exhibit an orthogonal transformation Q, such

that Q>G1Q is zero on its diagonal. Observe that

Q>GUQ = Q>G1Q +
Tr GU

r
Ir,

so that all diagonal elements of GU are equal to Tr GU
r , i.e.

GU is equalized.

Our construction closely follows the proof of a classical
theorem in matrix analysis, which states that any trace zero
matrix is a commutator (Albert and Muckenhoupt, 1957;
Kahan, 1999). For the zero trace matrix G1, we first show
that there exists a unit vector w11 such that w>11G1w11 = 0.

Claim 1. Assume G is a zero trace matrix and let G =∑r
i=1 λiuiu

>
i be an eigendecomposition of G. Then w =

1√
r

∑r
i=1 ui has a vanishing Rayleigh quotient, that is,

w>Gw = 0, and ‖w‖ = 1.

Proof of Claim 1. First, we notice that w has unit norm

‖w‖2 = ‖ 1√
r

r∑
i=1

ui‖2 =
1

r
‖

r∑
i=1

ui‖2 =
1

r

r∑
i=1

‖ui‖2 = 1.

It is easy to see that w has a zero Rayleigh quotient

w>Gw = (
1√
r

r∑
i=1

ui)>G(
1√
r

r∑
i=1

ui)

=
1

r

r∑
i,j=1

uiGuj =
1

r

r∑
i=1

λju>i uj =
1

r

r∑
i=1

λi = 0.

Let W1 := [w11,w12, · · · ,w1d] be such that W>1 W1 =
W1W>1 = Id. Observe that W>1 G1W1 has zero on its first
diagonal elements

W>1 G1W1 =

[
0 b>1
b1 G2

]
The principal submatrix G2 also has a zero trace.
With a similar argument, let w22 ∈ Rd−1 be such
that ‖w22‖ = 1 and w>22G2w22 = 0 and define

W2 =

[
1 0 0 · · · 0
0 w22 w23 · · · w2d

]
∈ Rd×d such that

W>2 W2 = W2W>2 = Id, and observe that

(W1W2)>G1(W1W2) =

 0 · · · ·
· 0 · · ·
...

... G2

 .
This procedure can be applied recursively so that for the
equalizer Q = W1W2 · · ·Wd we have

Q>G1Q =


0 · · · · ·
· 0 · · · ·
...

...
. . .

...
· · · 0

 .

Proof of Theorem 2.3. Let us denote the squared column
norms of U by nu = (‖u1‖2, . . . , ‖ur‖2). Observe that for
any weight matrix U:

R(U,U) = λ

r∑
i=1

‖ui‖4 =
λ

r
‖1r‖2‖nu‖2

≥ λ

r
〈1r, nu〉2 =

λ

r

(
r∑
i=1

‖ui‖2
)2

=
λ

r
‖U‖4F ,

where 1r ∈ Rr is the vector of all ones and the inequality
is due to Cauchy-Schwartz. Hence, the regularizer is lower
bounded by λ

r ‖U‖
4
F , with equality if and only if nu is paral-

lel to 1r, i.e. when U is equalized. Now, if U is not equalized,
by Theorem 2.2 there exist a rotation matrix Q such that
UQ is equalized, which implies R(UQ,UQ) < R(U,U).
Together with rotational invariance of the loss function, this
gives a contradiction with global optimality U. Hence, if
U is a global optimum then it is equalized and we have
R(U,U) = λ

∑r
i=1 ‖ui‖4 = λ

r ‖U‖
4
F .

Proof of Theorem 2.4. By Theorem 2.3, if W is an optimum
of Problem 4, then it holds that λ

∑r
i=1 ‖wi‖4 = λ

r ‖W‖
4
F .

Also, by Theorem 2.2, it is always possible to equalize
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any given weight matrix. Hence, Problem 4 reduces to the
following problem:

min
W∈Rd×r

‖M−WW>‖2F +
λ

r
‖W‖4F (13)

Let M = UMΛMU>M and W = UWΣWV>W be an eigen-
decomposition of M and a full SVD of W respectively,
such that λi(M) ≥ λi+1(M) and σi(W) ≥ σi+1(W) for
all i ∈ [d− 1]. Rewriting objective of Problem 13 in terms
of these decompositions gives:

‖M−WW>‖2F +
λ

r
‖W‖4F

= ‖UMΛMU>M − UWΣWΣ>WU>W‖2F +
λ

r
‖UWΣWV>W‖4F

= ‖ΛM − U′ΣWΣ>WU′>‖2F +
λ

r
‖ΣW‖4F

= ‖ΛM‖2F + ‖ΛW‖2F − 2〈ΛM,U′ΛWU′>〉+
λ

r
(Tr(ΛW))

2

where ΛW := ΣWΣ>W and U′ = U>MUW. By Von Neumann’s
trace inequality, for a fixed ΣW we have that

〈ΛM,U′ΛWU′>〉 ≤
d∑
i=1

λi(M)λi(W),

where the equality is achieved when Λi(W) have the same
ordering as Λi(M) and U′ = I, i.e. UM = UW. Now,
Problem 13 is reduced to

min
‖ΛW‖0≤r,

ΛW≥0

‖ΛM − ΛW‖2F +
λ

r
(Tr(ΛW))

2

= min
λ̄∈Rr+

r∑
i=1

(
λi(M)− λ̄i

)2
+

d∑
i=r+1

λ2
i (M)+

λ

r

(
r∑
i=1

λ̄i

)2

The Lagrangian is given by

L(λ̄, α) =

r∑
i=1

(
λi(M)− λ̄i

)2
+

d∑
i=r+1

λ2
i (M)

+
λ

r

(
r∑
i=1

λ̄i

)2

−
r∑
i=1

αiλ̄i

The KKT conditions ensures that at the optima it holds for
all i ∈ [r] that

λ̄i ≥ 0, αi ≥ 0, λ̄iαi = 0

2(λ̄i − λi(M)) +
2λ

r

(
r∑
i=1

λ̄i

)
− αi = 0

Let ρ = |i : λ̄i > 0| ≤ r be the number of nonzero λ̄i. For

i = 1, . . . , ρ we have αi = 0, hence

λ̄i +
λ

r

(
ρ∑
i=1

λ̄i

)
= λi(M)

=⇒ (Iρ +
λ

r
11>)λ̄1:ρ = λ1:ρ(M)

=⇒ λ̄1:ρ = (Iρ −
λ

r + λρ
11>)λ1:ρ(M)

=⇒ λ̄1:ρ = λ1:ρ(M)− λρκρ
r + λρ

1ρ

=⇒ ΛW = (ΛM −
λρκρ
r + λρ

Id)+

where κρ := 1
ρ

∑ρ
i=1 λi(M) and the second implication is

due to Lemma A.2. It only remains to find the optimal ρ.
Let’s define the function

g(ρ) :=

ρ∑
i=1

(
λi(M)− λ̄i

)2
+

d∑
i=ρ+1

λ2
i (M) +

λ

r

(
ρ∑
i=1

λ̄i

)2

=

ρ∑
i=1

(
λ
∑ρ
k=1 λk(M)

r + λρ

)2

+

d∑
i=ρ+1

λi(M)2

+
λ

r

(
ρ∑
i=1

(
λi(M)−

λ
∑ρ
k=1 λk(M)

r + λρ

))2

.

By Lemma A.3, g(ρ) is monotonically non-increasing in ρ,
hence ρ should be the largest feasible integer, i.e.

ρ = max{j : λj >
λjκ

r + λj
}.

Proof of Remark 5.2. For Ũ to have equal column norms, it
suffices to show that Ũ

>
Ũ is constant on its diagonal. Next,

we note that

Ũ
>

Ũ = Q>U>UQ

= (VZk)>(WΣV>)>(WΣV>)(VZk)

= Z>k V>VΣW>WΣV>VZk

= Z>k Σ2Zk

It remains to show that for any diagonal matrix D, Z>k DZk
is diagonalized. First note that

Z2Z>2 =
1

2

[
1 1
−1 1

] [
1 −1
1 1

]
= I2

so that Z2 is indeed a rotation. By induction, it is easy to
see that Zk is a rotation for all k. Now, we show that Zk
equalizes any diagonal matrix D. Observe that

[Z>k DZk]ii =

2k−1∑
i=1

Diiz
2
ji =

2k−1∑
i=1

Dii2
−k+1 = 21−kTr D
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so that all the diagonal elements are identically equal to the
average of the diagonal elements of D.

C. Proofs of Theorems in Section 3
Proof of Theorem 3.3. Let UV> = WΣY> be a compact
SVD of UV>. Define Ũ := WΣ1/2 and Ṽ := YΣ1/2 and
observe that ŨṼ

>
= UV>. Furthermore, let GŪ = Ũ

>
Ũ

and GṼ = Ṽ
>

Ṽ be their Gram matrices. Observe that
GŨ = GṼ = Σ. Hence, by Theorem 2.2, there exists a
rotation Q such that V̄ := ṼQ and Ū := ŨQ are equalized,
with ‖ūi‖2 = ‖v̄i‖2 = 1

r Tr Σ.

Proof of Theorem 3.4. Define

nu,v = (‖u1‖‖v1‖, . . . , ‖ur‖‖vr‖)

and observe that

R(U,V) = λ

r∑
i=1

‖ui‖2‖vi‖2

=
λ

r
‖nu,v‖2‖1r‖2 ≥

λ

r
〈nu,v, 1r〉2

=
λ

r

(
r∑
i=1

‖ui‖‖vi‖

)2

where the inequality is due to Cauchy-Schwartz, and it holds
with equality if and only if nu,v is parallel to 1r. Let (Ū, V̄)
be a global optima of Problem 6. The inequality above
together with Theorem 3.3 imply that Ū and V̄ should be
jointly equalized up to dilation transformations, hence the
first equality claimed by the theorem.

To see the second equality, note that if U and V are jointly
equalized, then

‖ui‖2 = ‖vi‖2 =
1

r
Tr Σ,

where Σ is the matrix of singular values of UV>. Hence,

R(U,V) =
λ

r

(
r∑
i=1

‖ui‖‖vi‖

)2

=
λ

r

(
1

r

r∑
i=1

Tr Σ

)2

=
λ

r
(Tr Σ)

2

which is equal to λ
r ‖ŪV̄>‖2∗ as claimed.

Proof of Theorem 3.6. By Theorem 3.4, if (X,Y) is an op-
timum of Problem 6, then it holds that

λ

r∑
i=1

‖xi‖2‖yi‖2 =
λ

r
‖XY>‖2∗.

Hence, Problem 6 reduces to the following problem:

min
X∈Rd1×r,Y∈Rd2×r

‖M− XY>‖2F +
λ

r
‖XY>‖2∗ (14)

Let M = UMΣMV>M and W := XY> = UWΣWV>W be
full SVDs of M and W respectively, such that σi(M) ≥
σi+1(M) and σi(W) ≥ σi+1(W) for all i ∈ [d − 1] where
d = min{d1, d2}. Rewriting objective of Problem 14 in
terms of these decompositions,

‖M− XY>‖2F +
λ

r
‖XY>‖2∗

= ‖UMΣMV>M − UWΣWV>W‖2F +
λ

r
‖UWΣWV>W‖2∗

= ‖ΣM − U′ΣWV′>‖2F +
λ

r
‖ΣW‖2∗

= ‖ΣM‖2F + ‖ΣW‖2F − 2〈ΣM,U′ΣWU′>〉+
λ

r
‖ΣW‖2∗

where U′ = U>MUW. By Von Neumann’s trace inequal-
ity, for a fixed ΣW we have that 〈ΣM,U′ΣWU′>〉 ≤∑d
i=1 σi(M)σi(W), where the equality is achieved when

Σi(W) have the same ordering as Σi(M) and U′ = I, i.e.
UM = UW. Now, Problem 14 is reduced to

min
‖ΣW‖0≤r,

ΣW≥0

‖ΣM − ΣW‖2F +
λ

r
‖ΣW‖2∗

= min
σ̄∈Rr+

r∑
i=1

(σi(M)− σ̄i)2
+

d∑
i=r+1

σ2
i (M) +

λ

r

(
r∑
i=1

σ̄i

)2

The Lagrangian is given by

L(λ̄, α) =
r∑
i=1

(σi(M)− σ̄i)2
+

d∑
i=r+1

σ2
i (M)

+
λ

r

(
r∑
i=1

σ̄i

)2

−
r∑
i=1

αiσ̄i

The KKT conditions ensures that ∀i = 1, . . . , r,

σ̄i ≥ 0, αi ≥ 0, σ̄iαi = 0

2(σ̄i − σi(M)) +
2λ

r

(
r∑
i=1

σ̄i

)
− αi = 0

Let ρ = |i : σ̄i > 0| ≤ r be the number of nonzero σ̄i. For
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i = 1, . . . , ρ we have αi = 0, hence

σ̄i +
λ

r

(
ρ∑
i=1

σ̄i

)
= σi(M)

=⇒ (Iρ +
λ

r
11>)σ̄1:ρ = σ1:ρ(M)

=⇒ σ̄1:ρ = (Iρ −
λ

r + λρ
11>)σ1:ρ(M)

=⇒ σ̄1:ρ = σ1:ρ(M)− λρκρ
r + λρ

1ρ

=⇒ ΣW = (ΣM −
λρκρ
r + λρ

Id)+

where κρ = 1
ρ

∑ρ
i=1 σi(M) and the second implication

holds since (Iρ+λ
r 11>)−1 = Iρ− λ

r+λρ11>. It only remains
to find the optimal ρ. Let’s define the function

g(ρ) :=

ρ∑
i=1

(σi(M)− σ̄i)2
+

d∑
i=ρ+1

σ2
i (M) +

λ

r

(
ρ∑
i=1

σ̄i

)2

=

ρ∑
i=1

(
λ
∑ρ
k=1 σk(M)

r + λρ

)2

+

d∑
i=ρ+1

σi(M)2

+
λ

r

(
ρ∑
i=1

(
σi(M)−

λ
∑ρ
k=1 σk(M)

r + λρ

))2

.

By Lemma A.3, g(ρ) is monotonically non-increasing in ρ,
hence ρ should be the largest feasible integer, i.e.

ρ = max{j : σj >
λjκj
r + λj

}.

D. Proofs of Theorems in Sections 4
In this section for ease of notation we let λi denote λi(M).
Furthermore, with slight abuse of notation we let f(U), `(U)
and R(U) denote the objective, the loss function and the
regularizer, respectively.

It is easy to see that the gradient of the objective of Prob-
lem 4 is given by

∇f(U) = 4(UU> −M)U + 4λU diag(U>U).

We first make the following important observation about the
critical points of Problem 4.

Lemma D.1. If U is a critical point of Problem 4, then it
holds that UU> � M.

Proof of Lemma D.1. Since ∇f(U) = 0, we have that

(M− UU>)U = λU diag(U>U)

multiply both sides from right by U> and rearrange to get

MUU> = UU>UU> + λU diag(U>U)U> (15)

Note that the right hand side is symmetric, which implies
that the left hand side must be symmetric as well, i.e.

MUU> = (MUU>)> = UU>M,

so that M and UU> commute. Note that in Equation (15),
U diag(U>U)U> � 0. Thus, MUU> � UU>UU>. Let
UU> = WΓW> be a compact eigendecomposition of UU>.
We get

MUU> = MWΓW> � UU>UU> = WΓ2W>.

Multiplying from right and left by WΓ−1 and W> respec-
tively, we have that

W>MW � Γ

which completes the proof.

Lemma D.1 allows us to bound different norms of the criti-
cal points, as will be seen later in the proofs.

To explore the landscape properties of Problem 4, we first
focus on the non-equalized critical points in Lemma D.2.
We show that the set of non-equalized critical points does not
include any local optima. Furthermore, all such points are
strict saddles. Therefore, we turn our focus to the equalized
critical points in Lemma D.3. We show all such points
inherit the eigenspace of the input matrix M. This allows us
to give a closed-form characterization of all the equalized
critical points in terms of the eigendecompostion of M. We
then show that if λ is chosen appropriately, all such critical
points that are not global optima, are strict saddle points.

Lemma D.2. All local minima of Problem 4 are equalized.
Moreover, all critical points that are not equalized, are strict
saddle points.

Proof of Lemma D.2. We show that if U is not equalized,
then any ε-neighborhood of U contains a point with ob-
jective strictly smaller than f(U). More formally, for any
ε > 0, we exhibit a rotation Qε such that ‖U− UQε‖F ≤ ε
and f(UQε) < f(U). Let U be a critical point of Prob-
lem 4 that is not equalized, i.e. there exists two columns
of U with different norms. Without loss of generality, let
‖u1‖ > ‖u2‖. We design a rotation matrix Q such that it is
almost an isometry, but it moves mass from u1 to u2. Con-
sequently, the new factor becomes “less un-equalized” and
achieves a smaller regularizer, while preserving the value of
the loss. To that end, define

Qδ :=

 √
1− δ2 −δ 0
δ

√
1− δ2 0

0 0 Ir−2
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and let Û := UQδ. It is easy to verify that Qε is indeed
a rotation. First, we show that for any ε, as long as δ2 ≤

ε2

2 Tr(M) , we have Û ∈ Bε(U):

‖U− Û‖2F =

r∑
i=1

‖ui − ûi‖2

= ‖u1 −
√

1− δ2u1 − δu2 ‖2

+ ‖u2 −
√

1− δ2u2 + δu1 ‖2

= 2(1−
√

1− δ2)(‖u1‖2 + ‖u2‖2)

≤ 2δ2 Tr(M) ≤ ε2

where the second to last inequality follows from Lemma D.1,
because ‖u1‖2 + ‖u2‖2 ≤ ‖U‖2F = Tr(UU>) ≤ Tr(M),
and also the fact that 1−

√
1− δ2 = 1−1+δ2

1+
√

1−δ2 ≤ δ
2.

Next, we show that for small enough δ, the value of the
function at Û is strictly smaller than that of U. Observe that

‖û1‖2 = (1− δ2)‖u1‖2 + δ2‖u2‖2 + 2δ
√

1− δ2u>1 u2

‖û2‖2 = (1− δ2)‖u2‖2 + δ2‖u1‖2 − 2δ
√

1− δ2u>1 u2

and the remaining columns will not change, i.e. for i =
3, · · · , r, ûi = ui. Together with the fact that Qδ preserves
the norms, i.e. ‖U‖F = ‖UQδ‖F , we get

‖û1‖2 + ‖û2‖2 = ‖u1‖2 + ‖u2‖2. (16)

Let δ = −c · sgn(u>1 u2) for a small enough c > 0 such
that ‖u2‖ < ‖û2‖ ≤ ‖û1‖ < ‖u1‖. Using Equation (16),
This implies that ‖û1‖4 + ‖û2‖4 < ‖u1‖4 + ‖u2‖4, which
in turn gives us R(Û) < R(U) and hence f(Û) < f(U).
Therefore, a non-equalized critical point cannot be local
minimum, hence the first claim of the lemma.

We now prove the second part of the lemma. Let U be a
critical point that is not equalized. To show that U is a
strict saddle point, it suffices to show that the Hessian has
a negative eigenvalue. In here, we exhibit a curve along
which the second directional derivative is negative. Assume,
without loss of generality that ‖u1‖ > ‖u2‖ and consider
the curve

∆(t) :=[(
√

1−t2−1)u1+tu2, (
√

1−t2−1)u2−tu1, 0d,r−2]

It is easy to check that for any t ∈ R, `(U + ∆(t)) = `(U)
since U+∆(t) is essentially a rotation on U and ` is invariant
under rotations. Observe that

g(t) := f(U + ∆(t))

= f(U) + ‖
√

1− t2u1 + tu2‖4 − ‖u1‖4

+ ‖
√

1− t2u2 − tu1‖4 − ‖u2‖4

= f(U)− 2t2(‖u1‖4 + ‖u2‖4) + 8t2(u1u2)2

+4t2‖u1‖2‖u2‖2+4t
√

1−t2u>1u2(‖u1‖2−‖u2‖2)+O(t3).

The derivative of g then is given as

g′(t)=−4t(‖u1‖4+‖u2‖4)+16t(u1u2)2+8t‖u1‖2‖u2‖2

+4(
√

1−t2 − t2√
1−t2

)(u>1u2)(‖u1‖2− ‖u2‖2) +O(t2).

Since U is a critical point and f is continuously differ-
entiable, it should hold that g′(0) = 4(u>1 u2)(‖u1‖2 −
‖u2‖2) = 0. Since by assumption ‖u1‖2 − ‖u2‖2 > 0,
it should be the case that u>1 u2 = 0. We now consider the
second order directional derivative:

g′′(0) = −4(‖u1‖4 + ‖u2‖4) + 16(u1u2)2 + 8‖u1‖2‖u2‖2

= −4(‖u1‖2 − ‖u2‖2)2 < 0

which completes the proof.

We now focus on the critical points that are equalized, i.e.
points U such that∇f(U) = 0 and diag(U>U) =

‖U‖2F
r I.

Lemma D.3. Assume that λ < rλr∑r
i=1 λi−rλr

. Then all
equalized local minima are global. All other equalized
critical points are strict saddle points.

Proof of Lemma D.3. Let U = WΣV> be a compact SVD
of the rank-r′ weight matrix U. We have:

∇f(U) = 4(UU> −M)U + 4λU diag(U>U) = 0

=⇒ UU>U +
λ‖U‖2F
r

U = MU

=⇒WΣ3V> +
λ‖Σ‖2F
r

WΣV> = MWΣV>

=⇒ Σ2 +
λ‖Σ‖2F
r

I = W>MW

Since the left hand side of the above equality is diagonal,
it implies that W ∈ Rd×r′ corresponds to some r′ eigen-
vectors of M. Let E ⊆ [d], |E| = r′ denote the set of
eigenvectors of M that are present in W. Note that the above
is equivalent of the following system of linear equations:

(I +
λ

r
11>)σ2 = ~λ,

where σ2 := diag(Σ2) and ~λ = diag(W>MW). By
Lemma A.2, the solution to this linear system is given by

σ2 = (I− λ

r + λr′
)~λ. (17)

The set E belongs to one of the following categories:

1. E = [r′], r′ = ρ

2. E = [r′], r′ < ρ

3. E 6= [r′]
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The case E = [r′], r′ > ρ is excluded from the above
partition, since whenever E = [r′], it should hold that r′ ≤ ρ.
To see this, note that due to U = WΣV> being a compact
SVD of M, it holds that σj > 0 for all j ∈ [r′]. Specifically
for j = r′, plugging σr′ > 0 back to Equation (17), we get

λr′ >
λ
∑r′

i=1 λi
r + λr′

=
λr′κr′

r + λr′
.

Then it follows from definition of ρ in Theorem 2.4 that
r′ ≤ ρ. We provide a case by case analysis for the above
partition here.

Case 1. [E = [r′], r′ = ρ] When W corresponds to the
top-ρ eigenvectors of M, we retrieve the global optimal
solution described by Theorem 2.4. Therefore, all such
critical points are global minima.

Case 2. [E = [r′], r′ < ρ] Let Wr := [W,W⊥] be
the top-r eigenvectors of M and V⊥ span the orthogonal
subspace of V, i.e. Vr := [V,V⊥] be an orthonormal basis
for Rr. Define U(t) = WrΣ

′V>r where σ′i =
√
σ2
i + t2 for

i ≤ r. Observe that

U(t)>U(t) = VΣV> + t2V>r Vr = U>U + t2Ir

so that for all t, the parametric curve U(t) is equalized. The
value of the loss function at U(t) is given by:

`(U(t)) =

r∑
i=1

(λi − σ2
i − t2)2 +

d∑
i=r+1

(λi)
2

= `(U) + rt4 − 2t2
r∑
i=1

(λi − σ2
i ).

Furthermore, since U(t) is equalized, we obtain the follow-
ing form for the regularizer:

R(U(t)) =
λ

r
‖U(t)‖4F =

λ

r

(
‖U‖2F + rt2

)2
= `(U) + λrt4 + 2λt2‖U‖2F .

Now define g(t) := `(U(t)) +R(U(t)) and observe

g(t) = `(U) +R(U) + rt4 − 2t2
r∑
i=1

(λi − σ2
i )

+ λrt4 + 2λt2‖U‖2F .
It is easy to verify that g′(0) = 0. Moreover, the second
derivative of g at the origin is given as:

g′′(0) = −4

r∑
i=1

(λi − σ2
i ) + 4λ‖U‖2F

= −4

r∑
i=1

λi + 4(1 + λ)‖U‖2F

= −4

r∑
i=1

λi + 4
r + rλ

r + λr′

r′∑
i=1

λi

where the last equality follows from the fact Equation (17)
and the fact that ‖U‖2F =

∑r′

i=1 σ
2
i . To get a sufficient

condition for U to be a strict saddle point, we set g′′(0) < 0:

− 4

r∑
i=r′+1

λi + 4
(r − r′)λ
r + λr′

r′∑
i=1

λi < 0

=⇒ (r − r′)λ
r + λr′

r′∑
i=1

λi <

r∑
i=r′+1

λi

=⇒ λ <
(r + λr′)

∑r
i=r′+1 λi

(r − r′)
∑r′

i=1 λi

=⇒ λ(1−
r′
∑r
i=r′+1 λi

(r − r′)
∑r′

i=1 λi
) <

r
∑r
i=r′+1 λi

(r − r′)
∑r′

i=1 λi

=⇒ λ <
r
∑r
i=r′+1 λi

(r − r′)
∑r′

i=1 λi − r′
∑r
i=r′+1 λi

=⇒ λ <
rh(r′)∑r′

i=1 (λi − h(r′))

where h(r′) :=
∑r
i=r′+1

λi

r−r′ is the average of the eigenval-
ues λr′+1, · · · , λr. It is easy to see that the right hand side
is monotonically decreasing with r′, since h(r′) monoton-
ically decrease with r′. Hence, it suffices to make sure
that λ is smaller than the right hand side for the choice of
r′ = r − 1, i.e. λ < rλr∑r

i=1(λi−λr) .

Case 3. [E 6= [r′]] We show that all such critical points are
strict saddle points. Let w′ be one of the top r′ eigenvectors
that are missing in W. Let j ∈ E be such that wj is not
among the top r′ eigenvectors of M. For any t ∈ [0, 1],
let W(t) be identical to W in all the columns but the jth

one, where wj(t) =
√

1− t2wj + tw′. Note that W(t) is
still an orthogonal matrix for all values of t. Define the
parametrized curve U(t) := W(t)ΣV> for t ∈ [0, 1] and
observe that:

‖U− U(t)‖2F = σ2
j ‖wj − wj(t)‖2

= 2σ2
j (1−

√
1− t2) ≤ t2 Tr M

That is, for any ε > 0, there exist a t > 0 such that U(t)
belongs to the ε-ball around U. We show that f(U(t)) is
strictly smaller than f(U), which means U cannot be a local
minimum. Note that this construction of U(t) guarantees
that R(U′) = R(U). In particular, it is easy to see that
U(t)>U(t) = U>U, so that U(t) remains equalized for all
values of t. Moreover, we have that

f(U(t))− f(U) = ‖M− U(t)U(t)>‖2F − ‖M− UU>‖2F
= −2 Tr(Σ2W(t)>MW(t)) + 2 Tr(Σ2W>MW)

= −2σ2
j t

2(wj(t)>Mwj(t)− w>j Mwj) < 0,
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where the last inequality follows because by construction
wj(t)>Mwj(t) > w>j Mwj . Define g(t) := f(U(t)) =
`(U(t)) +R(U(t)). To see that such saddle points are non-
degenerate, it suffices to show g′′(0) < 0. It is easy to check
that the second directional derivative at the origin is given
by

g′′(0) = −4σ2
j (wj(t)>Mwj(t)− w>j Mwj) < 0,

which completes the proof.

Proof of Lemma 4.1. Follows from Lemma D.2

Proof of Theorem 4.3. Follows from Lemma D.2 and
Lemma D.3.


