
Data Summarization at Scale: A Two-Stage Submodular Approach

A. Summary of Notations

Table 2 provides the summary of notations used in this paper.

Table 2. Summary of important terminology

Set Cardinality Description

F m Set of functions (f1, . . . , fm) drawn from an unknown distribution D of monotone submodular functions.

⌦ n Given ground set of all elements. Generally so large that even greedy is too expensive.

S
m,`

` The optimum solution to Eq. (2), i.e., Sm,` = argmaxS✓⌦,|S|`

1
m

P
m

i=1 max|T |k,T✓S fi(T).

S
m,`

i
k The optimum solution to each function fi from set Sm,`, i.e., Sm,`

i
= argmaxS✓Sm,`,|S|k fi(S).

OPT 1 The value of optimum solution to Eq. (2), i.e., OPT = 1
m

P
m

i=1 fi(S
m,`

i
).

S ` Reduced subset of elements we want to select. Ideally sublinear in n, but still representative.

Ti k Solution we select for each function fi (chosen from S), i.e., Ti ⇢ S.

B. Proof of Theorem 1

Let St represent the set of chosen elements at step t. Also, we define T
t

i
✓ S

t as the current solution for function fi at step
t. We also define A

t

i
=

S
1jt

T
t

i
, i.e., At

i
is the set of all the elements have been in the set Ti till step t. Note that this set

includes elements that have been in Ti at some point and might be deleted at later steps. We first lower bound fi(T t

i
) based

on value of fi(At

i
).

Lemma 3. For all 1  i  m, we have

fi(T
t

i
) � ↵

↵+ 1
fi(A

t

i
).

Proof. We proof this lemma by induction. For the first k additions to set T t

i
, the two sets T t

i
and A

t

i
are exactly the same,

i.e., we have fi(T t

i
) = fi(At

i
). Therefore the lemma is correct for them. Next we show that lemma is correct for cases after

the first k additions, i.e., when an incoming element ut replaces one element of T t�1
i

. We have the following lemma.

Lemma 4. For 1  i  m and all ut, we have:

�i(u
t
, T

t�1
i

) � fi(u
t|At�1

i
)� fi(T

t�1
i

)/k.

Proof. To prove this lemma we have the following

�i(u
t
, T

t�1
i

) = fi(T
t�1
i

+ u
t � REPi(u

t
, T

t�1
i

))� fi(T
t�1
i

)

(a)
�

P
u2T

t�1
i

fi(T
t�1
i

+ u
t � u))� fi(T

t�1
i

)

k

=

P
u2T

t�1
i

fi(T
t�1
i

+ u
t � u)� fi(T

t�1
i
� u) + fi(T

t�1
i
� u)� fi(T

t�1
i

)

k

(b)
�

P
u2T

t�1
i

fi(T
t�1
i

+ u
t)� fi(T

t�1
i

)

k
+

P
u2T

t�1
i

fi(T
t�1
i
� u)� fi(T

t�1
i

)

k

(c)
� fi(u

t|T t�1
i

)� fi(T
t�1
i

)/k
(d)
� fi(u

t|At�1
i

)� fi(T
t�1
i

)/k.

Inequality (a) is true because REPi(ut
, T

t�1
i

) is the element with the largest increment when it is exchanged with u
t.

Therefore, it should be at least equal to the average of all possible exchanges. Note that T t�1
i

has at most k elements.
Inequalities (b) and (d) result from submodularity of fi. Also, from submodularity of fi, we have fi(T

t�1
i

) � fi(?) �P
u2T

t�1
i

fi(T
t�1
i

)� fi(T
t�1
i
� u) which results in inequality (c).

Data Summarization at Scale: A Two-Stage Submodular Approach

Now, assume Lemma 3 is true for time t� 1, i.e., fi(T t�1
i

) � ↵

↵+1fi(A
t�1
i

). We prove that it is also true for time t. First
note that if ut is not accepted by the algorithm for the i-th function then T

t

i
= T

t�1
i

and A
t

i
= A

t�1
i

; therefore the lemma is
true for t. If ut is chosen to be added to T

t�1
i

, from the definition ofr(ut
, T

t�1
i

), we have �i(ut
, T

t�1
i

) > ↵/k · fi(T t�1
i

).
From this fact and Lemma 4, we have:

fi(T
t

i
)� fi(T

t�1
i

) � max{fi(ut|At�1
i

)� fi(T
t�1
i

)/k,↵/k · fi(T t�1
i

)}

� ↵ · (fi(ut|At�1
i

)� fi(T
t�1
i

)/k) + ↵/k · fi(T t�1
i

)

↵+ 1

� ↵

↵+ 1
· fi(ut|At�1

i
) =

↵

↵+ 1
·
⇥
fi(A

t

i
)� fi(A

t�1
i

)
⇤
! fi(T

t

i
) � ↵

↵+ 1
· fi(At

i
).

Corollary 1. If �i(ut
, T

t�1
i

) < ↵/k · fi(T t�1
i

) then we have:

fi(u
t|An

i
)
(a)
 fi(u

t|At�1
i

)
(b)
 ↵+ 1

k
· fi(T t�1

i
)
(c)
 ↵+ 1

k
· fi(Tn

i
).

Proof. Inequality (a) is true because of submodularity of fi and the fact that At�1
i
✓ A

n

i
. Inequality (b) concludes form

Lemma 4. Since fi(T t

i
) is a nondecreasing function of t, then (c) is true.

Next, we use Lemmas 3 and 4 and Corollary 1, to prove the approximation factor of the algorithm. Note that if at the end of
algorithm |Sn| = `, then we have:

1

m

mX

i=1

fi(T
n

i
) =

1

m

nX

t=1

mX

i=1

⇥
fi(T

t

i
)� fi(T

t�1
i

)
⇤
=

1

m

nX

t=1

{ut2Sn} ·ri(u
t
, T

t

i
) � OPT

�
. (5)

This is true because the additive value after adding an element to S
t is at least OPT

�`
. Next consider the case where

|S| < `. First note that for an element ut 2 S
m,`

i
, which does not belong to set An

i
, we have two different possibilities: (i)

�i(ut
, T

t�1
i

) < ↵/k · fi(T t�1
i

), or (ii) �i(ut
, T

t�1
i

) � ↵/k · fi(T t�1
i

) and 1
m

P
m

i=1ri(ut
, T

t�1
i

) < OPT
�`

. Therefore, we
have
mX

i=1

fi(S
m,`

i
) 

mX

i=1

2

4fi(An

i
) +

X

ut2S
m,`
i \An

i

fi(u
t|An

i
)

3

5

=
mX

i=1

fi(A
n

i
) +

mX

i=1

X

ut2Sm,`\An
i

{ut2S
m,`
i } · f(ut|An

i
)

=
mX

i=1

fi(A
n

i
) +

mX

i=1

X

ut2Sm,`

{ut2S
m,`
i }·

h
{�i(ut,T

t�1
i)<↵/k·fi(T t�1

i)} · fi(ut|An

i
) + {�i(ut,T

t�1
i)�↵/k·fi(T t�1

i) and
Pm

i=1 ri(ut,T
t�1
i)< OPT

�` } · fi(ut|An

i
)
i
.

(6)

For the three terms on the rightmost side of Eq. (6) we have the following inequalities. For the first term, from Lemma 3, we
have:

mX

i=1

fi(A
n

i
)  ↵+ 1

↵

mX

i=1

fi(T
n

i
). (7)

For the second term, we have:
mX

i=1

X

ut2Sm,`

{ut2S
m,`
i }· {�i(ut,T

t�1
i)<↵/k·fi(T t�1

i)} · fi(ut|An

i
)

(a)


mX

i=1

X

ut2S
m,`
i

↵+ 1

k
fi(T

n

i
)
(b)
 (↵+ 1) ·

mX

i=1

fi(T
n

i
). (8)

Data Summarization at Scale: A Two-Stage Submodular Approach

Inequality (a) is the result of Corollary 1. Inequality (b) is true because we have at most k elements in set Sm,`

i
. Note that

for ut with
P

m

i=1ri(ut
, T

t�1
i

) < OPT
�`

we have:

1

m

mX

i=1
{ut2S

m,`
i } · {�i(ut,T

t�1
i)�↵/k·fi(T t�1

i)}
⇥
fi(u

t|At�1
i

)� fi(T
t�1
i

)/k
⇤

(a)
 1

m

mX

i=1
{ut2S

m,`
i }ri(u

t
, T

t�1
i

)
(b)
 1

m

mX

i=1

ri(u
t
, T

t�1
i

) <
OPT
�`

. (9)

Inequality (a) results from Lemma 4 and (b) is true because ri(ut
, T

t�1
i

) � 0 for 1  i  m. Therefore, from Eq. (9) and
submodularity of fi and its non-negativity, we have:

1

m

mX

i=1
{ut2S

m,`
i } · {�i(ut,T

t�1
i)�↵/k·fi(T t�1

i) and
Pm

i=1 ri(ut,T
t�1
i)< OPT

�` } · fi(ut|An

i
)

 OPT
�`

+
1

km
·

mX

i=1
{ut2S

m,`
i } · fi(Tn

i
).

Consequently,

1

m

mX

i=1

X

ut2Sm,`

{ut2S
m,`
i }· {�i(ut,T

t�1
i)�↵/k·fi(T t�1

i) and
Pm

i=1 ri(ut,T
t�1
i)< OPT

2` } · fi(ut|An

i
)

 1

m

X

ut2Sm,`

"
OPT
�`

+
1

k
·

mX

i=1
{ut2S

m,`
i } · fi(Tn

i
)

#
 OPT

�
+

1

m

mX

i=1

fi(T
n

i
). (10)

Using Eqs. (7), (8) and (10) we have:

OPT =
1

m

mX

i=1

fi(S
m,`

i
)  ↵+ 1

↵
· 1

m

mX

i=1

fi(T
n

i
) + (↵+ 1) · 1

m

mX

i=1

fi(T
n

i
) +

OPT
�

+
1

m

mX

i=1

fi(T
n

i
). (11)

This results in

↵ · (� � 1) · OPT
� · ((↵+ 1)2 + ↵)

 1

m

mX

i=1

fi(T
n

i
). (12)

Combination of Eqs. (5) and (12) proves the theorem.

C. Proof of Theorem 2

We first prove Lemmas 1 and 2.

Proof of Lemma 1: The lower bound is trivial. For the upper bound we have

OPT =
1

m

mX

i=1

X

u2S
m,`
i

fi(u) 
1

m

X

u2Sm,`

mX

i=1

fi(u)  ` · �.

Proof of Lemma 2: We have

1

m

mX

i=1

ri(u
t
, T

t�1
i

)
(a)
 1

m

mX

i=1

fi(u
t|T t�1

i
)
(b)
 1

m

mX

i=1

fi(u
t)

(c)
 �t.

For inequality (a) first note that fi(ut|T t�1
i

) � 0; therefore it suffices to show that for all ri(ut
, T

t�1
i

) > 0 we have
ri(ut

, T
t�1
i

)  fi(ut|T t�1
i

). So, for ri(ut
, T

t�1
i

) > 0, consider the two following cases: (i) if |T t�1
i

| < k, then

Data Summarization at Scale: A Two-Stage Submodular Approach

ri(ut
, T

t�1
i

) = fi(ut|T t�1
i

). (ii) if |T t�1
i

| < k, thenri(ut
, T

t�1
i

) = �i(ut
, T

t�1
i

) = fi(T
t�1
i

+u
t�REPi(ut

, T
t�1
i

))�
fi(T

t�1
i

)  f(T
t�1
i

+ u
t)� fi(T

t�1
i

), where the last inequality follows from the monotonicity of fi. Inequality (b) results
from the submodularity of fi. The inequality (c) follows from the definition of �t.

Proof of Theorem 2: Note that there exists an instance of algorithm with a threshold ⌧ in �n such that OPT
1+✏
 ⌧l  OPT.

For this instance, it suffices to replace OPT with OPT
1+✏

in the proof of Theorem 1. This proves the approximation guarantee
of the theorem. For each instance of the algorithm we keep at most ` items. Since we have O(log `

✏
) thresholds, the total

memory complexity of the algorithm is O(` log `

✏
). The update time per each element ut for each instance is O(km). This

is true because we compute the gain of exchanging u
t with all the k elements of T t�1

i
for each function fi, 1  i  m.

Therefore, the total update time per elements is O(km log `

✏
).

D. Proof of Theorem 3

First recall that we defined:

S
m,` = argmax

S✓⌦,|S|`

1

m

mX

i=1

max
|T |k,T✓S

fi(T),

and

S
m,`

i
= argmax

S✓Sm,`,|S|k

fi(S) and OPT =
1

m

mX

i=1

fi(S
m,`

i
).

Let V(1/M) denote the distribution over random subsets of ⌦ where each element is picked independently with a probability
1
M . Define vector p 2 [0, 1]n such that for e 2 ⌦, we have

pe =

⇢
PA⇠V(1/M)[e 2 REPLACEMENT-GREEDY(A [{e})] if e 2 S

m,`
,

0 otherwise.

We also define vector pi such that for e 2 V, we have:

pie =

⇢
pe if e 2 S

m,`

i
,

0 otherwise.

Denote by V
l the set of elements assigned to machine l. Also, let Ol = {e 2 S

m,` : e /2 REPLACEMENT-GREEDY(V l [
{e})}. Furthermore, define Ol

i
= O

l \ Sm,`

i
. The next lemma plays a crucial role in proving the approximation guarantee of

our algorithm.

Lemma 5. Let A ✓ ⌦ and B ✓ ⌦ be two disjoint subsets of ⌦. Suppose for each element e 2 B, we have
REPLACEMENT-GREEDY(A [{e}) = REPLACEMENT-GREEDY(A). Then we have:

REPLACEMENT-GREEDY(A [B) = REPLACEMENT-GREEDY(A).

Proof. We proof lemma by contradiction. Assume

REPLACEMENT-GREEDY(A [B) 6= REPLACEMENT-GREEDY(A).

At each iteration the element with the highest additive value is added to set S. In REPLACEMENT-GREEDY, the additive
value of each element depends on sets Ti ✓ S. Note that sets Ti ✓ S are deterministic functions of elements of S while
considering their order of additions to S. Let’s assume e is the first element such that REPLACEMENT-GREEDY(A [
B) 6= REPLACEMENT-GREEDY(A). First note that e /2 A. Also, we conclude REPLACEMENT-GREEDY(A [{e}) 6=
REPLACEMENT-GREEDY(A). This contradicts with the assumption of lemma.

From the definition of set Ol and Lemma 5, we have:

REPLACEMENT-GREEDY(V l) = REPLACEMENT-GREEDY(V l [O
l).

Data Summarization at Scale: A Two-Stage Submodular Approach

Lemma 6. We have:
1

m

mX

i=1

fi(T
l

i
) � ↵ · 1

m

mX

i=1

fi(O
l

i
),

where ↵ is the approximation factor of REPLACEMENT-GREEDY.

Proof. Let OPTl

i
denote the optimum value for function fi on the dataset V l[Ol for the two-stage submodular maximization

problem. We have:
1

m

mX

i=1

fi(T
l

i
) � ↵ · 1

m

mX

i=1

OPTl

i
� ↵ · 1

m

mX

i=1

fi(O
l

i
).

This is true because (i) REPLACEMENT-GREEDY(V l) = REPLACEMENT-GREEDY(V l [Ol), (ii) approximation guarantee
of REPLACEMENT-GREEDY is ↵, and (iii) Ol and {Ol

i
} is a valid solution for the two-stage submodular maximization

problem over set V l [O
l. Assume f

�
i

is the Lovász extension of a submodular function fi.
Lemma 7 (Lemma 1, Barbosa et al. (2015)). Let A be random set, and suppose that E[1A] = � · p for a constant value of
� 2 [0, 1]. Then, E[f(S)] � � · f�(p).

For each element e 2 S
m,` we have:

P[e 2 O
l] = 1� P[e /2 O

l] = 1� pe,

E[1Ol] = 1Sm,` � p,

E[1Ol
i
] = 1

S
m,`
i
� pi.

Therefore, we have:

E[1
m

mX

i=1

fi(T
l

i
)] � ↵ · E[1

m

mX

i=1

fi(O
l

i
)] � ↵

m
·

mX

i=1

f
�
i
(1

S
m,`
i
� pi).

Furthermore, for each element e 2 S
m,` we have

P[e 2
[

l

S
l|e is assigned to machine l] = P[e 2 REPLACEMENT-GREEDY(V l)|e 2 V

l]

= PA⇠V(1/M)[e 2 REPLACEMENT-GREEDY(A)|e 2 A]

= PB⇠V(1/M)[e 2 REPLACEMENT-GREEDY(B [{e})]
= pe.

Therefore, we have

E[1
m

mX

i=1

fj(T
0
i
)] � ↵ · E[1

m

mX

i=1

fi(
[

l

S
l \ S

m,`

i
)] � ↵

m
·

mX

i=1

f
�
i
(pi)

To Sum up above, we have:

E[1
m

mX

i=1

fj(T
⇤
i
)] � ↵

m

mX

i=1

f
�
j
(1

S
m,`
i
� pi), (13)

E[1
m

mX

i=1

fi(T
⇤
i
)] � ↵

m

mX

i=1

f
�
i
(pi). (14)

And therefore we have:

E[1
m

mX

i=1

fi(T
⇤
i
)] � ↵

2m

mX

i=1

h
f
�
i
(pi) + f

�
i
(1

S
m,`
i
� pi)

i (a)
� ↵

2m

mX

i=1

f
�
i
(1

S
m,`
i

) � ↵

2m

mX

i=1

fi(S
m,`

i
).

The inequality (a) results from the convexity of Lovász extensions for submodular functions. Note that the approximation
guarantee of REPLACEMENT-GREEDY is ↵ = 1

2 (1�
1
e2
) (Stan et al., 2017).

Data Summarization at Scale: A Two-Stage Submodular Approach

E. Proof of Theorem 4

In this section, we first outline DISTRIBUTED-FAST (Algorithm 5) and then prove Theorem 4.

Algorithm 5 DISTRIBUTED-FAST

1: For 1  l  M set V l = ?
2: for e 2 ⌦ do

3: Assign e to a set V l chosen uniformly at random
4: For 1  l  M sort elements of V l based on a universal predefined ordering between elements {Any consistent

ordering between elements of ⌦ is valid.}
5: Let V l be the elements assigned to machine l

6: Run REPLACEMENT-PSEUDO-STREAMING on each machine l to obtain {Sl
⌧
} and {T l

⌧,i
} for 1  i  m and relevant

values of ⌧ on that machine
7: l

⇤
, ⌧

⇤ argmaxl,⌧
1
m

P
m

i=1 fi(T
l

⌧,i
)

8: S, {Ti} REPLACEMENT-GREEDY(
S

l

S
⌧
S
l
⌧
)

9: Return: argmax{ 1
m

P
m

i=1 fi(Ti),
1
m

P
m

i=1 fi(T
l
⇤

⌧⇤i)}

The following lemma provides the equivalent of Lemma 5 for REPLACEMENT-PSEUDO-STREAMING. The rest of proof is
exactly the same as the proof of Theorem 3 with the only difference that the approximation guarantee of REPLACEMENT-
PSEUDO-STREAMING is � = 1

6+✏
.

Lemma 8. Let A ✓ ⌦ and B ✓ ⌦ be two disjoint subsets of ⌦. Suppose for each element e 2 B, we
have REPLACEMENT-PSEUDO-STREAMING(A [{e}) = REPLACEMENT-PSEUDO-STREAMING(A). Then we have
REPLACEMENT-PSEUDO-STREAMING(A [B) = REPLACEMENT-PSEUDO-STREAMING(A).

Proof. First note that because of the universal predefined ordering between elements of ⌦, the order of processing the
elements would not change in different runs of REPLACEMENT-PSEUDO-STREAMING. Also, in the streaming setting, if an
element ut changes the set of thresholds �t, then u

t would be picked by those newly instantiated thresholds. To show this,
assume �t�1 < ⌧  �t is one of the newly instantiated thresholds. For ⌧ , the sets {T⌧,i} are empty and we have:

⌧ 
mX

i=1

ri(u
t|?) =

mX

i=1

fi(u
t) = �t.

Therefore, ut is added to all sets {T⌧,i}. For an element e 2 B, we have two cases: (i) e has not changed the thresholds
when it is arrived, or (ii) it has instantiated new thresholds (e.g., a new threshold ⌧) but non of them is in the final thresholds
�n; because if ⌧ 2 �n, then we have e 2 S

n
⌧

, and this contradicts with the definition of set B.

Now consider REPLACEMENT-PSEUDO-STREAMING(A [B). We prove the lemma by contradiction. Assume

REPLACEMENT-PSEUDO-STREAMING(A [B) 6= REPLACEMENT-PSEUDO-STREAMING(A).

Assume e is the first element of B which is picked by REPLACEMENT-PSEUDO-STREAMING(A [B) for a thresh-
old in �n. From the above, we know that non of the thresholds �n of this running instance of the algo-
rithm is instantiated when an element of B is arrived. So, when e is arrived, all the thresholds of �n which
are instantiated so far are from elements of A. Also, since the order of processing of elements are fixed,
REPLACEMENT-PSEUDO-STREAMING(A[B) and REPLACEMENT-PSEUDO-STREAMING(A[{e}) would pick the same
set of element till the point e is arrived. If e is picked by REPLACEMENT-PSEUDO-STREAMING(A [B) for a threshold
⌧ 2 �n, then REPLACEMENT-PSEUDO-STREAMING(A [{e}) would also pick e for that threshold. This contradicts with
the definition of set B.

F. REPLACEMENT-GREEDY

In this section, in order to make the current manuscript self-contained, we describe the REPLACEMENT-GREEDY from (Stan
et al., 2017). We use this greedy algorithm in Section 5 as one of the building blocks of our distributed algorithms.

Data Summarization at Scale: A Two-Stage Submodular Approach

We first define few necessary notations. The additive value of an element x to a set A from a function fi is defined as
follows:

⇤i(x,A) =

⇢
fi(x|A) if |A| < k,

max{0,�i(x,A)} o.w.,

where �i(x,A) is defined in Eq. (4). We also define:

REP-GREEDYi(x,A) =

8
<

:

? if |A| < k,

? �i(x,A) < 0,
REPi(x,A) o.w.,

where REPi(x,A) is defined in Eq. (3). Indeed, REP-GREEDYi(x,A) represents the element from set A which should
be replaced with x in order to get the maximum (positive) additive gain, where the cardinality constraint k is satisfied.
REPLACEMENT-GREEDY starts with empty sets S and {Ti}. In ` rounds, it greedily adds elements with the maximum
additive gains

P
m

i=1 ⇤i(x, Ti) to set S. If the gain of adding these elements (or exchanging with one element of Ti where
there exists k elements in Ti) is non-negative, we also update sets Ti. REPLACEMENT-GREEDY is outlined in Algorithm 6.

Algorithm 6 REPLACEMENT-GREEDY

1: S ? and Ti ? for all 1  i  m

2: for 1  j  ` do

3: x
⇤ � argmaxx2⌦

P
m

i=1 ⇤i(x, Ti)
4: S S + x

⇤

5: for 1  i  m do

6: if ⇤i(x⇤
, Ti) > 0 then

7: Ti Ti + x
⇤ � REP-GREEDYi(x⇤

, Ti)
8: Return: S and {Ti}

G. VOC2012 Feature Explanation

To further clarify the VOC2012 dataset used in Section 6.1, we explicitly list the twenty classes that appear in the dataset.
We also give an example of an image from the dataset and its corresponding characteristic vector.

0 - Aeroplane
1 - Bicycle
2 - Bird
3 - Boat
4- Bottle
5 - Bus
6 - Car
7 - Cat
8 - Chair
9 - Cow

10 - Dining Table
11 - Dog
12 - Horse
13 - Motorbike
14 - Person
15 - Potted Plant
16 - Sheep
17 - Sofa
18 - Train
19 - TV Monitor

(a) (b)

Figure 5. (a) shows the twenty classes that appear in the VOC2012 dataset. The number adjacent to each class represents the index of that
class in the characteristic vector associated with each image. For example, the image shown in (b) contains one boat, one bird, and one
person. Therefore, the characteristic vector for this image is [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]. This also means that the
image in (b) appears in the sets ⌦2, ⌦4, and ⌦14.

