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9. Supplementary Material
9.1. Proof of Proposition 1

Define xcon = [x1; . . . ;xn] 2 Rnp and vcon = [v1; . . . ;vn] 2 Rnp as the concatenation of the local variables and descent
directions, respectively. Using these definitions and the update in (8) we can write

x

t+1
con = (W ⌦ I)x

t
con +

1

T
v

t
con, (26)

where W ⌦ I 2 Rnp⇥np is the Kronecker product of the matrices W 2 Rn⇥n and I 2 Rp⇥p. If we set x0
i = 0p for all

nodes i, it follows that x0
con = 0np. Hence, by applying the update in (26) recursively we obtain that the iterate x

t
con is

equal to

x

t
con =

1

T

t�1X

s=0

(W ⌦ I)

t�1�s
v

s
con. (27)

We proceed by showing that if the local blocks of a vector vcon 2 Rnp belong to the feasible set C, i.e., vi 2 C for
i = 1, . . . , n, then the local vectors of ycon = (W ⌦ I)vcon 2 Rnp also in the set C. Note that if the condition
ycon = (W ⌦ I)vcon holds, then the i-th block of ycon = [y1; . . . ;yn] can be written as

yi =

nX

j=1

wijvj . (28)

Since we assume that all {vj}nj=1 belong to the set C and the set C is convex, the weighted average of these vectors also is
in the set C, i.e., yi 2 C. This argument indeed holds for all blocks yi and therefore yi 2 C for i = 1, . . . , n. This argument
verifies that if we apply any power of the matrix W ⌦ I to a vector vcon 2 Rnp whose blocks belong to the set C, then
the local components of the output vector also belong to the set C. Therefore, the local components of each of the terms
(W ⌦ I)

t�1�s
v

s
con in (27) belong to the set C. The fact that xi which is the i-th block of the vector xt

con, is the average of
T terms that are in the set C (xt

con is the average of the vectors (W ⌦ I)

t�1
v

0
con, . . . , (W ⌦ I)

0
v

t�1
con with weights 1/T

and the vector 0np with weight (T � t)/T ), implies that xt
i 2 C. This result holds for all i 2 {1, . . . , n} and the proof is

complete.

9.2. Proof of Lemma 1

By averaging both sides of the update in (8) over the nodes in the network and using the fact wij = 0 if i and j are not
neighbors we can write
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where the last equality holds since W

T
1n = 1n (i.e. W is a doubly stochastic matrix). By using the definition of the

average iterate vector ¯xt and the result in (29) it follows that

¯
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=

¯

x

t
+
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Since v

t
i belongs to the convex set C its Euclidean norm is bounded by kvt

ik  D according to Assumption 2. This
inequality and the expression in (30) yield

k¯xt+1 � ¯

x

tk  D

T
, (31)

and the claim in (17) follows.

9.3. Proof of Lemma 2

Recall the definitions xcon = [x1; . . . ;xn] 2 Rnp and vcon = [v1; . . . ;vn] 2 Rnp for the concatenation of the local
variables and descent directions, respectively. These definitions along with the update in (8) lead to the expression

x

t
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t�1�s
v

s
con. (32)

If we premultiply both sides of (32) by the matrix (

1n1
†
n

n ⌦I) which is the Kronecker product of the matrices (1/n)(1n1
†
n) 2

Rn⇥n and I 2 Rp⇥p we obtain
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The left hand side of (33) can be simplified to
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t
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t
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where ¯

x

t
con = [

¯

x

t
; . . . ; ¯xt

] is the concatenation of n copies of the average vector ¯xt. Using the equality in (34) and the
simplification 1n1

†
nW = 1n1

†
n, we can rewrite (33) as
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Using the expressions in (32) and (35) we can derive an upper bound on the difference kxt
con � ¯

x

t
conk as
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x
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where the first inequality follows from the Cauchy-Schwarz inequality and the fact that the norm of a matrix does not change
if we Kronecker it by the identity matrix, the second inequality holds since kvt

ik  D and therefore kvt
conk 

p
nD.

Note that the eigenvectors of the matrices W and W

t�s�1 are the same for all s = 0, . . . , t � 1. Therefore, the largest
eigenvalue of Wt�s�1 is 1 with eigenvector 1n and its second largest magnitude of the eigenvalues is �t�1�s, where � is
the second largest magnitude of the eigenvalues of W. Also, note that since Wt�1�s has 1n as one of its eigenvectors, then
all the other eigenvectors of W are orthogonal to 1n. Hence, we can bound the norm kWt�1�s � (1n1

†
n)/(n)k by �t�1�s.

Applying this substitution into the right hand side of (36) yields
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Since kxt
con � ¯

x

t
conk2 =

Pn
i=1 kxt

i � ¯

x

tk2, the claim in (19) follows.
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9.4. Proof of Lemma 3

Recall the definition of the vector xcon = [x1; . . . ;xn] 2 Rnp as the concatenation of the local variables, and define
dcon = [d1; . . . ;dn] 2 Rnp as the concatenation of the local approximate gradients. Further, consider the function
Fcon : Xn ! R which is defined as Fcon(xcon) = Fcon(x1, . . . ,xn) :=

Pn
i=1 Fi(xi). According to these definitions and

the update in (6), we can show that

d

t
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t
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where W ⌦ I 2 Rnp⇥np is the Kronecker product of the matrices W 2 Rn⇥n and I 2 Rp⇥p. Considering the initialization
d

0
con = 0p, applying the update in (38) recursively from step 1 to t leads to
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If we multiply both sides of (39) from left by the matrix (
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n

n ⌦ I) 2 Rnp⇥np and use the properties of the weight matrix
W, i.e., 1†
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†
n, we obtain that
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where ¯

d

t
con = [

¯

d

t
; . . . ; ¯dt

] is the concatenation of n copies of the average vector ¯dt. Hence, the difference kdt
con � ¯

d
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can be upper bounded by
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where the first equality is implied by replacing d

t
con and ¯

d

t
con with the expressions in (39) and (40), respectively, the second

equality is achieved by regrouping the terms, the first inequality holds since krFi(xs
i )k  G and kWt�s�1�(1n1

†
n)/nk 

�t�s�1, and finally the last inequality is valid since
Pt

s=1((1� ↵)�)t�s  1
1�(�(1�↵)) . Now considering the result in (41)

and the expression kdt
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d

t
conk2 =
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d

tk2, the claim in (20) follows.

9.5. Proof of Lemma 4

Considering the update in (6), we can write the sum of local ascent directions dt
i at step t as
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where the last equality holds since
Pn

i=1 wij = 1 which is the consequence of W†
1n = 1n. Now, we use the expression in

(42) to bound the difference kPn
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)k. Hence,
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(43)

The first equality is the outcome of replacing
Pn

i=1 d
t
i by the expression in (42), the second equality is obtained by adding

and subtracting (1 � ↵)
Pn

i=1rFi(¯x
t�1

), in the third equality we regroup the terms, and the inequality follows from
applying the triangle inequality twice. Applying the Cauchy–Schwarz inequality to the second and third summands in (43)
and using the Lipschitz continuity of the gradients lead to

�����

nX

i=1

d

t
i �

nX

i=1

rFi(¯x
t
)

�����  (1� ↵)

������

nX

j=1

d

t�1
j �

nX

i=1

rFi(¯x
t�1

)

������
+ (1� ↵)L

nX

i=1

��
¯

x

t�1 � ¯

x

t
��
+ ↵L

nX

i=1

kxt
i � ¯

x

tk

(44)

According to the result in Lemma 1, we can bound the
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tk by nD/T . Further, the result in Lemma 2
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By multiplying both of sides of (45) by 1/n and applying the resulted inequality recessively for t steps we obtain
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where the second inequality holds since
Pn

j=1 d
0
j = 0p and

Pt�1
s=0(1� ↵)s  1/↵, and the last inequality follows from

Assumption 4.
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9.6. Proof of Theorem 1

Recall the definition of ¯xt
=

1
n

Pn
i=1 x

t
i as the average of local variables at step t. Since the gradients of the global objective

function are L-Lipschitz we can write
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where the equality holds due to the expression in (30). Note that the term k(1/n)Pn
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Now by rewriting the inner product hPn
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Note that in the last step we added and and subtracted (1/nT )
Pn
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Further add and subtract the expression 1
n2T

Pn
j=1h

Pn
i=1rFi(¯x

t
),x⇤i and combine the terms to obtain

1

n

nX

i=1

Fi(¯x
t+1

)� 1

n

nX

i=1

Fi(¯x
t
)

� 1

n2T

nX

j=1

h
nX

i=1

rFi(¯x
t
),x⇤i+ 1

nT

nX

j=1

h( 1
n

nX

i=1

d

t
i �

1

n

nX

i=1

rFi(¯x
t
),x⇤i+ 1

nT

nX

j=1

h(dt
j �

1

n

nX

i=1

d

t
i,x

⇤i

+

1

nT

nX

j=1

h( 1
n

nX

i=1

d

t
i � d

t
j),v

t
ji+

1

T
h

nX

i=1

1

n
rFi(¯x

t
)� 1

n

nX

i=1

d

t
i,
1

n

nX

i=1

v

t
ii �

LD2

2T 2

=

1

nT
h

nX

i=1

rFi(¯x
t
),x⇤i+ 1

nT
h

nX

i=1

d

t
i �

nX

i=1

rFi(¯x
t
),x⇤ � 1

n

nX

i=1

v

t
ii+

1

nT

nX

j=1

h( 1
n

nX

i=1

d

t
i � d

t
j),v

t
j � x

⇤i � LD2

2T 2
.

(52)

The monotonicity of the average function (1/n)
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i=1 Fi(x) and its concavity along positive directions imply that
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Now we proceed to derive lower bounds for the negative terms on the right hand side of (53). Note that all vt
i for i = 1, . . . , n

belong to the convex set C and therefore the average vector 1
n

Pn
i=1 v

t
i is also in the set. Hence, we can bound the difference
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ik by D according to Assumption 2. Indeed, the norm kvt

j � x

⇤k is also upper bounded by D and hence
we can write
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The result in Lemma 3 implies that (
Pn

i=1 kdt
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d

tk2)1/2  ↵
p
nG

1��(1�↵) . Note that based on the Cauchy–Swartz inequality
it holds that (
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and recalling the definition ¯
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i, we obtain that
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Replace the term 1
n
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�� in (54) by its upper bound in (55) and use the result in Lemma 4 to replace
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Set ↵ = 1/
p
T and regroup the terms to obtain
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By applying the inequality in (57) recursively for t = 0, . . . , T � 1 we obtain
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By using the inequality
PT�1

t=0 (1� 1/
p
T )t  pT and simplifying the terms on the right hand side (58) we obtain that to

the expression

1

n

nX

i=1

Fi(x
⇤
)� 1

n

nX

i=1

Fi(¯x
T
)

 1

e

"
1

n

nX

i=1

Fi(x
⇤
)� 1

n

nX

i=1

Fi(¯x
0
)

#
+

GD

T 1/2
+

LD2

T 1/2
+

LD2

(1� �)T
+

GD

(1� �)T 1/2
+

LD2

2T

=

1

e

"
1

n

nX

i=1

Fi(x
⇤
)� 1

n

nX

i=1

Fi(¯x
0
)

#
+

LD2
+GD(1 + (1� �)�1

)

T 1/2
+

LD2
(0.5 + (1� �)�1

)

T
, (59)

where to derive the first inequality we used (1 � 1/T )T  1/e. Note that we set x0
i = 0p for all i 2 N and therefore

¯

x

0
= 0p. Since we assume that Fi(0p) � 0 for all i 2 N , it implies that 1
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i=1 Fi(¯x

0
) =

1
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i=1 Fi(0p) � 0 and the

expression in (59) can be simplified to
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Also, since the norm of local gradients is uniformly bounded by G, the local functions Fi are G-Lipschitz. This observation
implies that
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where the second inequality holds by using the result in Lemma 2 and the Cauchy-Schwartz inequality. Therefore, by
combining the results in (60) and (61) we obtain that for all j = N
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(62)

and the claim in (22) follows.

9.7. How to Construct an Unbiased Estimator of the Gradient in Multilinear Extensions

In this section, we provide an unbiased estimator for the gradient of a multilinear extension. We thus consider an arbitrary
submodular set function h : 2

V ! R with multilinear H . Our goal is to provide an unbiased estimator for rH(x). We
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have H(x) =

P
S✓V

Q
i2S xi

Q
j 62S(1� xj)h(S). Now, it can easily be shown that (see ())

@H

@xi
= H(x;xi  1)�H(x;xi  0).

where for example by (x;xi  1) we mean a vector which has value 1 on its i-th coordinate and is equal to x elsewhere. To
create an unbiased estimator for @H

@xi
at a point x we can simply sample a set S by including each element in it independently

with probability xi and use h(S [ {i})� h(S \ {i}) as an unbiased estimator for the i-th partial derivative. We can sample
one single set S and use the above trick for all the coordinates. This involves n function computations for h. Having a
mini-batch size B we can repeat this procedure B times and then average.

Note that since every element of the unbiased estimator is of the form h(S [ {i})� h(S \ {i}) for some chosen set S, then
due to submodularity of the function h every element of the unbiased estimator is bounded above by the maximum marginal
value of h (i.e. maxi2V h({i})). As a result, the norm of the unbiased estimator (of the gradient of H) is bounded above byp|V |maxi2V h({i}).

9.8. Proof of Theorem 2

The steps of the proof are similar to the one for Theorem 1. In particular, for the Discrete DCG method we can also show
that the expressions in (47)-(54) hold and we can write
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Now we proceed to derive upper bounds for the norms on the right hand side of (63). To derive these bounds we use the
results in Lemmata 1 and 2 which also hold for the Discrete DCG algorithm.

We first derive an upper bound for the sum
Pn

j=1 k 1n
Pn

i=1 d
t
i � d

t
jk in (63). To achieve this goal the following lemma is

needed.

Lemma 5 Consider the proposed Discrete DCG method defined in Algorithm 2. If Assumptions 4 and 5 hold, then for all
i 2 N and t � 0 the expected squared norm E
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is bounded above by

E
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ik2
⇤  K2, (64)

where K2
= �2

+G2.

Proof: Considering the condition in Assumption 5 on the variance of stochastic gradients, we can define K2
:= �2

+G2 as
an upper bound on the expected norm of stochastic gradients, i.e., for all x 2 C and i 2 N

E
h
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Now we use an induction argument to show that the expected norm E
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⇤  K2. Since the iterates are initialized at g0
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0, the update in (12) implies that E
⇥kg1

i k2 | x1
i

⇤
= �2E

h
kr ˜Fi(x

1
i )k2 | x1

i

i
 �2K2  K2. Since E

⇥
E
⇥kg1

i k2 | x1
i

⇤⇤
=

E
⇥kg1

i k2
⇤

it follows that E
⇥kg1

i k2
⇤  K2. Now we proceed to show that if E

⇥kgt�1
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Recall the update of gt
i in (12). By computing the squared norm of both sides and using the Cauchy-Schwartz inequality we

obtain that
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Compute the expectation with respect to the random variable corresponding to the stochastic gradientr ˜Fi(x
t
i) to obtain
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Note that according to Jensen’s inequality E
h
kr ˜Fi(x

t
i)k2

i
 K2 implies that E

h
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t
i)k
i
 K. Replacing these

bounds into (67) yields
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Now by computing the expectation of both sides with respect to all sources of randomness from t = 0 and using the
simplification E
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we can write
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and the claim in (64) follows by induction. ⌅

We use the result in Lemma 5 to find an upper bound for the sum (1/n)
Pn

j=1

��¯
d

t � d

t
j

�� on the right hand side of (63).

Lemma 6 Consider the proposed Discrete DCG method defined in Algorithm 2. If Assumptions 1, 4 and 5 hold, then for all
i 2 N and t � 0 we have
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where K = (�2
+G2

)

1/2.

Proof: Define the vector gt
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t
n] as the concatenation of the local vectors g

t
i at time t. Further, recall the

definitions of the vectors xcon = [x1; . . . ;xn] 2 Rnp and dcon = [d1; . . . ;dn] 2 Rnp as the concatenation of the local
variables and local approximate gradients, respectively, and the definition of ¯dt
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d

t
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copies of the average vector ¯dt. By following the steps of the proof for Lemma 3, it can be shown that
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By computing the expected value of both sides and using the result in (64) we obtain that
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where in the first inequality we use the fact that E [kgt
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the claim in (70) follows. ⌅

The result in Lemma 6 shows that the sum 1
n

Pn
i=1 kdt

i � ¯

d

tk is bounded above by (↵K)/(1� �(1� ↵)) in expectation.
To bound the second sum in (63), which iskPn

i=1 d
t
i �
Pn

i=1rFi(¯x
t
)k, we first introduce the following lemma, which

was presented in (Mokhtari et al., 2018a) in a slightly different form.
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Lemma 7 Consider the proposed Discrete DCG method defined in Algorithm 2. If Assumptions 1-5 hold and we set
� = 1/T 2/3, then for all i 2 N and t � 0 we have
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where C := 1 + (2/(1� �)2).

Proof: Use the update g
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Define F t as a sigma algebra that measures the history of the system up until time t. Expanding the square and computing
the conditional expectation E [· | F t

] of the resulted expression yield
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where we have used the fact E
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these substitutions into (77) leads to

E
⇥krFi(x

t
i)� g

t
ik2 | F t

⇤  �2�2
+ (1� �)2(1 + ⇣�1

)L2kxt
i � x

t�1
i k2 + (1� �)2(1 + ⇣)krFi(x

t�1
i )� g

t�1
i k2.

(78)

By setting ⇣ = �/2 we can replace (1��)2(1+ ⇣�1
) and (1��)2(1+ ⇣) by their upper bounds (1+2��1

) and (1��/2),
respectively. Applying theses substitutions and summing up both sides of the resulted inequality for i = 1, . . . , n lead to
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Now we proceed to derive an upper bound for the sum
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i k2 in (79) by its upper bound in (80) and compute the expectation with respect to F0 to
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Set � = T�2/3 to obtain
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and the claim in (74) follows. ⌅
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where C := 1 + (2/(1� �)2).
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The first equality is the outcome of replacing
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i by the expression in (42), the second equality is obtained by adding
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), in the third equality we regroup the terms, and the inequality follows from
applying the triangle inequality twice. Applying the Cauchy–Schwarz inequality to the second and third summands in (43)
and using the Lipschitz continuity of the gradients lead to
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where the last inequality follows from Lemmata 1 and 2. Using the inequality

1p
n
E
"

nX

i=1

��
g

t
i �rFi(x

t
i)
��
#
 E

2

4
 

nX

i=1

��
g

t
i �rFi(x

t
i)
��2
!1/2

3

5 
 
E
"

nX

i=1

��
g

t
i �rFi(x

t
i)
��2
#!1/2

, (87)

and the result in Lemma 8 we obtain that

E
"

nX

i=1

��
g

t
i �rFi(x

t
i)
��
#
 pn

"✓
1� 1

2T 2/3

◆t

nG2
+

2n�2

T 2/3
+

6nL2D2C

T 4/3
+

12nL2D2C

T 2/3

#1/2

 nG

✓
1� 1

2T 2/3

◆t/2

+

p
2n�

T 1/3
+

p
6nLDC1/2

T 2/3
+

p
12nLDC1/2

T 1/3
, (88)
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By multiplying both of sides of (45) by 1/n and applying the resulted inequality recessively for t steps we obtain
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which follows the claim in (84). ⌅

Now we can complete the proof of Theorem 2 using the results in Lemmata 6 and 8 as well as the expression in (63).
Replace the terms on the right hand side of (63) by their upper bounds in Lemmata 6 and 8 to obtain
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Regrouping the terms implies that
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Now apply the expression in (92) for t = 0, . . . , T � 1 to obtain
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where in the last inequality we use the inequalities
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Now using the argument in (61), we can show that the result in (94) implies that for all j = N it holds
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Since C := 1 +

2
(1��)2 it can be shown that C1/2

= (1 +

2
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p
2

1�� . Applying this upper bound into (95)
yields the claim in (25).


